1
|
Handley S, Anwer AG, Knab A, Bhargava A, Goldys EM. AutoMitoNetwork: Software for analyzing mitochondrial networks in autofluorescence images to enable label-free cell classification. Cytometry A 2024; 105:688-703. [PMID: 39078083 DOI: 10.1002/cyto.a.24889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
High-resolution mitochondria imaging in combination with image analysis tools have significantly advanced our understanding of cellular function in health and disease. However, most image analysis tools for mitochondrial studies have been designed to work with fluorescently labeled images only. Additionally, efforts to integrate features describing mitochondrial networks with machine learning techniques for the differentiation of cell types have been limited. Herein, we present AutoMitoNetwork software for image-based assessment of mitochondrial networks in label-free autofluorescence images using a range of interpretable morphological, intensity, and textural features. To demonstrate its utility, we characterized unstained mitochondrial networks in healthy retinal cells and in retinal cells exposed to two types of treatments: rotenone, which directly inhibited mitochondrial respiration and ATP production, and iodoacetic acid, which had a milder impact on mitochondrial networks via the inhibition of anaerobic glycolysis. For both cases, our multi-dimensional feature analysis combined with a support vector machine classifier distinguished between healthy cells and those treated with rotenone or iodoacetic acid. Subtle changes in morphological features were measured including increased fragmentation in the treated retinal cells, pointing to an association with metabolic mechanisms. AutoMitoNetwork opens new options for image-based machine learning in label-free imaging, diagnostics, and mitochondrial disease drug development.
Collapse
Affiliation(s)
- Shannon Handley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of New South Wales, Sydney, New South Wales, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of New South Wales, Sydney, New South Wales, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Aline Knab
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of New South Wales, Sydney, New South Wales, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Akanksha Bhargava
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of New South Wales, Sydney, New South Wales, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of New South Wales, Sydney, New South Wales, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Ma X, Zhang Y, Gou D, Ma J, Du J, Wang C, Li S, Cui H. Metabolic Reprogramming of Microglia Enhances Proinflammatory Cytokine Release through EphA2/p38 MAPK Pathway in Alzheimer’s Disease. J Alzheimers Dis 2022; 88:771-785. [DOI: 10.3233/jad-220227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: The activation of microglia and neuroinflammation has been implicated in the pathogenesis of Alzheimer’s disease (AD), but the exact roles of microglia and the underlying mechanisms remain unclear. Objective: To clarify how the metabolic reprogramming of microglia induce by amyloid-β (Aβ)1-42 to affect the release of proinflammatory cytokines in AD. Methods: MTS assay was used to detect the viability of BV2 cells treated with different concentrations of Aβ1-42 for different periods of time. The expression levels of proinflammatory cytokines were determined by qRT-PCR and western blot assay in BV2 cells and hippocampus of mice. RNA sequencing was applied to evaluate the gene expression profiles in response to HK2 knockdown in BV2 cells treated with Aβ1-42. Results: Low concentrations of Aβ1-42 increased the viability of BV2 cells and promoted the release of proinflammatory cytokines, and this process is accompanied by increased glycolysis. Inhibition of glycolysis significantly downregulated the release of proinflammatory cytokines in BV2 cells and hippocampus of mice treated with Aβ1-42. The results of RNA sequencing revealed the expression of chemokine ligand 2 (Cxcl2) and ephrin receptor tyrosine kinase A2 (EphA2) were significantly downregulated when knocked down HK2 in BV2 cells. Subsequently, the expression of proinflammatory cytokines was downregulated in BV2 cell after knocking down EphA2. Conclusion: This study demonstrated that EphA2/p38 MAPK pathway is involved the release of proinflammatory cytokines in microglia induced by Aβ1-42 in AD, which is accompanied by metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Dongyun Gou
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jingle Ma
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
| | - Juan Du
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, P.R. China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, P.R. China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, P.R. China
| |
Collapse
|
4
|
Nakagawa T, Kang DH. Fructose in the kidney: from physiology to pathology. Kidney Res Clin Pract 2021; 40:527-541. [PMID: 34781638 PMCID: PMC8685370 DOI: 10.23876/j.krcp.21.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
The Warburg effect is a unique property of cancer cells, in which glycolysis is activated instead of mitochondrial respiration despite oxygen availability. However, recent studies found that the Warburg effect also mediates non-cancer disorders, including kidney disease. Currently, diabetes or glucose has been postulated to mediate the Warburg effect in the kidney, but it is of importance that the Warburg effect can be induced under nondiabetic conditions. Fructose is endogenously produced in several organs, including the kidney, under both physiological and pathological conditions. In the kidney, fructose is predominantly metabolized in the proximal tubules; under normal physiologic conditions, fructose is utilized as a substrate for gluconeogenesis and contributes to maintain systemic glucose concentration under starvation conditions. However, when present in excess, fructose likely becomes deleterious, possibly due in part to excessive uric acid, which is a by-product of fructose metabolism. A potential mechanism is that uric acid suppresses aconitase in the Krebs cycle and therefore reduces mitochondrial oxidation. Consequently, fructose favors glycolysis over mitochondrial respiration, a process that is similar to the Warburg effect in cancer cells. Activation of glycolysis also links to several side pathways, including the pentose phosphate pathway, hexosamine pathway, and lipid synthesis, to provide biosynthetic precursors as fuel for renal inflammation and fibrosis. We now hypothesize that fructose could be the mediator for the Warburg effect in the kidney and a potential mechanism for chronic kidney disease.
Collapse
Affiliation(s)
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ryu SY, Kleine CE, Hsiung JT, Park C, Rhee CM, Moradi H, Hanna R, Kalantar-Zadeh K, Streja E. Association of lactate dehydrogenase with mortality in incident hemodialysis patients. Nephrol Dial Transplant 2021; 36:704-712. [PMID: 33367881 DOI: 10.1093/ndt/gfaa277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lactate dehydrogenase (LDH) plays a role in the glucose metabolism of the human body. Higher LDH levels have been linked to mortality in various cancer types; however, the relationship between LDH and survival in incident hemodialysis (HD) patients has not yet been examined. We hypothesized that higher LDH level is associated with higher death risk in these patients. METHODS We examined the association of baseline and time-varying serum LDH with all-cause, cardiovascular and infection-related mortality among 109 632 adult incident HD patients receiving care from a large dialysis organization in the USA during January 2007 to December 2011. Baseline and time-varying survival models were adjusted for demographic variables and available clinical and laboratory surrogates of malnutrition-inflammation complex syndrome. RESULTS There was a linear association between baseline serum LDH levels and all-cause, cardiovascular and infection-related mortality in both baseline and time-varying models, except for time-varying infection-related mortality. Adjustment for markers of inflammation and malnutrition attenuated the association in all models. In fully adjusted models, baseline LDH levels ≥360 U/L were associated with the highest risk of all-cause mortality (hazard ratios = 1.19, 95% confidence interval 1.14-1.25). In time-varying models, LDH >280 U/L was associated with higher death risk in all three hierarchical models for all-cause and cardiovascular mortality. CONCLUSIONS Higher LDH level >280 U/L was incrementally associated with higher all-cause and cardiovascular mortality in incident dialysis patients, whereas LDH <240 U/L was associated with better survival. These findings suggest that the assessment of metabolic functions and monitoring for comorbidities may confer survival benefit to dialysis patients.
