1
|
Zhang Y, Wang ZZ, Han AQ, Yang MY, Zhu LX, Pan FM, Wang Y. TuBG1 promotes hepatocellular carcinoma via ATR/P53-apoptosis and cycling pathways. Hepatobiliary Pancreat Dis Int 2024; 23:195-209. [PMID: 37806848 DOI: 10.1016/j.hbpd.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND As reported, γ-tubulin (TuBG1) is related to the occurrence and development of various types of malignant tumors. However, its role in hepatocellular cancer (HCC) is not clear. The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients. METHODS The correlation between TuBG1 and clinical parameters and survival in HCC patients was explored by bioinformatics analysis. Immunohistochemistry was used for the verification. The molecular function of TuBG1 was measured using colony formation, scratch assay, trans-well assay and flow cytometry. Gene set enrichment analysis (GSEA) was used to pick up the enriched pathways, followed by investigating the target pathways using Western blotting. The tumor-immune system interactions and drug bank database (TISIDB) was used to evaluate TuBG1 and immunity. Based on the TuBG1-related immune genes, a prognostic model was constructed and was further validated internally and externally. RESULTS The bioinformatic analysis found high expressed TuBG1 in HCC tissue, which was confirmed using immunohistochemistry and Western blotting. After silencing the TuBG1 in HCC cell lines, more G1 arrested cells were found, cell proliferation and invasion were inhibited, and apoptosis was promoted. Furthermore, the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3 (ATR), phospho-P38 mitogen-activated protein kinase (P-P38MAPK), phospho-P53 (P-P53), B-cell lymphoma-2 associated X protein (Bax), cleaved caspase 3 and P21; decreased the expressions of B-cell lymphoma-2 (Bcl-2), cyclin D1, cyclin E2, cyclin-dependent kinase 2 (CDK2) and CDK4. The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively correlated with the overall survival. The constructed immune prognosis model could effectively evaluate the prognosis. CONCLUSIONS The increased expression of TuBG1 in HCC is associated with poor prognosis, which might be involved in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - An-Qi Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Ya Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li-Xin Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
2
|
LZTS2, a Novel and Independent Prognostic Biomarker for Clear Cell Renal Cell Carcinoma. Pathol Res Pract 2022; 232:153831. [DOI: 10.1016/j.prp.2022.153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
3
|
Dráber P, Dráberová E. Dysregulation of Microtubule Nucleating Proteins in Cancer Cells. Cancers (Basel) 2021; 13:cancers13225638. [PMID: 34830792 PMCID: PMC8616210 DOI: 10.3390/cancers13225638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The dysfunction of microtubule nucleation in cancer cells changes the overall cytoskeleton organization and cellular physiology. This review focuses on the dysregulation of the γ-tubulin ring complex (γ-TuRC) proteins that are essential for microtubule nucleation. Recent research on the high-resolution structure of γ-TuRC has brought new insight into the microtubule nucleation mechanism. We discuss the effect of γ-TuRC protein overexpression on cancer cell behavior and new drugs directed to γ-tubulin that may offer a viable alternative to microtubule-targeting agents currently used in cancer chemotherapy. Abstract In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
Collapse
|
4
|
