1
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Choi K, Joo H. Assessment of Gold Nanoparticles-Inhibited Cytochrome P450 3A4 Activity and Molecular Mechanisms Underlying Its Cellular Toxicity in Human Hepatocellular Carcinoma Cell Line C3A. NANOSCALE RESEARCH LETTERS 2018; 13:279. [PMID: 30203228 PMCID: PMC6134879 DOI: 10.1186/s11671-018-2684-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 05/07/2023]
Abstract
Interactions of the 40 and 80 nm gold nanoparticles (AuNP) functionalized with cationic branched polyethylenimine (BPEI), anionic lipoic acid (LA), or neutral polyethylene glycol (PEG) with human hepatocellular carcinoma (HCC) cell line C3A have been investigated in the absence and presence of human plasma protein corona (PC). All bare (no PC) AuNP besides 80 nm LA-AuNP were cytotoxic to C3A but PC attenuated their cytotoxicities. Time-dependent cellular uptake of AuNP increased besides 40 nm BPEI-AuNP but PC suppressed their uptakes besides 80 nm PEG-AuNP. Biphasic responses of oxidative/nitrosative stress by BPEI-AuNP occurred in C3A cells, whereas PEG-AuNP was a potent antioxidant. All bare AuNP inhibited cytochrome P450 (CYP) 3A4 activity irrespective of size and surface charge but PC recuperated its activity besides PEG-AuNP. The 40 nm PEG-AuNP-modulated gene expression was mainly involved in mitochondrial fatty acid β-oxidation and to a less degree hepatic efflux/uptake transporters. These studies contribute to a better understanding of AuNP interaction with key biological processes and their underlying molecular mechanisms in HCC, which may be further implicated in the development of more effective therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Kyoungju Choi
- Department of Anatomy & Physiology, Nanotechnology Innovation Center of Kansas State (NICKS), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Hyun Joo
- Department of Anatomy & Physiology, Nanotechnology Innovation Center of Kansas State (NICKS), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
3
|
Dhungel B, Jayachandran A, Layton CJ, Steel JC. Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma. Drug Deliv 2017; 24:289-299. [PMID: 28165834 PMCID: PMC8241004 DOI: 10.1080/10717544.2016.1247926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with high incidence globally. Increasing mortality and morbidity rates combined with limited treatment options available for advanced HCC press for novel and effective treatment modalities. Gene therapy represents one of the most promising therapeutic options. With the recent approval of herpes simplex virus for advanced melanoma, the field of gene therapy has received a major boost. Adeno-associated virus (AAV) is among the most widely used and effective viral vectors today with safety and efficacy demonstrated in a number of human clinical trials. This review identifies the obstacles for effective AAV based gene delivery to HCC which primarily include host immune responses and off-target effects. These drawbacks could be more pronounced for HCC because of the underlying liver dysfunction in most of the patients. We discuss approaches that could be adopted to tackle these shortcomings and manufacture HCC-targeted vectors. The combination of transductional targeting by modifying the vector capsid and transcriptional targeting using HCC-specific promoters has the potential to produce vectors which can specifically seek HCC and deliver therapeutic gene without significant side effects. Finally, the identification of novel HCC-specific ligands and promoters should facilitate and expedite this process.
