1
|
Franco M, Carmena A. Eph signaling controls mitotic spindle orientation and cell proliferation in neuroepithelial cells. J Cell Biol 2019; 218:1200-1217. [PMID: 30808706 PMCID: PMC6446852 DOI: 10.1083/jcb.201807157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, Franco and Carmena uncover a function for Eph signaling as a novel extrinsic mechanism controlling mitotic spindle alignment in Drosophila neuroepithelial cells through aPKC activity–dependent myosin II regulation. Additionally, Eph loss leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Mitotic spindle orientation must be tightly regulated during development and adult tissue homeostasis. It determines cell-fate specification and tissue architecture during asymmetric and symmetric cell division, respectively. Here, we uncover a novel role for Ephrin–Eph intercellular signaling in controlling mitotic spindle alignment in Drosophila optic lobe neuroepithelial cells through aPKC activity–dependent myosin II regulation. We show that conserved core components of the mitotic spindle orientation machinery, including Discs Large1, Mud/NuMA, and Canoe/Afadin, mislocalize in dividing Eph mutant neuroepithelial cells and produce spindle alignment defects in these cells when they are down-regulated. In addition, the loss of Eph leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Hence, Eph signaling is a novel extrinsic mechanism that regulates both spindle orientation and cell proliferation in the Drosophila optic lobe neuroepithelium. Similar mechanisms could operate in other Drosophila and vertebrate epithelia.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| | - Ana Carmena
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
2
|
Jiang Y, Wu Y, Hardie WJ, Zhou X. Mast cell chymase affects the proliferation and metastasis of lung carcinoma cells in vitro. Oncol Lett 2017; 14:3193-3198. [PMID: 28927065 DOI: 10.3892/ol.2017.6487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/14/2017] [Indexed: 12/15/2022] Open
Abstract
Metastasis of lung carcinoma cells is a major cause of organ failure and mortality of patients with lung cancer. Lung mast cells are a type of immune cell which reside in the respiratory mucosa. High numbers of mast cells are associated with the majority of common types of cancer; however, the effects of mast cells on cancer remain unclear. In the present study, the effects of mast cell chymase (MCC) on the proliferation and adhesion of the lung carcinoma cell lines A549 and H520 was investigated. After 24 h of treatment, the highest dose of MCC (50 mU/ml) decreased the proliferation rate of A549 and H520 cells, whereas the lowest dose of MCC (5 mU/ml) resulted in a small increase in the viability. A549 cells treated with MCC lost adhesion ability in a MCC dose-dependent manner; however, these detached cells were able to regrow when transferred to a fresh culture. The protein expression of epithelial (E-) cadherin, p53 and p21 in A549 lung carcinoma cells were detected by western blot analysis. The results of the present study revealed that, following 24 h of treatment, the expression level of E-cadherin was decreased, the p53 tumor suppressor protein was expressed in limited quantities and the expression of p21 was decreased. Zymography was used to examine the effects of MCC on the expression and activation of matrix metalloproteinase-9 (MMP-9) in A549 and H520 cells. The expression of MMP-9 in the two cell lines was time- and MCC dose-dependent. The results of the present study demonstrated that MCC stimulated lung carcinoma cell proliferation and adhesion, as well as regulated E-cadherin expression and the cell cycle, all of which are associated with cancer metastasis. Therefore, MCC may be a potential candidate for lung carcinoma therapy.