Bucko PJ, Garcia I, Manocha R, Bhat A, Wordeman L, Scott JD. Gravin-associated kinase signaling networks coordinate γ-tubulin organization at mitotic spindle poles. J Biol Chem 2020; 295:13784-13797. [PMID: 32732289 PMCID: PMC7535905 DOI: 10.1074/jbc.ra120.014791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Mitogenic signals that regulate cell division often proceed through multienzyme assemblies within defined intracellular compartments. The anchoring protein Gravin restricts the action of mitotic kinases and cell-cycle effectors to defined mitotic structures. In this report we discover that genetic deletion of Gravin disrupts proper accumulation and asymmetric distribution of γ-tubulin during mitosis. We utilize a new precision pharmacology tool, Local Kinase Inhibition, to inhibit the Gravin binding partner polo-like kinase 1 at spindle poles. Using a combination of gene-editing approaches, quantitative imaging, and biochemical assays, we provide evidence that disruption of local polo-like kinase 1 signaling underlies the γ-tubulin distribution defects observed with Gravin loss. Our study uncovers a new role for Gravin in coordinating γ-tubulin recruitment during mitosis and illuminates the mechanism by which signaling enzymes regulate this process at a distinct subcellular location.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Irvin Garcia
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Ridhima Manocha
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Akansha Bhat
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
5
|
Osman MA, Antonisamy WJ, Yakirevich E. IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer. Oncotarget 2020; 11:2493-2511. [PMID: 32655836 PMCID: PMC7335670 DOI: 10.18632/oncotarget.27623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogenous and lethal disease that lacks diagnostic markers and therapeutic targets; as such common targets are highly sought after. IQGAP1 is a signaling scaffold implicated in TNBC, but its mechanism is unknown. Here we show that IQGAP1 localizes to the centrosome, interacts with and influences the expression level and localization of key centrosome proteins like BRCA1 and thereby impacts centrosome number. Genetic mutant analyses suggest that phosphorylation cycling of IQGAP1 is important to its subcellular localization and centrosome-nuclear shuttling of BRCA1; dysfunction of this process defines two alternate mechanisms associated with cell proliferation. TNBC cell lines and patient tumor tissues differentially phenocopy these mechanisms supporting clinical existence of molecularly distinct variants of TNBC defined by IQGAP1 pathways. These variants are defined, at least in part, by differential mis-localization or stabilization of IQGAP1-BRCA1 and rewiring of a novel Erk1/2-MNK1-JNK-Akt-β-catenin signaling signature. We discuss a model in which IQGAP1 modulates centrosome-nuclear crosstalk to regulate cell division and imparts on cancer. These findings have implications on cancer racial disparities and can provide molecular tools for classification of TNBC, presenting IQGAP1 as a common target amenable to personalized medicine.
Collapse
Affiliation(s)
- Mahasin A. Osman
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - William James Antonisamy
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
6
|
Rosselló CA, Lindström L, Eklund G, Corvaisier M, Kristensson MA. γ-Tubulin⁻γ-Tubulin Interactions as the Basis for the Formation of a Meshwork. Int J Mol Sci 2018; 19:ijms19103245. [PMID: 30347727 PMCID: PMC6214090 DOI: 10.3390/ijms19103245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
In cytoplasm, protein γ-tubulin joins with various γ-tubulin complex proteins (GCPs) to form a heterotetramer γ-tubulin small complex (γ-TuSC) that can grow into a ring-shaped structure called the γ-tubulin ring complex (γ-TuRC). Both γ-TuSC and γ-TuRC are required for microtubule nucleation. Recent knowledge on γ-tubulin with regard to its cellular functions beyond participation in its creation of microtubules suggests that this protein forms a cellular meshwork. The present review summarizes the recognized functions of γ-tubulin and aims to unite the current views on this protein.