Collapse
Affiliation(s)
- Bijay Dhungel
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia.,c University of Queensland Diamantina Institute, Translational Research Institute , Woolloongabba , QLD , Australia , and
| | - Aparna Jayachandran
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia
| | - Christopher J Layton
- b School of Medicine, The University of Queensland , Brisbane , QLD , Australia.,d Ophthalmology Department, Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia
| | - Jason C Steel
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia
| |
Collapse
|
4
|
Davoodi P, Srinivasan MP, Wang CH. Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(ε-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA. Acta Biomater 2016; 39:79-93. [PMID: 27154500 DOI: 10.1016/j.actbio.2016.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 01/29/2023]
Abstract
UNLABELLED This study aims to present a new intelligent polymeric nano-system used for combining chemotherapy with non-viral gene therapy against human cancers. An amphiphilic copolymer synthesized through the conjugation of low molecular weight polyethyleneimine (LMw-PEI) and poly(ε-caprolactone) (PCL) via a bio-cleavable disulfide linkage was successfully employed for the simultaneous delivery of drug and gene molecules into target cells. Compared to the conventional PCL copolymerization pathway, this paper represents a straightforward and efficient reaction pathway including the activation of PCL-diol hydroxyl end groups, cystamine attachment and LMw-PEI conjugation which are successfully performed at mild conditions as confirmed by FTIR and (1)H NMR. Thermal, morphological characteristics as well as biocompatibility of the copolymer were investigated. The copolymer showed great tendency to form positively charged nanoparticles (∼163.1nm, +35.3mV) with hydrophobic core and hydrophilic shell compartments implicating its potential for encapsulation of anti-cancer drug and plasmid DNA, respectively. The gel retardation assay confirmed that the nanoparticles could successfully inhibit the migration of pDNA at ∼5 nanoparticle/pDNAw/w. The in vitro cytotoxicity tests and LDH assay revealed that the cationic amphiphilic copolymer was essentially non-toxic in different carcinoma cell lines in contrast to branched PEI 25K. Moreover, the presence of redox sensitive disulfide linkages provided smart nanoparticles with on-demand release behavior in response to reducing agents such as cytoplasmic glutathione (GSH). Importantly, confocal microscopy images revealed that in contrast to free Dox, the nanoparticles were capable of faster internalizing into the cells and accumulating in the perinuclear region or even in the nucleus. Finally, the co-delivery of Dox and p53-pDNA using the copolymer displayed greater cytotoxic effect compared with the Dox-loaded nanoparticle counterpart as revealed by cell viability and Caspase 3 expression assay. These results suggest the copolymer as a promising candidate for the development of smart delivery systems. STATEMENT OF SIGNIFICANCE We employed cystamine dihydrochloride as a disulfide linkage for the conjugation of PCL diol and low molecular weight PEI segments through a straightforward and efficient reaction pathway at mild conditions. The new copolymer was essentially non-toxic in different carcinoma cell lines and showed great tendency to form positively charged nanoparticles. Therefore, it can be utilized as a promising platform for simultaneous drug and gene delivery to aggressive cancers. The results of drug and gene co-delivery experiments confirmed the pivotal role of disulfide linkage on the controlled release of both drug and gene molecules in response to glutathione concentration gradient between extracellular and intracellular microenvironments. In addition, the co-delivery of doxorubicin and p53 plasmid DNA using the new copolymer displayed greater cytotoxic effect compared with single agent (i.e. Dox) loaded counterpart, which indicated the significance of rapid dissociation of therapeutic agents from the carrier for synergistic cytotoxic effects on cancer cells.
Collapse
Affiliation(s)
- Pooya Davoodi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Madapusi P Srinivasan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
5
|
Braicu C, Pileczki V, Pop L, Petric RC, Chira S, Pointiere E, Achimas-Cadariu P, Berindan-Neagoe I. Dual targeted therapy with p53 siRNA and Epigallocatechingallate in a triple negative breast cancer cell model. PLoS One 2015; 10:e0120936. [PMID: 25849487 PMCID: PMC4388814 DOI: 10.1371/journal.pone.0120936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive phenotype that is resistant to standard therapy. Thus, the development of alternative therapeutic strategies for TNBC is essential. The purpose of our in vitro study was to evaluate the impact of p53 gene silencing in conjunction with the administration of a natural compound, epigallocatechingallate (EGCG). RT2Profiler PCR Array technology was used to evaluate the impact of dual treatment on the main genes involved in apoptosis in the Hs578T cell culture model of TNBC. Gene expression analysis revealed 28 genes were significantly altered (16 upregulated and 12 downregulated) in response to combined p53 siRNA and EGCG treatment. Further analysis revealed that p53 siRNA and EGCG dual therapy leads to the activation of pro-apoptotic genes and the inhibition of pro-survival genes, autophagy, and cell network formation. These results indicate that this dual therapy targets both the apoptotic and angiogenic pathways, which may improve treatment effectiveness for tumors resistant to conventional treatment.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Valentina Pileczki