Collapse
Affiliation(s)
- Yuan Jiang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Yudan Wu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - William James Hardie
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Xiaoying Zhou
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| |
Collapse
|
3
|
Long J, Basu Roy R, Zhang YJ, Antrobus R, Du Y, Smith DL, Weekes MP, Javid B. Plasma Membrane Profiling Reveals Upregulation of ABCA1 by Infected Macrophages Leading to Restriction of Mycobacterial Growth. Front Microbiol 2016; 7:1086. [PMID: 27462310 PMCID: PMC4940386 DOI: 10.3389/fmicb.2016.01086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023] Open
Abstract
The plasma membrane represents a critical interface between the internal and extracellular environments, and harbors multiple proteins key receptors and transporters that play important roles in restriction of intracellular infection. We applied plasma membrane profiling, a technique that combines quantitative mass spectrometry with selective cell surface aminooxy-biotinylation, to Bacille Calmette–Guérin (BCG)-infected THP-1 macrophages. We quantified 559 PM proteins in BCG-infected THP-1 cells. One significantly upregulated cell-surface protein was the cholesterol transporter ABCA1. We showed that ABCA1 was upregulated on the macrophage cell-surface following infection with pathogenic mycobacteria and knockdown of ABCA1 resulted in increased mycobacterial survival within macrophages, suggesting that it may be a novel mycobacterial host-restriction factor.
Collapse
Affiliation(s)
- Jing Long
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge Cambridge, UK
| | - Yuxian Du
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | - Duncan L Smith
- Cancer Research UK Manchester Institute, University of Manchester Manchester, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge Cambridge, UK
| | - Babak Javid
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua UniversityBeijing, China; Harvard TH Chan School of Public Health, BostonMA, USA
| |
Collapse
|
4
|
Pitulescu ME, Adams RH. Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adh Migr 2015; 8:366-77. [PMID: 25482636 DOI: 10.4161/19336918.2014.970010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.
Collapse
Key Words
- Ang, angiopoietin
- CHC, clathrin heavy chains
- CLASP, clathrin-associated-sorting protein
- CV, cardinal vein
- DA, dorsal aorta
- EC, endothelial cell
- EEA1, early antigen 1
- Eph
- Ephrin-B2ΔV, ephrin-B2 deletion of C-terminal PDZ binding motif
- HSPG, heparan sulfate proteoglycan
- JNK, c-Jun N-terminal kinase
- LEC, lymphatic endothelial cells
- LRP1, Low density lipoprotein receptor-related protein 1
- MVB, multivesicular body
- NRP, neuropilin
- PC, pericytes
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PTC, peritubular capillary
- PlGF, placental growth factor
- RTK, receptor tyrosine kinase
- VEGF, Vascular endothelial growth factor
- VEGFR, Vascular endothelial growth factor receptor
- VSMC, vascular smooth muscle cells.
- aPKC, atypical protein kinase C
- endocytosis
- endothelial cells
- ephrin
- mural cells
- receptor
Collapse
Affiliation(s)
- Mara E Pitulescu
- a Department of Tissue Morphogenesis; Max Planck Institute for Molecular Biomedicine; and Faculty of Medicine , University of Münster ; Münster , Germany
| | | |
Collapse
|
5
|
Isolated Sagittal Synostosis in a Boy with Craniofrontonasal Dysplasia and a Novel EFNB1 Mutation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e427. [PMID: 26180728 PMCID: PMC4494497 DOI: 10.1097/gox.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/30/2015] [Indexed: 11/26/2022]
Abstract
Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder that shows greater severity in females and is largely attributed to mutations in EFNB1. A 7-year-old boy presented with hypertelorism, broad nasal root, midfacial hypoplasia, mandibular prognathia, ptosis, and scaphocephaly was clinically diagnosed with CFNS. Three-dimensional computed tomographic scans confirmed the isolated sagittal synostosis. His mother also showed clinical features of CFNS, but less severe. Genetic tests uncovered a novel C to T mutation at nucleotide 466 (c.466C>T) in exon 1 of EFNB1 for both. To the best of our knowledge, this is the only reported incident of CFNS in a male child exhibiting isolated sagittal synostosis.
Collapse
|
6
|
Park I, Lee HS. EphB/ephrinB signaling in cell adhesion and migration. Mol Cells 2015; 38:14-9. [PMID: 25475547 PMCID: PMC4314128 DOI: 10.14348/molcells.2015.2116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022] Open
Abstract
Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.