Collapse
Affiliation(s)
- Catalina Ana Rosselló
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Greta Eklund
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Matthieu Corvaisier
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Maria Alvarado Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| |
Collapse
|
7
|
Alvarado-Kristensson M. γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Signal Transduct Target Ther 2018; 3:24. [PMID: 30221013 PMCID: PMC6137058 DOI: 10.1038/s41392-018-0021-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/23/2018] [Accepted: 05/06/2018] [Indexed: 01/05/2023] Open
Abstract
Knowledge of γ-tubulin is increasing with regard to the cellular functions of this protein beyond its participation in microtubule nucleation. γ-Tubulin expression is altered in various malignancies, and changes in the TUBG1 gene have been found in patients suffering from brain malformations. This review recapitulates the known functions of γ-tubulin in cellular homeostasis and discusses the possible influence of the protein on disease development and cancer.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502 Sweden
| |
Collapse
|
8
|
Remo A, Manfrin E, Parcesepe P, Ferrarini A, Han HS, Mickys U, Laudanna C, Simbolo M, Malanga D, Oliveira DM, Baritono E, Colangelo T, Sabatino L, Giuliani J, Molinari E, Garonzi M, Xumerle L, Delledonne M, Giordano G, Ghimenton C, Lonardo F, D'angelo F, Grillo F, Mastracci L, Viglietto G, Ceccarelli M, Colantuoni V, Scarpa A, Pancione M. Centrosome Linker-induced Tetraploid Segregation Errors Link Rhabdoid Phenotypes and Lethal Colorectal Cancers. Mol Cancer Res 2018; 16:1385-1395. [PMID: 29784668 DOI: 10.1158/1541-7786.mcr-18-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023]
Abstract
Centrosome anomalies contribute to tumorigenesis, but it remains unclear how they are generated in lethal cancer phenotypes. Here, it is demonstrated that human microsatellite instable (MSI) and BRAFV600E-mutant colorectal cancers with a lethal rhabdoid phenotype are characterized by inactivation of centrosomal functions. A splice site mutation that causes an unbalanced dosage of rootletin (CROCC), a centrosome linker component required for centrosome cohesion and separation at the chromosome 1p36.13 locus, resulted in abnormally shaped centrosomes in rhabdoid cells from human colon tissues. Notably, deleterious deletions at 1p36.13 were recurrent in a subgroup of BRAFV600E-mutant and microsatellite stable (MSS) rhabdoid colorectal cancers, but not in classical colorectal cancer or pediatric rhabdoid tumors. Interfering with CROCC expression in near-diploid BRAFV600E-mutant/MSI colon cancer cells disrupts bipolar mitotic spindle architecture, promotes tetraploid segregation errors, resulting in a highly aggressive rhabdoid-like phenotype in vitro Restoring near-wild-type levels of CROCC in a metastatic model harboring 1p36.13 deletion results in correction of centrosome segregation errors and cell death, revealing a mechanism of tolerance to mitotic errors and tetraploidization promoted by deleterious 1p36.13 loss. Accordingly, cancer cells lacking 1p36.13 display far greater sensitivity to centrosome spindle pole stabilizing agents in vitro These data shed light on a previously unknown link between centrosome cohesion defects and lethal cancer phenotypes providing new insight into pathways underlying genome instability.Implications: Mis-segregation of chromosomes is a prominent feature of chromosome instability and intratumoral heterogeneity recurrent in metastatic tumors for which the molecular basis is unknown. This study provides insight into the mechanism by which defects in rootletin, a centrosome linker component causes tetraploid segregation errors and phenotypic transition to a clinically devastating form of malignant rhabdoid tumor. Mol Cancer Res; 16(9); 1385-95. ©2018 AACR.
Collapse
Affiliation(s)
- Andrea Remo
- Pathology Unit, "Mater Salutis" Hospital AULSS9, Legnago (Verona), Italy
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Pietro Parcesepe
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | - Hye Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Ugnius Mickys
- National Center of Pathology, Affiliate of Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Carmelo Laudanna
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | - Duarte Mendes Oliveira
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | | | - Tommaso Colangelo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Casa Sollievo della Sofferenza-IRCCS, San Giovanni Rotondo, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Jacopo Giuliani
- Pathology Unit, "Mater Salutis" Hospital AULSS9, Legnago (Verona), Italy
| | - Enrico Molinari
- Pathology Unit, "Mater Salutis" Hospital AULSS9, Legnago (Verona), Italy
| | - Marianna Garonzi
- Functional Genomics Center, Department of Biotechnology, University of Verona, Verona, Italy
| | - Luciano Xumerle
- Functional Genomics Center, Department of Biotechnology, University of Verona, Verona, Italy
| | - Massimo Delledonne
- Functional Genomics Center, Department of Biotechnology, University of Verona, Verona, Italy
- Personal Genomics S.r.l., Verona, Italy
| | - Guido Giordano
- CRO Aviano National Cancer Center, Aviano, Italy
- Medical Oncology Unit, San Filippo Neri Hospital, Rome, Italy
| | - Claudio Ghimenton
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Fortunato Lonardo
- Medical Cytogenetics and Molecular Genetics Unit, AORN "Gaetano Rummo," Benevento, Italy