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Patriciu Achimas-Cadariu
- Department of Surgery, The Oncology Institute " Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
- Department of Surgical Oncology and Gynaecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- * E-mail: (IBN); (PAC)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute " Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
- Department of Experimental Therapeutics M.D. Anderson Cancer Center Houston, Texas, United States of America
- * E-mail: (IBN); (PAC)
| |
Collapse
|
6
|
Li Y, Li B, Li CJ, Li LJ. Key points of basic theories and clinical practice in rAd-p53 ( Gendicine ™) gene therapy for solid malignant tumors. Expert Opin Biol Ther 2014; 15:437-54. [PMID: 25496374 DOI: 10.1517/14712598.2015.990882] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Wild-type p53 gene is an essential cancer suppressor gene which plays an important role in carcinogenesis and malignant progressions. The p53 gene family participates in almost all the key procedures of cancer biology, such as programmed cell death, angiogenesis, metabolism and epithelial-mesenchymal transition. The mutation or functional defects of the p53 gene family are detected in most of the solid malignant tumors, and the restoration of the p53 gene by adenovirus-mediated gene therapy becomes a promising treatment for cancer patients now. AREAS COVERED In the present review, the potential therapeutic effects of recombinant adenovirus p53 rAd-p53 ( Gendicine ™) were reviewed to explore the biological mechanism underlying the adenovirus-mediated p53 gene therapy. Then, the key points of the drug administration were discussed, including the routes of administration, dosage calculation and treatment cycles, based on findings of the preclinical and clinical trials in order to establish a standard treatment for the p53 gene therapy. EXPERT OPINION As an important part of the combined therapy for the cancer patients, the adenovirus-mediated p53 gene therapy was blossomed to be a promising treatment strategy. A new evaluation criteria and guideline for the gene therapy is urgently needed for the further clinical practice.
Collapse
Affiliation(s)
- Yi Li
- Sichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Disease , Chengdu, 610041 , China
| | | | | | | |
Collapse
|
7
|
Ma H, Zhang Y, Wang H, Han C, Lei R, Zhang L, Yang Z, Rao L, Qing H, Xiang J, Deng Y. Effect and mechanism of Mitomycin C combined with recombinant adeno-associated virus type II against glioma. Int J Mol Sci 2013; 15:1-14. [PMID: 24451124 PMCID: PMC3907794 DOI: 10.3390/ijms15010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 11/25/2022] Open
Abstract
The effect of chemotherapy drug Mitomycin C (MMC) in combination with recombinant adeno-associated virus II (rAAV2) in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2’s bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Hong Ma
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Yunjia Zhang
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Hailong Wang
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Chuanhui Han
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Runhong Lei
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Lei Zhang
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Zuye Yang
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Ling Rao
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Jim Xiang
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China.
| |
Collapse
|
8
|
Li G, Ye L, Pan J, Long M, Zhao Z, Yang H, Tian J, Wen Y, Dong S, Guan J, Luo B. Antitumoural hydroxyapatite nanoparticles-mediated hepatoma-targeted trans-arterial embolization gene therapy: in vitro and in vivo studies. Liver Int 2012; 32:998-1007. [PMID: 22340582 DOI: 10.1111/j.1478-3231.2012.02761.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Absence of curative treatment creates urgent need for new strategies for unresectable hepatoma. Based on former discoveries of good liver cell compatibility, safety and tumour-specific inhibition of hydroxyapatite nanoparticles (nHAP), this work tries to make nHAP serve as gene vector in the hepatoma-targeted trans-arterial embolization (TAE) gene therapy to elevate and synergize the therapeutic efficacy of TAE and target gene therapy. METHOD Following dosage and ratio optimization, polypolex formed by surface modified nHAP and p53 expressing plasmid was applied in vitro for human hepatoma HePG2 cell, and then in vivo for rabbit hepatic VX2 tumour by injection of polypolex/lipodoil emulsion to the hepatic artery in a tumour-target manner. RESULTS In vitro, the polypolex transfected only about 5% HepG2 cells, but can elevate the inhibition of its growth and apoptosis in a much more degree while keeping safe to the normal hepatocyte line, L02. In vivo, the emulsion, with better dispersion than the polypolex and more specific tumour-target than lipiodol, mediated specific 4% p53 expression and antitumoural nanoparticle retention in the target tumour site, also significantly reduced tumour growth and prolonged the animal survival times more than the lipiodol (P < 0.05). CONCLUSIONS In all, this new treatment based on nHAP can enhance therapeutic effect of HCC safely both in vitro and in vivo.