Collapse
Affiliation(s)
- Inji Park
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyun-Shik Lee
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
7
|
Pick1 modulates ephrinB1-induced junctional disassembly through an association with ephrinB1. Biochem Biophys Res Commun 2014; 450:659-65. [PMID: 24937449 DOI: 10.1016/j.bbrc.2014.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/06/2014] [Indexed: 01/22/2023]
Abstract
Members of the Eph family have been implicated in the formation of cell-cell boundaries, cell movement, and positioning during development in the context of cancer progression. De-regulation of this signaling system is linked to the promotion of more aggressive and metastatic tumor phenotypes in a large variety of human cancers, including breast, lung, and prostate cancer, melanoma, and leukemia. Thus, it is interesting to consider the case of cancer progression where de-regulation of the Eph/ephrin signaling system results in invasion and metastasis. Here, we present evidence that Pick1, one of the essential components of the adherens junction, recovers ephrinB1-induced cell-cell de-adhesion. Loss of Pick1 leads to dissociation of epithelial cells via disruption of the adherens junction, a phenotype similar to ephrinB1 overexpression. In addition, overexpressed ephrinB1-induced disruption of the adherens junction is rescued via binding to Pick1. These data indicate that Pick1 is involved in regulating the cell-cell junction in epithelial cells, and this may influence therapeutic strategy decisions with regards to cell adhesion molecules in metastatic disease.
Collapse
|
8
|
Barton WA, Dalton AC, Seegar TCM, Himanen JP, Nikolov DB. Tie2 and Eph receptor tyrosine kinase activation and signaling. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a009142. [PMID: 24478383 DOI: 10.1101/cshperspect.a009142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.
Collapse
Affiliation(s)
- William A Barton
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | |
Collapse
|
9
|
Park JE, Son AI, Zhou R. Roles of EphA2 in Development and Disease. Genes (Basel) 2013; 4:334-57. [PMID: 24705208 PMCID: PMC3924825 DOI: 10.3390/genes4030334] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023] Open
Abstract
The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Alexander I Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Chen J. Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 2012; 114:1-20. [PMID: 22588054 DOI: 10.1016/b978-0-12-386503-8.00001-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, a growing body of evidence has indicated that signaling molecules previously implicated in axon guidance are important regulators of multistep tumorigenesis and progression. Eph receptors and ephrins belong to this special class of molecules that play important roles in both axon guidance and cancer. Tremendous progress has been made in the past few years in both understanding the role of Eph receptors and ephrins in cancer and designing therapeutic strategies for cancer therapy. This review will focus on new advances in elucidating the contribution of Eph/ephrin molecules to key processes in tumor initiation and metastatic progression, including cancer cell proliferation, invasion and metastasis, and tumor angiogenesis.
Collapse
Affiliation(s)
- Jin Chen
- VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
11
|
Nievergall E, Lackmann M, Janes PW. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol Life Sci 2012; 69:1813-42. [PMID: 22204021 PMCID: PMC11114713 DOI: 10.1007/s00018-011-0900-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
Numerous studies attest to essential roles for Eph receptors and their ephrin ligands in controlling cell positioning and tissue patterning during normal and oncogenic development. These studies suggest multiple, sometimes contradictory, functions of Eph-ephrin signalling, which under different conditions can promote either spreading and cell-cell adhesion or cytoskeletal collapse, cell rounding, de-adhesion and cell-cell segregation. A principle determinant of the balance between these two opposing responses is the degree of receptor/ligand clustering and activation. This equilibrium is likely altered in cancers and modulated by somatic mutations of key Eph family members that have emerged as candidate cancer markers in recent profiling studies. In addition, cross-talk amongst Ephs and with other signalling pathways significantly modulates cell-cell adhesion, both between and within Eph- and ephrin-expressing cell populations. This review summarises our current understanding of how Eph receptors control cell adhesion and morphology, and presents examples demonstrating the importance of these events in normal development and cancer.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
- Present Address: Haematology Department, SA Pathology, Frome Road, Adelaide, SA 5000 Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| | - Peter W. Janes
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| |
Collapse
|
12
|
Abstract
Great strides have been made regarding our understanding of the processes and signaling events influenced by Eph/ephrin signaling that play a role in cell adhesion and cell movement. However, the precise mechanisms by which these signaling events regulate cell and tissue architecture still need further resolution. The Eph/ephrin signaling pathways and the ability to regulate cell-cell adhesion and motility constitutes an impressive system for regulating tissue separation and morphogenesis (Pasquale, 2005, 2008 [1,2]). Moreover, the de-regulation of this signaling system is linked to the promotion of aggressive and metastatic tumors in humans [2]. In the following section, we discuss some of the interesting mechanisms by which ephrins can signal through their own intracellular domains (reverse signaling) either independent of forward signaling or in addition to forward signaling through a cognate receptor. In this review we discuss how ephrins (Eph ligands) "reverse signal" through their intracellular domains to affect cell adhesion and movement, but the focus is on modes of action that are independent of SH2 and PDZ interactions.