| | - Fulvio D'angelo
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences (DISC), University of Genova and S. Martino Polyclinic Hospital, Genova, Italy
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), University of Genova and S. Martino Polyclinic Hospital, Genova, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | - Michele Ceccarelli
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
| |
Collapse
|
9
|
Lindström L, Li T, Malycheva D, Kancharla A, Nilsson H, Vishnu N, Mulder H, Johansson M, Rosselló CA, Alvarado-Kristensson M. The GTPase domain of gamma-tubulin is required for normal mitochondrial function and spatial organization. Commun Biol 2018; 1:37. [PMID: 30271923 PMCID: PMC6123723 DOI: 10.1038/s42003-018-0037-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
In the cell, γ-tubulin establishes a cellular network of threads named the γ-string meshwork. However, the functions of this meshwork remain to be determined. We investigated the traits of the meshwork and show that γ-strings have the ability to connect the cytoplasm and the mitochondrial DNA together. We also show that γ-tubulin has a role in the maintenance of the mitochondrial network and functions as reduced levels of γ-tubulin or impairment of its GTPase domain disrupts the mitochondrial network and alters both their respiratory capacity and the expression of mitochondrial-related genes. By contrast, reduced mitochondrial number or increased protein levels of γ-tubulin DNA-binding domain enhanced the association of γ-tubulin with mitochondria. Our results demonstrate that γ-tubulin is an important mitochondrial structural component that maintains the mitochondrial network, providing mitochondria with a cellular infrastructure. We propose that γ-tubulin provides a cytoskeletal element that gives form to the mitochondrial network. Lisa Lindström et al. find that the gamma-tubulin cellular network is required to maintain mitochondrial function and organization in the cell. Knockdown of gamma-tubulin or loss of its GTPase domain disrupts the mitochondrial network and alters respiratory capacity and expression of mitochondrial genes.
Collapse
Affiliation(s)
- Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Tongbin Li
- AccuraScience LLC, 5721 Merle Hay Road, Suite #16B, Johnston, IA, 50131, USA
| | - Darina Malycheva
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Arun Kancharla
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Helén Nilsson
- Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Neelanjan Vishnu
- Unit of Molecular Metabolism, Lund University Diabetes Centre Malmö, 20502, Malmö, Sweden
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre Malmö, 20502, Malmö, Sweden
| | - Martin Johansson
- Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Catalina Ana Rosselló
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden
| | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502, Malmö, Sweden.
| |
Collapse
|
10
|
Kim D, Shivakumar M, Han S, Sinclair MS, Lee YJ, Zheng Y, Olopade OI, Kim D, Lee Y. Population-dependent Intron Retention and DNA Methylation in Breast Cancer. Mol Cancer Res 2018; 16:461-469. [PMID: 29330282 DOI: 10.1158/1541-7786.mcr-17-0227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Regulation of gene expression by DNA methylation in gene promoter regions is well studied; however, the effects of methylation in the gene body (exons and introns) on gene expression are comparatively understudied. Recently, hypermethylation has been implicated in the inclusion of alternatively spliced exons; moreover, exon recognition can be enhanced by recruiting the methyl-CpG-binding protein (MeCP2) to hypermethylated sites. This study examines whether the methylation status of an intron is correlated with how frequently the intron is retained during splicing using DNA methylation and RNA sequencing data from breast cancer tissue specimens in The Cancer Genome Atlas. Interestingly, hypomethylation of introns is correlated with higher levels of intron expression in mRNA and the methylation level of an intron is inversely correlated with its retention in mRNA from the gene in which it is located. Furthermore, significant population differences were observed in the methylation level of retained introns. In African-American donors, retained introns were not only less methylated compared to European-American donors, but also were more highly expressed. This underscores the need for understanding epigenetic differences in populations and their correlation with breast cancer is an important step toward achieving personalized cancer care.Implications: This research contributes to the understanding of how epigenetic markers in the gene body communicate with the transcriptional machinery to control transcript diversity and differential biological response to changes in methylation status could underlie some of the known, yet unexplained, disparities in certain breast cancer patient populations. Mol Cancer Res; 16(3); 461-9. ©2018 AACR.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Manu Shivakumar
- Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael S Sinclair
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Young-Ji Lee
- Department of Health and Community Systems, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania
| | - Yonglan Zheng
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Dokyoon Kim
- Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah.