Collapse
Affiliation(s)
- Soh Young Ryu
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA
| | - Carola-Ellen Kleine
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA
| | - Jui-Ting Hsiung
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, CA, USA
| | - Christina Park
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA
| | - Connie M Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, CA, USA
| | - Hamid Moradi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, CA, USA
| | - Ramy Hanna
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, CA, USA
| | - Elani Streja
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA.,Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, CA, USA
| |
Collapse
|
6
|
Sbirkov Y, Burnusuzov H, Sarafian V. Metabolic reprogramming in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28255. [PMID: 32293782 DOI: 10.1002/pbc.28255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The first observations of altered metabolism in malignant cells were made nearly 100 years ago and therapeutic strategies targeting cell metabolism have been in clinical use for several decades. In this review, we summarize our current understanding of cell metabolism dysregulation in childhood acute lymphoblastic leukemia (cALL). Reprogramming of cellular bioenergetic processes can be expected in the three distinct stages of cALL: at diagnosis, during standard chemotherapy, and in cases of relapse. Upregulation of glycolysis, dependency on anaplerotic energy sources, and activation of the electron transport chain have all been observed in cALL. While the current treatment strategies are tackling some of these aberrations, cALL cells are likely to be able to rewire their metabolism in order to escape therapy, which may contribute to a refractory disease and relapse. Finally, here we focus on novel therapeutic approaches emerging from our evolving understanding of the alterations of different metabolic networks in lymphoblasts.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
7
|
The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet Med 2020; 22:1254-1261. [DOI: 10.1038/s41436-020-0793-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
|
8
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
9
|
Rodríguez-Enríquez S, Marín-Hernández Á, Gallardo-Pérez JC, Pacheco-Velázquez SC, Belmont-Díaz JA, Robledo-Cadena DX, Vargas-Navarro JL, Corona de la Peña NA, Saavedra E, Moreno-Sánchez R. Transcriptional Regulation of Energy Metabolism in Cancer Cells. Cells 2019; 8:cells8101225. [PMID: 31600993 PMCID: PMC6830338 DOI: 10.3390/cells8101225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023] Open
Abstract
Cancer development, growth, and metastasis are highly regulated by several transcription regulators (TRs), namely transcription factors, oncogenes, tumor-suppressor genes, and protein kinases. Although TR roles in these events have been well characterized, their functions in regulating other important cancer cell processes, such as metabolism, have not been systematically examined. In this review, we describe, analyze, and strive to reconstruct the regulatory networks of several TRs acting in the energy metabolism pathways, glycolysis (and its main branching reactions), and oxidative phosphorylation of nonmetastatic and metastatic cancer cells. Moreover, we propose which possible gene targets might allow these TRs to facilitate the modulation of each energy metabolism pathway, depending on the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norma Angélica Corona de la Peña
- Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional Carlos McGregor-Sánchez, México CP 03100, Mexico.
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| |
Collapse
|
10
|
Zhou Q, Xu J, Liu M, He L, Zhang K, Yang Y, Yang X, Zhou H, Tang M, Lu L, Chen Z, Chen L, Li L. Warburg effect is involved in apelin-13-induced human aortic vascular smooth muscle cells proliferation. J Cell Physiol 2019; 234:14413-14421. [PMID: 30706469 DOI: 10.1002/jcp.28218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Apelin is the endogenous ligand for the G protein-coupled receptor APJ. Both apelin and APJ receptor are distributed in vascular smooth muscle cells (VSMCs) and play important roles in the cardiovascular system. Our previous reports have indicated that apelin-13 promoted the proliferation of VSMCs, but its exact mechanism remains to be further explored. The results of the present study demonstrated that the Warburg effect plays a pivotal role in apelin-13-induced human aortic vascular smooth muscle cells (HA-VSMCs) proliferation. Apelin-13 promoted the expression of glucose transporter type 1 (GLUT1), pyruvate kinase 2 (PKM2), lactate dehydrogenase A (LDHA), monocarboxylate transporter 1 (MCT1), and monocarboxylate transporter 4 (MCT4) in a dose- and time-dependent manner. Moreover, apelin-13 increased the extracellular, intracellular lactate level, and decreased adenosine triphosphate level in HA-VSMCs. Furthermore, siRNA-PKM2 reversed extracellular and intracellular lactate generation and inhibited the proliferation of HA-VSMCs induced by apelin-13. Downregulation of LDHA also significantly prevented extracellular and intracellular lactate generation and inhibited the proliferation of HA-VSMCs induced by apelin-13. Taken together, our results demonstrated a novel mechanism for HA-VSMCs proliferation induced by apelin-13 via Warburg effect.
Collapse
Affiliation(s)
- Qionglin Zhou
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Meiqing Liu
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lu He
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Kai Zhang
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yiyuan Yang
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Xiao Yang
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Hong Zhou
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Mingzhu Tang
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Liqun Lu
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhe Chen
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
11
|
Liu Y, Bai F, Liu N, Ouyang F, Liu Q. The Warburg effect: A new insight into atrial fibrillation. Clin Chim Acta 2019; 499:4-12. [PMID: 31473195 DOI: 10.1016/j.cca.2019.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Atrial remodeling, including electrical/structural/autonomic remodeling, plays a vital role in AF pathogenesis. All of these have been shown to contribute continuously to the self-perpetuating nature of AF. The Warburg effect was found to play important roles in tumor and non-tumor disease. Recently, lots of studies documented altered atrial metabolism in AF, but the specific mechanism and the impact of these changes upon AF initiation/progression remain unclear. In this article, we review the metabolic consideration in AF comprehensively and observe the footprints of the Warburg effect. We also summarize the signaling pathway involved in the Warburg effect during AF-HIF-1α and AMPK, and discuss their potential roles in AF maintenance and progression. In conclusion, we give the innovative idea that the Warburg effect exists in AF and promotes the progression of AF. Targeting it may provide new therapies for AF treatment.