Collapse
Affiliation(s)
- Gaopeng Li
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jiang M, Liu Z, Xiang Y, Ma H, Liu S, Liu Y, Zheng D. Synergistic antitumor effect of AAV-mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma. BMC Cancer 2011; 11:54. [PMID: 21291526 PMCID: PMC3044652 DOI: 10.1186/1471-2407-11-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/03/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Adeno-associated virus-2 (AAV-2)-mediated gene therapy is quite suitable for local or regional application in head and neck cancer squamous cell carcinoma (HNSCC). However, its low transduction efficiency has limited its further development as a therapeutic agent. DNA damaging agents have been shown to enhance AAV-mediated transgene expression. Cisplatin, one of the most effective chemotherapeutic agents, has been recognized to cause cancer cell death by apoptosis with a severe toxicity. This study aims to evaluate the role of cisplatin in AAV-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and the effect on HNSCC both in vitro and in vivo. METHODS Five human HNSCC cell lines were treated with recombinant soluble TRAIL (rsTRAIL) and infected with AAV/TRAIL to estimate the sensitivity of the cancer cells to TRAIL-induced cytotoxicity. KB cells were infected with AAV/EGFP with or without cisplatin pretreatment to evaluate the effect of cisplatin on AAV-mediated gene expression. TRAIL expression was detected by ELISA and Western blot. Cytotoxicity was measured by MTT assay and Western blot analysis for caspase-3 and -8 activations. Following the in vitro experiments, TRAIL expression and its tumoricidal activity were analyzed in nude mice with subcutaneous xenografts of HNSCC. RESULTS HNSCC cell lines showed different sensitivities to rsTRAIL, and KB cells possessed both highest transduction efficacy of AAV and sensitivity to TRAIL among five cell lines. Preincubation of KB cells with subtherapeutic dosage of cisplatin significantly augmented AAV-mediated transgene expression in a heparin sulfate proteoglycan (HSPG)-dependent manner. Furthermore, cisplatin enhanced the killing efficacy of AAV/TRAIL by 3-fold on KB cell line. The AAV mediated TRAIL expression was observed in the xenografted tumors and significantly enhanced by cisplatin. AAV/TRAIL suppressed the tumors growth and cisplatin augmented the tumoricidal activity by two-fold. Furthermore, Combination treatment reduced cisplatin-caused body weight loss in nude mice. CONCLUSION The combination of AAV-mediated TRAIL gene expression and cisplatin had synergistic therapeutic effects on head and neck cancers and reduced the potential toxicity of cisplatin. These findings suggest that the combination of AAV/TRAIL and cisplatin may be a promising strategy for HNSCC therapy.
Collapse
Affiliation(s)
- Minghong Jiang
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zheng Liu
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yang Xiang
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hong Ma
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Shilian Liu
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yanxin Liu
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Dexian Zheng
- National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
10
|
Amaral JD, Castro RE, Steer CJ, Rodrigues CMP. p53 and the regulation of hepatocyte apoptosis: implications for disease pathogenesis. Trends Mol Med 2009; 15:531-41. [PMID: 19822456 DOI: 10.1016/j.molmed.2009.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 01/06/2023]
Abstract
The interplay between p53 and apoptosis in diseases such as cancer, neurodegeneration, ischemia and atherosclerosis underscores the need to understand the complexity of p53 networks. Here, we highlight recent studies of p53-induced apoptosis in human diseases, with a focus on the modulation of liver cell apoptosis. In addition, recent work has provided new insights into mechanisms underlying the antiapoptotic functions of the endogenous bile acid ursodeoxycholic acid (UDCA), suggesting that the finely tuned, complex control of p53 by Mdm2 is a key step in the UDCA modulation of deregulated, p53-triggered apoptosis. The effect of targeting cell death signaling proteins has been established in preclinical models of human diseases. Finally, we review recent therapeutic strategies and clinical applications of targeted agents, with a particular emphasis on the potential use of UDCA.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|