- Huntsman Cancer Institute, Salt Lake City, Utah
| |
Collapse
|
11
|
Lui C, Mok MTS, Henderson BR. Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome. Cancers (Basel) 2016; 8:cancers8050047. [PMID: 27144584 PMCID: PMC4880864 DOI: 10.3390/cancers8050047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT) growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy. In detergent-extracted cells, we discovered that APC was only weakly retained at the centrosome during interphase suggesting a rapid rate of exchange. This was confirmed in living cells by fluorescence recovery after photobleaching (FRAP), which identified two pools of green fluorescent protein (GFP)-APC: a major rapidly exchanging pool (~86%) and minor retained pool (~14%). The dynamic exchange rate of APC was unaffected by C-terminal truncations implicating a targeting role for the N-terminus. Indeed, we mapped centrosome localization to N-terminal armadillo repeat (ARM) domain amino acids 334–625. Interestingly, the rate of APC movement to the centrosome was stimulated by intact MTs, and APC dynamics slowed when MTs were disrupted by nocodazole treatment or knockdown of γ-tubulin. Thus, the rate of APC recycling at the centrosome is enhanced by MT growth, suggesting a positive feedback to stimulate its role in MT growth.
Collapse
Affiliation(s)
- Christina Lui
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Myth T S Mok
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
12
|
Oakley BR, Paolillo V, Zheng Y. γ-Tubulin complexes in microtubule nucleation and beyond. Mol Biol Cell 2015; 26:2957-62. [PMID: 26316498 PMCID: PMC4551311 DOI: 10.1091/mbc.e14-11-1514] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023] Open
Abstract
Tremendous progress has been made in understanding the functions of γ-tubulin and, in particular, its role in microtubule nucleation since the publication of its discovery in 1989. The structure of γ-tubulin has been determined, and the components of γ-tubulin complexes have been identified. Significant progress in understanding the structure of the γ-tubulin ring complex and its components has led to a persuasive model for how these complexes nucleate microtubule assembly. At the same time, data have accumulated that γ-tubulin has important but less well understood functions that are not simply a consequence of its function in microtubule nucleation. These include roles in the regulation of plus-end microtubule dynamics, gene regulation, and mitotic and cell cycle regulation. Finally, evidence is emerging that γ-tubulin mutations or alterations of γ-tubulin expression play an important role in certain types of cancer and in other diseases.
Collapse
Affiliation(s)
- Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Vitoria Paolillo
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
13
|
Lindström L, Villoutreix BO, Lehn S, Hellsten R, Nilsson E, Crneta E, Olsson R, Alvarado-Kristensson M. Therapeutic Targeting of Nuclear γ-Tubulin in RB1-Negative Tumors. Mol Cancer Res 2015; 13:1073-82. [PMID: 25934692 DOI: 10.1158/1541-7786.mcr-15-0063-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/28/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED In addition to its cytosolic function, γ-tubulin is a chromatin-associated protein. Reduced levels of nuclear γ-tubulin increase the activity of E2 promoter-binding factors (E2F) and raise the levels of retinoblastoma (RB1) tumor suppressor protein. In tumor cells lacking RB1 expression, decreased γ-tubulin levels induce cell death. Consequently, impairment of the nuclear activity of γ-tubulin has been suggested as a strategy for targeted chemotherapy of RB1-deficient tumors; thus, tubulin inhibitors were tested to identify compounds that interfere with γ-tubulin. Interestingly, citral increased E2F activity but impaired microtubule dynamics while citral analogues, such citral dimethyl acetal (CDA), increased E2F activity without affecting microtubules. The cytotoxic effect of CDA on tumor cells was attenuated by increased expression of either RB1 or γ-tubulin, and increased by reduced levels of either RB1 or γ-tubulin. Mechanistic study, in silico and in vitro, demonstrated that CDA prevents GTP binding to γ-tubulin and suggested that the FDA-approved drug dimethyl fumarate is also a γ-tubulin inhibitor. Finally, in vivo growth of xenograft tumors carrying defects in the RB1 signaling pathway were inhibited by CDA treatment. These results demonstrate that inhibition of γ-tubulin has the potential to specifically target tumor cells and may aid in the design of safer and more efficient chemotherapeutic regimes. IMPLICATIONS The in vivo antitumorigenic activity of γ-tubulin inhibitors paves the way for the development of a novel broad range targeted anticancer therapy that causes fewer side effects.