Collapse
Affiliation(s)
- Yaozhong Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Na Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Feifan Ouyang
- Department of Cardiology, Asklepios-Klinik St Georg, Hamburg, Germany
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China.
| |
Collapse
|
12
|
Carriazo S, Perez-Gomez MV, Cordido A, García-González MA, Sanz AB, Ortiz A, Sanchez-Niño MD. Dietary Care for ADPKD Patients: Current Status and Future Directions. Nutrients 2019; 11:nu11071576. [PMID: 31336917 PMCID: PMC6683072 DOI: 10.3390/nu11071576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic nephropathy, and tolvaptan is the only therapy available. However, tolvaptan slows but does not stop disease progression, is marred by polyuria, and most patients worldwide lack access. This and recent preclinical research findings on the glucose-dependency of cyst-lining cells have renewed interest in the dietary management of ADPKD. We now review the current dietary recommendations for ADPKD patients according to clinical guidelines, the evidence base for those, and the potential impact of preclinical studies addressing the impact of diet on ADPKD progression. The clinical efficacy of tolvaptan has put the focus on water intake and solute ingestion as modifiable factors that may impact tolvaptan tolerance and ADPKD progression. By contrast, dietary modifications suggested to ADPKD patients, such as avoiding caffeine, are not well supported and their impact is unknown. Recent studies have identified a chronic shift in energy production from mitochondrial oxidative phosphorylation to aerobic glycolysis (Warburg effect) as a contributor to cyst growth, rendering cyst cells exquisitely sensitive to glucose availability. Therefore, low calorie or ketogenic diets have delayed preclinical ADPKD progression. Additional preclinical data warn of potential negative impact of excess dietary phosphate or oxalate in ADPKD progression.
Collapse
Affiliation(s)
- Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain
| | - Adrian Cordido
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.°11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Miguel Angel García-González
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.°11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Ana Belen Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain.
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain.
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain.
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain.
| |
Collapse
|
13
|
Seyfried TN, Shelton L, Arismendi-Morillo G, Kalamian M, Elsakka A, Maroon J, Mukherjee P. Provocative Question: Should Ketogenic Metabolic Therapy Become the Standard of Care for Glioblastoma? Neurochem Res 2019; 44:2392-2404. [PMID: 31025151 DOI: 10.1007/s11064-019-02795-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
No major advances have been made in improving overall survival for glioblastoma (GBM) in almost 100 years. The current standard of care (SOC) for GBM involves immediate surgical resection followed by radiotherapy with concomitant temozolomide chemotherapy. Corticosteroid (dexamethasone) is often prescribed to GBM patients to reduce tumor edema and inflammation. The SOC disrupts the glutamate-glutamine cycle thus increasing availability of glucose and glutamine in the tumor microenvironment. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive GBM growth through substrate level phosphorylation in the cytoplasm and the mitochondria, respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability while elevating ketone bodies that are neuroprotective and non-fermentable. Information is presented from preclinical and case report studies showing how KMT could target tumor cells without causing neurochemical damage thus improving progression free and overall survival for patients with GBM.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Laura Shelton
- Human Metabolome Technologies America, 24 Denby Rd., Boston, MA, 02134, USA
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, 526, Venezuela
| | | | - Ahmed Elsakka
- Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Joseph Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St., Pittsburgh, PA, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
14
|
Cannino G, Ciscato F, Masgras I, Sánchez-Martín C, Rasola A. Metabolic Plasticity of Tumor Cell Mitochondria. Front Oncol 2018; 8:333. [PMID: 30197878 PMCID: PMC6117394 DOI: 10.3389/fonc.2018.00333] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023] Open
Abstract
Mitochondria are dynamic organelles that exchange a multiplicity of signals with other cell compartments, in order to finely adjust key biological routines to the fluctuating metabolic needs of the cell. During neoplastic transformation, cells must provide an adequate supply of the anabolic building blocks required to meet a relentless proliferation pressure. This can occur in conditions of inconstant blood perfusion leading to variations in oxygen and nutrient levels. Mitochondria afford the bioenergetic plasticity that allows tumor cells to adapt and thrive in this ever changing and often unfavorable environment. Here we analyse how mitochondria orchestrate the profound metabolic rewiring required for neoplastic growth.
Collapse
Affiliation(s)
- Giuseppe Cannino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
15
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
16
|
Shanmugam MK, Shen H, Tang FR, Arfuso F, Rajesh M, Wang L, Kumar AP, Bian J, Goh BC, Bishayee A, Sethi G. Potential role of genipin in cancer therapy. Pharmacol Res 2018; 133:195-200. [PMID: 29758279 DOI: 10.1016/j.phrs.2018.05.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
Genipin, an aglycone derived from the iridoid glycoside, geniposide, is isolated and characterized from the extract of Gardenia jasminoides Ellis fruit (family Rubiaceae). It has long been used in traditional oriental medicine for the prevention and treatment of several inflammation driven diseases, including cancer. Genipin has been shown to have hepatoprotective activity acting as a potent antioxidant and inhibitor of mitochondrial uncoupling protein 2 (UCP2), and also reported to exert significant anticancer effects. It is an excellent crosslinking agent that helps to make novel sustained or delayed release nanoparticle formulations. In this review, we present the latest developments of genipin as an anticancer agent and briefly describe its diverse mechanism(s) of action. Several lines of evidence suggest that genipin is a potent inhibitor of UCP2, which functions as a tumor promoter in a variety of cancers, attenuates generation of reactive oxygen species and the expression of matrix metalloproteinase 2, as well as induces caspase-dependent apoptosis in vitro and in in vivo models. These finding suggests that genipin can serve as both a prominent anticancer agent as well as a potent crosslinking drug that may find useful application in several novel pharmaceutical formulations.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia
| | - Mohanraj Rajesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, 17666, United Arab Emirates
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia; Department of Haematology-Oncology, National University Health System, Singapore, 119228, Singapore
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
17
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
18
|
Oba D, Inoue SI, Miyagawa-Tomita S, Nakashima Y, Niihori T, Yamaguchi S, Matsubara Y, Aoki Y. Mice with an Oncogenic HRAS Mutation are Resistant to High-Fat Diet-Induced Obesity and Exhibit Impaired Hepatic Energy Homeostasis. EBioMedicine 2017; 27:138-150. [PMID: 29254681 PMCID: PMC5828294 DOI: 10.1016/j.ebiom.2017.11.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022] Open
Abstract
Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. > 80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice) as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo. Mice expressing Hras G12S (HrasG12S/+) showed Costello syndrome-like phenotypes, including craniofacial and cardiac defects. HrasG12S/+ mice are resistant to high-fat diet (HFD)-induced obesity, showing microvesicular hepatic steatosis. Upon fasting, HFD-fed HrasG12S/+ mice show abnormal hepatic fatty acid oxidation, hypoketosis and early hypoglycemia.