Collapse
Affiliation(s)
- Ira O Daar
- Laboratory of Cell & Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Singh A, Winterbottom E, Daar IO. Eph/ephrin signaling in cell-cell and cell-substrate adhesion. Front Biosci (Landmark Ed) 2012; 17:473-97. [PMID: 22201756 DOI: 10.2741/3939] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell and cell-matrix adhesion are critical processes for the formation and maintenance of tissue patterns during development, as well as control of invasion and metastasis of cancer cells. Although great strides have been made regarding our understanding of the processes that play a role in cell adhesion and cell movement, the precise mechanisms by which diverse signaling events regulate cell and tissue architecture are poorly understood. One group of cell surface molecules, Eph receptor tyrosine kinases, and their membrane-bound ligands, ephrins, are key regulators in these processes. It is the ability of Eph/ephrin signaling pathways to regulate cell-cell adhesion and motility that establishes this family as a formidable system for regulating tissue separation and morphogenesis. Moreover, the de-regulation of this signaling system is linked to the promotion of more aggressive and metastatic tumors in humans.
Collapse
Affiliation(s)
- Arvinder Singh
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
14
|
Stark DA, Karvas RM, Siegel AL, Cornelison DDW. Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 2011; 138:5279-89. [PMID: 22071104 DOI: 10.1242/dev.068411] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin 'stripe' assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle.
Collapse
Affiliation(s)
- Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
15
|
Harburg GC, Hinck L. Navigating breast cancer: axon guidance molecules as breast cancer tumor suppressors and oncogenes. J Mammary Gland Biol Neoplasia 2011; 16:257-70. [PMID: 21818544 PMCID: PMC4083826 DOI: 10.1007/s10911-011-9225-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/19/2011] [Indexed: 01/13/2023] Open
Abstract
Slit, Netrin, Ephrin, and Semaphorin's roles in development have expanded greatly in the past decade from their original characterization as axon guidance molecules (AGMs) to include roles as regulators of tissue morphogenesis and development in diverse organs. In the mammary gland, AGMs are important for maintaining normal cell proliferation and adhesion during development. The frequent dysregulation of AGM expression during tumorigenesis and tumor progression suggests that AGMs also play a crucial role as tumor suppressors and oncogenes in breast cancer. Moreover, these findings suggest that AGMs may be excellent targets for new breast cancer prognostic tests and more effective therapeutic strategies.
Collapse
Affiliation(s)
- Gwyndolen C. Harburg
- Department of Molecular, Cell and Developmental Biology University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology University of California, Santa Cruz CA 95064
- Corresponding Author:
| |
Collapse
|
16
|
Liu J, Zhang W, Liu J, Lu X, Long Y, Zhou Y, Liu S. Expressions of connexin and par-3 in the distal margin of rectal cancer after ultra-low anterior resection. ACTA ACUST UNITED AC 2009; 29:330-4. [DOI: 10.1007/s11596-009-0313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Indexed: 01/19/2023]
|