Collapse
Affiliation(s)
- Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris, France. Inserm, U973, Paris, France
| | - Sophie Lehn
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Rebecka Hellsten
- Division of Urological Cancers, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Elise Nilsson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Enisa Crneta
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, BMC, Lund University, Lund, Sweden
| | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
14
|
Olmsted ZT, Colliver AG, Riehlman TD, Paluh JL. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat Commun 2014; 5:5339. [PMID: 25348260 PMCID: PMC4220466 DOI: 10.1038/ncomms6339] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/20/2014] [Indexed: 02/07/2023] Open
Abstract
Bipolar spindle assembly is a critical control point for initiation of mitosis through nucleation and organization of spindle microtubules and is regulated by kinesin-like proteins. In fission yeast, the kinesin-14 Pkl1 binds the γ-tubulin ring complex (γ-TuRC) microtubule-organizing centre at spindle poles and can alter its structure and function. Here we show that kinesin-14 blocks microtubule nucleation in yeast and reveal that this inhibition is countered by the kinesin-5 protein, Cut7. Furthermore, we demonstrate that Cut7 binding to γ-TuRC and the Cut7 BimC domain are both required for inhibition of Pkl1. We also demonstrate that a yeast kinesin-14 peptide blocks microtubule nucleation in two human breast cancer cell lines, suggesting that this mechanism is evolutionarily conserved. In conclusion, using genetic, biochemical and cell biology approaches we uncover antagonistic control of microtubule nucleation at γ-TuRC by two kinesin-like proteins, which may represent an attractive anti-mitotic target for cancer therapies. Mitotic spindle assembly requires strict control of microtubule nucleation by γ-tubulin ring complexes. Olmsted et al. report that the kinesin-like proteins Pkl1 and Cut7 antagonistically regulate nucleation in fission yeast, and show that a Pkl1 peptide blocks spindle assembly in human cancer cells.
Collapse
Affiliation(s)
- Zachary T Olmsted
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| | - Andrew G Colliver
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| | - Timothy D Riehlman
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| | - Janet L Paluh
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| |
Collapse
|
15
|
Increased α-tubulin1b expression indicates poor prognosis and resistance to chemotherapy in hepatocellular carcinoma. Dig Dis Sci 2013; 58:2713-20. [PMID: 23625295 DOI: 10.1007/s10620-013-2692-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/13/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. It is important to understand molecular mechanisms of HCC progression and to develop clinically useful biomarkers for the disease. AIM We aimed to investigate the possible involvement of α-tubulin1b (TUBA1B) in HCC pathology. METHODS Tissue specimens were obtained from 114 HCC patients during hepatectomy. Immunohistochemistry and western blot analysis were used to detect TUBA1B expression in HCC tissues and cell lines. TUBA1B was knocked down in HCC cells by siRNA transfection. CCK-8 assay and flow cytometry were applied to determine cell proliferation and cell cycle progression, respectively. The efficacy of paclitaxel chemotherapy was evaluated by plate colony formation assay. RESULTS TUBA1B was higher expressed in HCC tumor tissues than in adjacent nontumor tissues. TUBA1B and Ki-67 expressions were positively related to each other, and both their expressions were significantly associated with histological grade of HCC patients. Univariate and multivariate survival analyses revealed that TUBA1B was a significant predictor for overall survival of HCC patients. TUBA1B expression was increased in HCC cells during the G1- to S-phase transition. TUBA1B knockout in HCC cells inhibited cell proliferation, and attenuated resistance to paclitaxel. CONCLUSIONS Our results indicated that TUBA1B expression was upregulated in HCC tumor tissues and proliferating HCC cells, and an increased TUBA1B expression was associated with poor overall survival and resistance to paclitaxel of HCC patients.