Costello syndrome is a congenital anomaly syndrome, which is caused by germline mutations in HRAS oncogene. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and growth retardation. Here, we generated a mouse model for Costello syndrome expressing a Hras G12S mutation, which showed craniofacial and heart abnormalities. On a high-fat diet, mutant mice exhibited a lean phenotype with poor weight gain and microvesicular hepatic steatosis. Under starvation conditions, impaired mitochondrial fatty acid oxidation has been observed. These results suggest that oncogenic RAS signaling in mice modulates energy homeostasis in vivo.
Collapse
Affiliation(s)
- Daiju Oba
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Shin-Ichi Inoue
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan.
| | - Sachiko Miyagawa-Tomita
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo, Japan; Division of Cardiovascular Development and Differentiation, Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan; Department of Veterinary Technology, Yamazaki gakuen University, Tokyo, Japan
| | - Yasumi Nakashima
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Faculty of Medicine, Shimane, Japan
| | - Yoichi Matsubara
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan; National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
19
|
Chen Z, Liu M, Li L, Chen L. Involvement of the Warburg effect in non-tumor diseases processes. J Cell Physiol 2017; 233:2839-2849. [PMID: 28488732 DOI: 10.1002/jcp.25998] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Warburg effect, as an energy shift from mitochondrial oxidative phosphorylation to aerobic glycolysis, is extensively found in various cancers. Interestingly, increasing researchers show that Warburg effect plays a crucial role in non-tumor diseases. For instance, inhibition of Warburg effect can alleviate pulmonary vascular remodeling in the process of pulmonary hypertension (PH). Interference of Warburg effect improves mitochondrial function and cardiac function in the process of cardiac hypertrophy and heart failure. Additionally, the Warburg effect induces vascular smooth muscle cell proliferation and contributes to atherosclerosis. Warburg effect may also involve in axonal damage and neuronal death, which are related with multiple sclerosis. Furthermore, Warburg effect significantly promotes cell proliferation and cyst expansion in polycystic kidney disease (PKD). Besides, Warburg effect relieves amyloid β-mediated cell death in Alzheimer's disease. And Warburg effect also improves the mycobacterium tuberculosis infection. Finally, we also introduce some glycolytic agonists. This review focuses on the newest researches about the role of Warburg effect in non-tumor diseases, including PH, tuberculosis, idiopathic pulmonary fibrosis (IPF), failing heart, cardiac hypertrophy, atherosclerosis, Alzheimer's diseases, multiple sclerosis, and PKD. Obviously, Warburg effect may be a potential therapeutic target for those non-tumor diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
20
|
Seyfried TN, Yu G, Maroon JC, D'Agostino DP. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutr Metab (Lond) 2017; 14:19. [PMID: 28250801 PMCID: PMC5324220 DOI: 10.1186/s12986-017-0178-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A shift from respiration to fermentation is a common metabolic hallmark of cancer cells. As a result, glucose and glutamine become the prime fuels for driving the dysregulated growth of tumors. The simultaneous occurrence of "Press-Pulse" disturbances was considered the mechanism responsible for reduction of organic populations during prior evolutionary epochs. Press disturbances produce chronic stress, while pulse disturbances produce acute stress on populations. It was only when both disturbances coincide that population reduction occurred. METHODS This general concept can be applied to the management of cancer by creating chronic metabolic stresses on tumor cell energy metabolism (press disturbance) that are coupled to a series of acute metabolic stressors that restrict glucose and glutamine availability while also stimulating cancer-specific oxidative stress (pulse disturbances). The elevation of non-fermentable ketone bodies protect normal cells from energy stress while further enhancing energy stress in tumor cells that lack the metabolic flexibility to use ketones as an efficient energy source. Mitochondrial abnormalities and genetic mutations make tumor cells vulnerable metabolic stress. RESULTS The press-pulse therapeutic strategy for cancer management is illustrated with calorie restricted ketogenic diets (KD-R) used together with drugs and procedures that create both chronic and intermittent acute stress on tumor cell energy metabolism, while protecting and enhancing the energy metabolism of normal cells. CONCLUSIONS Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate the eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials for the non-toxic management of most cancers.
Collapse
Affiliation(s)
| | - George Yu
- George Washington University Medical Center Washington DC, and Aegis Medical & Research Associates Annapolis, Maryland, USA
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St, Pittsburgh, PA USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida USA
| |
Collapse
|
21
|
Peruzzo P, Comelli M, Di Giorgio E, Franforte E, Mavelli I, Brancolini C. Transformation by different oncogenes relies on specific metabolic adaptations. Cell Cycle 2016; 15:2656-2668. [PMID: 27485932 DOI: 10.1080/15384101.2016.1215387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metabolic adaptations are emerging as common traits of cancer cells and tumor progression. In vitro transformation of NIH 3T3 cells allows the analysis of the metabolic changes triggered by a single oncogene. In this work, we have compared the metabolic changes induced by H-RAS and by the nuclear resident mutant of histone deacetylase 4 (HDAC4). RAS-transformed cells exhibit a dominant aerobic glycolytic phenotype characterized by up-regulation of glycolytic enzymes, reduced oxygen consumption and a defect in complex I activity. In this model of transformation, glycolysis is strictly required for sustaining the ATP levels and the robust cellular proliferation. By contrast, in HDAC4/TM transformed cells, glycolysis is only modestly up-regulated, lactate secretion is not augmented and, instead, mitochondrial oxygen consumption is increased. Our results demonstrate that cellular transformation can be accomplished through different metabolic adaptations and HDAC4/TM cells can represent a useful model to investigate oncogene-driven metabolic changes besides the Warburg effect.
Collapse
Affiliation(s)
- Paolo Peruzzo
- a Department of Medical and Biological Sciences , Università degli Studi di Udine , Udine Italy
| | - Marina Comelli
- a Department of Medical and Biological Sciences , Università degli Studi di Udine , Udine Italy
| | - Eros Di Giorgio
- a Department of Medical and Biological Sciences , Università degli Studi di Udine , Udine Italy
| | - Elisa Franforte
- a Department of Medical and Biological Sciences , Università degli Studi di Udine , Udine Italy
| | - Irene Mavelli
- a Department of Medical and Biological Sciences , Università degli Studi di Udine , Udine Italy
| | - Claudio Brancolini
- a Department of Medical and Biological Sciences , Università degli Studi di Udine , Udine Italy
| |
Collapse
|
22
|
Abstract
Decades ago, Otto Warburg observed that cancers ferment glucose in the presence of oxygen, suggesting that defects in mitochondrial respiration may be the underlying cause of cancer. We now know that the genetic events that drive aberrant cancer cell proliferation also alter biochemical metabolism, including promoting aerobic glycolysis, but do not typically impair mitochondrial function. Mitochondria supply energy; provide building blocks for new cells; and control redox homeostasis, oncogenic signaling, innate immunity, and apoptosis. Indeed, mitochondrial biogenesis and quality control are often upregulated in cancers. While some cancers have mutations in nuclear-encoded mitochondrial tricarboxylic acid (TCA) cycle enzymes that produce oncogenic metabolites, there is negative selection for pathogenic mitochondrial genome mutations. Eliminating mtDNA limits tumorigenesis, and rare human tumors with mutant mitochondrial genomes are relatively benign. Thus, mitochondria play a central and multifunctional role in malignant tumor progression, and targeting mitochondria provides therapeutic opportunities.
Collapse
Affiliation(s)
- Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Joshua D Rabinowitz
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Oxidative Stress in Cancer-Prone Genetic Diseases in Pediatric Age: The Role of Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4782426. [PMID: 27239251 PMCID: PMC4863121 DOI: 10.1155/2016/4782426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a distinctive sign in several genetic disorders characterized by cancer predisposition, such as Ataxia-Telangiectasia, Fanconi Anemia, Down syndrome, progeroid syndromes, Beckwith-Wiedemann syndrome, and Costello syndrome. Recent literature unveiled new molecular mechanisms linking oxidative stress to the pathogenesis of these conditions, with particular regard to mitochondrial dysfunction. Since mitochondria are one of the major sites of ROS production as well as one of the major targets of their action, this dysfunction is thought to be the cause of the prooxidant status. Deeper insight of the pathogenesis of the syndromes raises the possibility to identify new possible therapeutic targets. In particular, the use of mitochondrial-targeted agents seems to be an appropriate clinical strategy in order to improve the quality of life and the life span of the patients.
Collapse
|
24
|
García-Cruz R, Camats M, Calin GA, Liu CG, Volinia S, Taccioli C, Croce CM, Bach-Elias M. The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model. BMC MEDICAL GENETICS 2015; 16:46. [PMID: 26138095 PMCID: PMC4631104 DOI: 10.1186/s12881-015-0184-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/01/2015] [Indexed: 02/03/2023]
Abstract
Background P19 H-Ras, a second product derived from the H-Ras gene by alternative splicing, induces a G1/S phase delay, thereby maintaining cells in a reversible quiescence state. When P21 H-Ras is mutated in tumour cells, the alternative protein P19 H-Ras is also mutated. The H-Ras mutation Q61L is frequently detected in different tumours, which acts as constitutive activator of Ras functions and is considered to be a strong activating mutant. Additionally, a rare congenital disorder named Costello Syndrome, is described as a H-Ras disorder in children, mainly due to mutation G12S in p19 and p21 H-Ras proteins, which is present in 90 % of the Costello Syndrome patients. Our aim is to better understand the role of p19 and p21 H-Ras proteins in the cancer and Costello Syndrome development, concerning the miRNAs expression. Methods Total miRNAs expression regulated by H-Ras proteins were first analyzed in human miRNA microarrays assays. Previously selected miRNAs, were further analyzed in developed cell lines containing H-Ras protein mutants, that included the G12S Costello Syndrome mutant, with PCR Real-Time Taq Man miRNA Assays primers. Results This study describes how p19 affects the RNA world and shows that: i) miR-342, miR-206, miR-330, miR-138 and miR-99b are upregulated by p19 but not by p19W164A mutant; ii) anti-miR-206 can restore the G2 phase in the presence of p19; iii) p19 and p21Q61L regulate their own alternative splicing; iv) miR-206 and miR-138 are differentially regulated by p19 and p21 H-Ras and v) P19G12S Costello mutants show a clear upregulation of miR-374, miR-126, miR-342, miR-330, miR-335 and let-7. Conclusions These results allow us to conclude that the H-Ras G12S mutation plays an important role in miRNA expression and open up a new line of study to understand the consequences of this mutation on Costello syndrome. Furthermore, they suggest that oncogenes may have a sufficiently important impact on miRNA expression to promote the development of numerous cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0184-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roseli García-Cruz
- Instituto de Investigaciones Biomédicas de Barcelona- CSIC, C/ Egipcíacas15, 08001, Barcelona, Spain.
| | - Maria Camats
- Instituto de Investigaciones Biomédicas de Barcelona- CSIC, C/ Egipcíacas15, 08001, Barcelona, Spain.
| | - George A Calin
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA. .,Present address: Departments of Experimental Therapeutics & Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Chang-Gong Liu
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Stefano Volinia
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Cristian Taccioli
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Carlo M Croce
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Montse Bach-Elias
- Instituto de Investigaciones Biomédicas de Barcelona- CSIC, C/ Egipcíacas15, 08001, Barcelona, Spain.
| |
Collapse
|
25
|
Is 5´-AMP-Activated Protein Kinase Both Jekyll and Hyde in Bladder Cancer? Int Neurourol J 2015; 19:55-66. [PMID: 26126434 PMCID: PMC4490316 DOI: 10.5213/inj.2015.19.2.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
The 5´-AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and energy homeostasis in mammalian tissues. Metabolic adaptation is a critical step in ensuring cell survival during metabolic stress. Because of its critical role in the regulation of glucose homeostasis and carbohydrate, lipid, and protein metabolism, AMPK is involved in many human diseases, including cancers. Although AMPK signaling was originally characterized as a tumor-suppressive signaling pathway, several lines of evidence suggest that AMPK plays a much broader role and cannot simply be defined as either an oncogenic regulator or tumor suppressor. Notably, several recent studies demonstrated that the antitumorigenic effects of many indirect AMPK activators, such as metformin, do not depend on AMPK. Conversely, activation of AMPK induces the progression of cancers, emphasizing its oncogenic effect. Bladder cancer can be divided into two groups: non–muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). The molecular mechanisms underlying these two types of cancer are distinct: NMIBC is associated with activation of the Ras pathway, whereas MIBC is characterized by loss of major tumor suppressors. Importantly, both pathways are connected to the mammalian target of rapamycin (mTOR) pathway. In addition, our recent metabolomic findings suggest that β-oxidation of fatty acids is an important factor in the development of bladder cancer. Both mTOR and β-oxidation are tightly associated with the AMPK pathway. Here, I summarize and discuss the recent findings on the two distinct roles of AMPK in cancer, as well as the relationship between bladder cancer and AMPK.