Collapse
|
16
|
Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation. J Neuropathol Exp Neurol 2011; 70:811-26. [PMID: 21865889 DOI: 10.1097/nen.0b013e31822c256d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We studied the expression and distribution of the microtubule-severing enzyme spastin in 3 human glioblastoma cell lines (U87MG, U138MG, and T98G) and in clinical tissue samples representative of all grades of diffuse astrocytic gliomas (n = 45). In adult human brains, spastin was distributed predominantly in neuronsand neuropil puncta and, to a lesser extent, in glia. Compared with normal mature brain tissues, spastin expression and cellular distribution were increased in neoplastic glial phenotypes, especiallyin glioblastoma (p < 0.05 vs low-grade diffuse astrocytomas). Overlapping punctate and diffuse patterns of localization wereidentified in tumor cells in tissues and in interphase and mitotic cells ofglioblastoma cell lines. There was enrichment of spastin in the leading edges of cells in T98G glioblastoma cell cultures and in neoplastic cell populations in tumor specimens. Real-time polymerase chain reaction and immunoblotting experiments revealed greater levels of spastin messenger RNA and protein expression in theglioblastoma cell lines versus normal human astrocytes. Functional experiments indicated that spastin depletion resulted in reduced cell motility and higher cell proliferation of T98G cells. Toour knowledge, this is the first report of spastin involvement incellmotility. Collectively, our results indicate that spastinexpression in glioblastomas might be linked to tumor cell motility, migration, and invasion.
Collapse
|
17
|
Caracciolo V, D'Agostino L, Dráberová E, Sládková V, Crozier-Fitzgerald C, Agamanolis DP, de Chadarévian JP, Legido A, Giordano A, Dráber P, Katsetos CD. Differential expression and cellular distribution of gamma-tubulin and betaIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol 2010; 223:519-29. [PMID: 20162618 DOI: 10.1002/jcp.22077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous studies, we have shown overexpression and ectopic subcellular distribution of gamma-tubulin and betaIII-tubulin in human glioblastomas and glioblastoma cell lines (Katsetos et al., 2006, J Neuropathol Exp Neurol 65:455-467; Katsetos et al., 2007, Neurochem Res 32:1387-1398). Here we determined the expression of gamma-tubulin in surgically excised medulloblastomas (n = 20) and in the human medulloblastoma cell lines D283 Med and DAOY. In clinical tissue samples, the immunohistochemical distribution of gamma-tubulin labeling was pervasive and inversely related to neuritogenesis. Overexpression of gamma-tubulin was widespread in poorly differentiated, proliferating tumor cells but was significantly diminished in quiescent differentiating tumor cells undergoing neuritogenesis, highlighted by betaIII-tubulin immunolabeling. By quantitative real-time PCR, gamma-tubulin transcripts for TUBG1, TUBG2, and TUBB3 genes were detected in both cell lines but expression was less prominent when compared with the human glioblastoma cell lines. Immunoblotting revealed comparable amounts of gamma-tubulin and betaIII-tubulin in different phases of cell cycle; however, a larger amount of gamma-tubulin was detected in D283 Med when compared with DAOY cells. Interphase D283 Med cells exhibited predominantly diffuse cytoplasmic gamma-tubulin localization, in addition to the expected centrosome-associated distribution. Robust betaIII-tubulin immunoreactivity was detected in mitotic spindles of DAOY cells. Our data indicate that overexpression of gamma-tubulin may be linked to phenotypic dedifferentiation (anaplasia) and tumor progression in medulloblastomas and may potentially serve as a promising tumor marker.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|