Collapse
|
26
|
Wang P, Song M, Zeng ZL, Zhu CF, Lu WH, Yang J, Ma MZ, Huang AM, Hu Y, Huang P. Identification of NDUFAF1 in mediating K-Ras induced mitochondrial dysfunction by a proteomic screening approach. Oncotarget 2015; 6:3947-3962. [PMID: 25714130 PMCID: PMC4414165 DOI: 10.18632/oncotarget.2968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023] Open
Abstract
Increase in aerobic glycolysis and mitochondrial dysfunction are important biochemical features observed in human cancers. Recent studies suggest oncogenic K-Ras can cause suppression of mitochondrial respiration and up-regulation of glycolytic activity through a yet unknown mechanism. Here we employed proteomic approach and used a K-RasG12V inducible cell system to investigate the impact of oncogenic K-Ras on mitochondria and cell metabolism. Mitochondria isolated from cells before and after K-Ras induction were subjected to protein analysis using stable isotope labeling with amino acids (SILAC) and liquid chromatography coupled with mass spectrometry (LC-MS). 70 mitochondrial proteins with significant expression alteration after K-Ras induction were identified. A majority of these proteins were involved in energy metabolism. Five proteins with significant decrease belong to mitochondrial respiratory chain complex I. NADH dehydrogenase 1 alpha subcomplex assembly factor 1 (NDUFAF1) showed most significant decrease by 50%. Such decrease was validated in primary human pancreatic cancer tissues. Knockdown of NDUFAF1 by siRNA caused mitochondrial respiration deficiency, accumulation of NADH and subsequent increase of glycolytic activity. Our study revealed that oncogenic K-Ras is able to induce significant alterations in mitochondrial protein expression, and identified NDUFAF1 as an important molecule whose low expression contributes to mitochondrial dysfunction induced by K-Ras.
Collapse
Affiliation(s)
- Peng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ming Song
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhao-lei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Chao-feng Zhu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wen-hua Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ming-zhe Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - A-min Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Klement RJ. Restricting carbohydrates to fight head and neck cancer-is this realistic? Cancer Biol Med 2014; 11:145-61. [PMID: 25364576 PMCID: PMC4197426 DOI: 10.7497/j.issn.2095-3941.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/13/2014] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers (HNCs) are aggressive tumors that typically demonstrate a high glycolytic rate, which results in resistance to cytotoxic therapy and poor prognosis. Due to their location these tumors specifically impair food intake and quality of life, so that prevention of weight loss through nutrition support becomes an important treatment goal. Dietary restriction of carbohydrates (CHOs) and their replacement with fat, mostly in form of a ketogenic diet (KD), have been suggested to accommodate for both the altered tumor cell metabolism and cancer-associated weight loss. In this review, I present three specific rationales for CHO restriction and nutritional ketosis as supportive treatment options for the HNC patient. These are (1) targeting the origin and specific aspects of tumor glycolysis; (2) protecting normal tissue from but sensitizing tumor tissue to radiation- and chemotherapy induced cell kill; (3) supporting body and muscle mass maintenance. While most of these benefits of CHO restriction apply to cancer in general, specific aspects of implementation are discussed in relation to HNC patients. While CHO restriction seems feasible in HNC patients the available evidence indicates that its role may extend beyond fighting malnutrition to fighting HNC itself.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Schweinfurt 97421, Germany
| |
Collapse
|
28
|
MicroRNA regulation of cancer metabolism: role in tumour suppression. Mitochondrion 2014; 19 Pt A:29-38. [DOI: 10.1016/j.mito.2014.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/18/2022]
|
29
|
Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 2014; 356:289-300. [PMID: 25069036 DOI: 10.1016/j.canlet.2014.07.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.
Collapse
Affiliation(s)
| | | | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | | |
Collapse
|
30
|
Leznev EI, Popova II, Lavrovskaja VP, Evtodienko YV. Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells. BIOCHEMISTRY (MOSCOW) 2014; 78:904-8. [PMID: 24228878 DOI: 10.1134/s0006297913080063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the recent years, bioenergetics of tumor cells and particularly cell respiration have been attracting great attention because of the involvement of mitochondria in apoptosis and growing evidence of the possibility to diagnose and treat cancer by affecting the system of oxidative phosphorylation in mitochondria. In the present work, a comparative study of oxygen consumption in 3T3B-SV40 cells transformed with oncovirus SV40 and parental BALB/3T3 cells was conducted. Such fractions of oxygen consumption as "phosphorylating" respiration coupled to ATP synthesis, "free" respiration not coupled to ATP synthesis, and "reserve" or hidden respiration observed in the presence of protonophore were determined. Maximal respiration was shown to be only slightly decreased in 3T3B-SV40 cells as compared to BALB/3T3. However, in the case of certain fractions of cellular respiration, the changes were significant. "Phosphorylating" respiration was found to be reduced to 54% and "reserve" respiration, on the contrary, increased up to 160% in virus-transformed 3T3B-SV40 cells. The low rate of "phosphorylating" respiration and high "reserve" respiration indicate that under normal incubation conditions the larger part of mitochondrial respiratory chains of the virus-transformed cells is in the resting state (i.e. there is no electron transfer to oxygen). The high "reserve" respiration is suggested to play an important role in preventing apoptosis of 3T3B-SV40 cells.
Collapse
Affiliation(s)
- E I Leznev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
31
|
Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 2013; 35:515-27. [PMID: 24343361 PMCID: PMC3941741 DOI: 10.1093/carcin/bgt480] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual’s unique physiology.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA and
| | | | | | | |
Collapse
|
32
|
Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, Rabinowitz JD. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9:712. [PMID: 24301801 PMCID: PMC3882799 DOI: 10.1038/msb.2013.65] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/18/2013] [Indexed: 02/08/2023] Open
Abstract
Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC-MS-based isotope tracer studies with oxygen uptake measurements in a quantitative redox-balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine-driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine-driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.
Collapse
Affiliation(s)
- Jing Fan
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jurre J Kamphorst
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Robin Mathew
- The Cancer Institute of New Jersey, New Brunswick, NJ, USA
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Michelle K Chung
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Eileen White
- The Cancer Institute of New Jersey, New Brunswick, NJ, USA
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Tomer Shlomi
- Department of Computer Science, Technion, Haifa, Israel
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- The Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
33
|
Green ML, Pisano MM, Prough RA, Knudsen TB. Release of targeted p53 from the mitochondrion as an early signal during mitochondrial dysfunction. Cell Signal 2013; 25:2383-90. [PMID: 23899557 PMCID: PMC3826263 DOI: 10.1016/j.cellsig.2013.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/08/2013] [Accepted: 07/19/2013] [Indexed: 01/28/2023]
Abstract
Increased accumulation of p53 tumor suppressor protein is an early response to low-level stressors. To investigate the fate of mitochondrial-sequestered p53, mouse embryonic fibroblast cells (MEFs) on a p53-deficient genetic background were transfected with p53-EGFP fusion protein led by a sense (m53-EGFP) or antisense (c53-EGFP) mitochondrial import signal. Rotenone exposure (100nM, 1h) triggered the translocation of m53-EGFP from the mitochondrion to the nucleus, thus shifting the transfected cells from a mitochondrial p53 to a nuclear p53 state. Antibodies for p53 serine phosphorylation or lysine acetylation indicated a different post-translational status of recombinant p53 in the nucleus and mitochondrion, respectively. These data suggest that cycling of p53 through the mitochondria may establish a direct pathway for p53 signaling from the mitochondria to the nucleus during mitochondrial dysfunction. PK11195, a pharmacological ligand of mitochondrial TSPO (formerly known as the peripheral-type benzodiazepine receptor), partially suppressed the release of mitochondria-sequestered p53. These findings support the notion that p53 function mediates a direct signaling pathway from the mitochondria to nucleus during mitochondrial dysfunction.
Collapse
Affiliation(s)
- M L Green
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, 501 S. Preston St., Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
34
|
Integrated proteomic and metabolic analysis of breast cancer progression. PLoS One 2013; 8:e76220. [PMID: 24086712 PMCID: PMC3785415 DOI: 10.1371/journal.pone.0076220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/21/2013] [Indexed: 12/20/2022] Open
Abstract
One of the most persistent hallmarks of cancer biology is the preference of tumor cells to derive energy through glycolysis as opposed to the more efficient process of oxidative phosphorylation (OXPHOS). However, little is known about the molecular cascades by which oncogenic pathways bring about this metabolic switch. We carried out a quantitative proteomic and metabolic analysis of the MCF10A derived cell line model of breast cancer progression that includes parental cells and derivatives representing three different tumor grades of Ras-driven cancer with a common genetic background. A SILAC (Stable Isotope Labeling by Amino acids in Cell culture) labeling strategy was used to quantify protein expression in conjunction with subcellular fractionation to measure dynamic subcellular localization in the nucleus, cytosol and mitochondria. Protein expression and localization across cell lines were compared to cellular metabolic rates as a measure of oxidative phosphorylation (OXPHOS), glycolysis and cellular ATP. Investigation of the metabolic capacity of the four cell lines revealed that cellular OXPHOS decreased with breast cancer progression independently of mitochondrial copy number or electron transport chain protein expression. Furthermore, glycolytic lactate secretion did not increase in accordance with cancer progression and decreasing OXPHOS capacity. However, the relative expression and subcellular enrichment of enzymes critical to lactate and pyruvate metabolism supported the observed extracellular acidification profiles. This analysis of metabolic dysfunction in cancer progression integrated with global protein expression and subcellular localization is a novel and useful technique for determining organelle-specific roles of proteins in disease.
Collapse
|
35
|
Du G, Sun T, Zhang Y, Lin H, Li J, Liu W, Wang Y, Zhao B, Li H, Liu Y. The mitochondrial dysfunction plays an important role in urethane-induced lung carcinogenesis. Eur J Pharmacol 2013; 715:395-404. [DOI: 10.1016/j.ejphar.2013.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/17/2022]
|
36
|
Abstract
The AMP-activated protein kinase (AMPK) functions to monitor and maintain energy homeostasis at the cellular and organism level. AMPK was perceived historically primarily as a component of the LKB1/STK11 tumor suppressor (LKB1 mutations cause the Peutz-Jegher cancer predisposition syndrome) cascade upstream of the TSC1/2/mTOR pathway and thus likely to be a tumor suppressor. However, AMPK has recently been shown to promote cancer cell survival in the face of extrinsic and intrinsic stressors including bioenergetic, growth factor, and oncogene stress compatible with studies showing that AMPK is required for oncogenic transformation. Thus, whether AMPK acts as a bona fide tumor suppressor or a contextual oncogene and, of particular importance, whether AMPK should be targeted for activation or inhibition during cancer therapy, is controversial and requires clarification. We aim to initiate discussions of these critical questions by reviewing the role of AMPK with an emphasis on cancer cell adaptation to microenvironment stress and therapeutic intervention.
Collapse
Affiliation(s)
- Jiyong Liang
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
37
|
Yadava N, Schneider SS, Jerry DJ, Kim C. Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol Neoplasia 2013; 18:75-87. [PMID: 23269521 PMCID: PMC3581737 DOI: 10.1007/s10911-012-9271-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial oxidative metabolism plays a key role in meeting energetic demands of cells by oxidative phosphorylation (OxPhos). Here, we have briefly discussed (a) the dynamic relationship that exists among glycolysis, the tricarboxylic acid (TCA) cycle, and OxPhos; (b) the evidence of impaired OxPhos (i.e. mitochondrial dysfunction) in breast cancer; (c) the mechanisms by which mitochondrial dysfunction can predispose to cancer; and (d) the effects of host and environmental factors that can negatively affect mitochondrial function. We propose that impaired OxPhos could increase susceptibility to breast cancer via suppression of the p53 pathway, which plays a critical role in preventing tumorigenesis. OxPhos is sensitive to a large number of factors intrinsic to the host (e.g. inflammation) as well as environmental exposures (e.g. pesticides, herbicides and other compounds). Polymorphisms in over 143 genes can also influence the OxPhos system. Therefore, declining mitochondrial oxidative metabolism with age due to host and environmental exposures could be a common mechanism predisposing to cancer.
Collapse
Affiliation(s)
- Nagendra Yadava
- Pioneer Valley Life Sciences Institute, Springfield, MA 01107, USA.
| | | | | | | |
Collapse
|
38
|
Hammoudi N, Ahmed KBR, Garcia-Prieto C, Huang P. Metabolic alterations in cancer cells and therapeutic implications. CHINESE JOURNAL OF CANCER 2012; 30:508-25. [PMID: 21801600 PMCID: PMC4013402 DOI: 10.5732/cjc.011.10267] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.
Collapse
Affiliation(s)
- Naima Hammoudi
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Yuyun X, Jinjun Q, Minfang X, Jing Q, Juan X, Rui M, Li Z, Jing G. Effects of Low Concentrations of Rotenone upon Mitohormesis in SH-SY5Y Cells. Dose Response 2012; 11:270-80. [PMID: 23930106 DOI: 10.2203/dose-response.12-005.gao] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mitochondrial toxin rotenone exerts cytotoxicity via overproduction of reactive oxygen species (ROS) and depolarization of the mitochondrial membrane. We investigated the effects of rotenone (12.5, 25, 50, 100 nmol/L) on mitochondrial biogenesis and the potential roles of ROS production in SH-SY5Y cells. Mitochondrial biogenesis was assessed by counting the number of mitochondria, determining protein expression of peroxisome proliferator-activated receptor γ coactivator α (PGC1-α) and its regulator, SIRT1, and oxygen consumption. ROS production and levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) were also determined. Compared with controls, rotenone (12.5 nmol/L) significantly increased the quantity of mitochondria and amount of oxygen consumption, whereas rotenone at >12.5 nmol/L decreased the quantity of mitochondria and amount of oxygen consumption. GSH contents and GSH/GSSG were also significantly enhanced by rotenone at 12.5 nmol/L and decreased by rotenone at >12.5 nmol/L. Except for ROS production and SIRT1 protein expression, all concentration-response relationships showed a typical inverted-U shape. ROS production was continually increased in cells treated with rotenone. These data indicate that low concentrations of rotenone can induce mitohormesis, which may be attributed to ROS production.
Collapse
Affiliation(s)
- Xiong Yuyun
- Department of Clinical Laboratory Diagnostics, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Seyfried TN, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P. Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer? Epilepsy Res 2012; 100:310-26. [DOI: 10.1016/j.eplepsyres.2011.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/31/2011] [Accepted: 06/03/2011] [Indexed: 12/13/2022]
|
41
|
Differential programming of p53-deficient embryonic cells during rotenone block. Toxicology 2011; 290:31-41. [PMID: 21893155 DOI: 10.1016/j.tox.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
Mitochondrial dysfunction has been implicated in chemical toxicities. The present study used an in vitro model to investigate the differential expression of metabolic pathways during cellular stress in p53-efficient embryonic fibroblasts compared to p53-deficient cells. These cell lines differed with respect to NADH/NAD(+) balance. This ratio constitutes a driving force for NAD- and NADH-dependent reactions and is inversed upon exposure to Rotenone (complex I inhibitor). Rotenone perturbed the structure of the elongated fibrillar tubulin network and decreased mRNA expression of tubulin genes both suggesting reprogramming and reorganization of the cytoskeleton in both cell lines. These changes were reflected in the abundance of specific mRNA and microRNA (miRNA) species as determined from genome-based analysis. Changes in mRNA and miRNA expression profiles reflected differences in energy utilizing pathways, consistent with the notion that the p53 pathway influences the cellular response to mitochondrial dysfunction and that at least some control may be embedded within specific mRNA/miRNA networks in embryonic cells.
Collapse
|
42
|
Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F, Messa C, Alberghina L. From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 2011; 30:30-51. [PMID: 21802503 DOI: 10.1016/j.biotechadv.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022]
Abstract
Great interest is presently given to the analysis of metabolic changes that take place specifically in cancer cells. In this review we summarize the alterations in glycolysis, glutamine utilization, fatty acid synthesis and mitochondrial function that have been reported to occur in cancer cells and in human tumors. We then propose considering cancer as a system-level disease and argue how two hallmarks of cancer, enhanced cell proliferation and evasion from apoptosis, may be evaluated as system-level properties, and how this perspective is going to modify drug discovery. Given the relevance of the analysis of metabolism both for studies on the molecular basis of cancer cell phenotype and for clinical applications, the more relevant technologies for this purpose, from metabolome and metabolic flux analysis in cells by Nuclear Magnetic Resonance and Mass Spectrometry technologies to positron emission tomography on patients, are analyzed. The perspectives offered by specific changes in metabolism for a new drug discovery strategy for cancer are discussed and a survey of the industrial activity already going on in the field is reported.
Collapse
Affiliation(s)
- F Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fisher KW, Das B, Kortum RL, Chaika OV, Lewis RE. Kinase suppressor of ras 1 (KSR1) regulates PGC1α and estrogen-related receptor α to promote oncogenic Ras-dependent anchorage-independent growth. Mol Cell Biol 2011; 31:2453-61. [PMID: 21518958 PMCID: PMC3133429 DOI: 10.1128/mcb.05255-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/08/2011] [Indexed: 12/20/2022] Open
Abstract
Kinase suppressor of ras 1 (KSR1) is a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase (ERK) cascade that enhances oncogenic Ras signaling. Here we show KSR1-dependent, but ERK-independent, regulation of metabolic capacity is mediated through the expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and estrogen-related receptor α (ERRα). This KSR1-regulated pathway is essential for the transformation of cells by oncogenic Ras. In mouse embryo fibroblasts (MEFs) expressing H-Ras(V12), ectopic PGC1α was sufficient to rescue ERRα expression, metabolic capacity, and anchorage-independent growth in the absence of KSR1. The ability of PGC1α to promote anchorage-independent growth required interaction with ERRα, and treatment with an inhibitor of ERRα impeded anchorage-independent growth. In contrast to PGC1α, the expression of constitutively active ERRα (CA-ERRα) was sufficient to enhance metabolic capacity but not anchorage-independent growth in the absence of KSR1. These data reveal KSR1-dependent control of PGC1α- and ERRα-dependent pathways that are necessary and sufficient for signaling by oncogenic H-Ras(V12) to regulate metabolism and anchorage-independent growth, providing novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kurt W. Fisher
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Binita Das
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Oleg V. Chaika
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Robert E. Lewis
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|