1
|
Rai V. High-Fat Diet, Epigenetics, and Atherosclerosis: A Narrative Review. Nutrients 2024; 17:127. [PMID: 39796562 PMCID: PMC11722563 DOI: 10.3390/nu17010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a chronic inflammatory disease developing and progressing in the presence of risk factors including hyperlipidemia, hypercholesterolemia, and chronic inflammation, among others. Atherosclerosis commonly precipitates as ischemic events, transient ischemic attacks, and myocardial infarction. Saturated fatty acids are risk factors; however, their association with epigenetics in the pathophysiology of atherosclerosis is not clearly understood. The preclinical and clinical trials associating atherosclerosis with epigenetics are scarcely documented, and most of the studies reported the use of drugs inhibiting methylation and histone modification to improve atherosclerosis. This narrative review aims to discuss various aspects and the association between a high-fat diet, epigenetic reprogramming, and atherosclerosis. METHODS A literature search with the keywords high-fat diet, epigenetics, and atherosclerosis, alone or in combination, was conducted to search for articles in the English language. Duplicate articles were removed, and articles related to the subject of this review article were included in this review. RESULTS A review of the literature suggests that a high-fat diet with saturated fatty acids is a risk factor for atherosclerosis, but this association is multifactorial, and epigenetics play a critical role. However, the connecting link and the underlying molecular and cellular mechanisms are not clearly understood yet and warrant more research. CONCLUSIONS A high-fat diet rich in saturated fatty acids is a risk factor for atherosclerosis involving epigenetic reprogramming and altered gene expression. The existing preclinical and clinical trials support the role of epigenetics and reversing it using drugs to attenuate atherosclerosis, but definitive evidence warrants larger clinical trials. Further, a high-fat diet in pregnant mothers can manifest as cardiovascular disease in offspring; caution must be taken in pregnant mothers for their diet and nutrients.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Muffová B, Králová Lesná I, Poledne R. Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-based Atherogenesis. Physiol Res 2024; 73:929-941. [PMID: 39903884 PMCID: PMC11835208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 02/06/2025] Open
Abstract
Perivascular adipose tissue (PVAT) envelops the majority of systemic vessels, providing crucial mechanical support and vessel protection. In physiological conditions, PVAT releases various bioactive molecules, contributing to the anti-inflammatory environment around neighboring vessels. However, in conditions like obesity, PVAT can exacerbate cardiovascular issues such as atherosclerosis. Communication between PVAT and nearby vessels is bidirectional, with PVAT responding dynamically to signals from the vasculature. This responsiveness positions PVAT as a promising indicator of vascular inflammation. Recently, the role of PVAT in the CVD risk prediction is also greatly discussed. The objective of this review is to summarize the current state of knowledge about the PVAT function, its role in physiologic and pathophysiologic processes and its potential in CVD risk prediction. Keywords: Perivascular adipose tissue, inflammation, atherogenesis, Fat attenuation index.
Collapse
Affiliation(s)
- B Muffová
- Atherosclerosis Research Laboratory, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
3
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Zhang WB, Feng SY, Xiao ZX, Qi YF, Zeng ZF, Chen H. Down-regulating of MFN2 promotes vascular calcification via regulating RAS-RAF-ERK1/2 pathway. Int J Cardiol 2022; 366:11-18. [PMID: 35716948 DOI: 10.1016/j.ijcard.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Vascular calcification (VC), as a prevalent feature of atherosclerosis (AS), is a life-threatening pathological change. Mitofusin 2 (MFN2) has been reported to be down-regulated and participate in the pathogenesis of AS. Here, we explored the feasible impacts of MFN2 on VC in AS. METHODS Atherosclerotic lesion was evaluated by Oil Red O staining. The VC was detected by Alizarin Red S staining, ALP staining, and calcium content in vascular smooth muscle cells (VSMCs) or atherosclerotic mice. The chondrocyte differentiation of VSMCs was measured by Alcian blue staining. Western blotting and qRT-PCR were used to determine the protein and mRNA expression of associated molecules. Intermolecular interaction was measured by ChIP and dual luciferase assays. RESULTS The expression of MFN2 and E2F1 was reduced in the aorta tissues of AS patients and mice. Silencing of MFN2 drove calcification in VSMCs and aortas of atherosclerotic mice as confirmed by up-regulating RUNX2, OPG levels, and down-regulating SM22α, α-SMA levels. The chondrocyte differentiation of VSMCs was accelerated by MFN2 knockdown through inducing the expression of Aggrecan, Collagen II, and SOX9. In addition, E2F1 promoted the transcription and expression of MFN2 in VSMCs. Overexpression of MFN2 or E2F1 suppressed ox-LDL-induced VSMC calcification. Finally, MFN2 depletion enhanced VSMC calcification via activating RAS-RAF-ERK1/2 pathway. CONCLUSION Our results suggest that silencing of MFN2 drives VC via activating RAS-RAF-ERK1/2 pathway in the progression of AS, thus MFN2 may be a therapeutic target for AS.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China.
| | - Si-Yi Feng
- Department of Ultrasound Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Zhan-Xiang Xiao
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - You-Fei Qi
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Zhao-Fan Zeng
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Hao Chen
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| |
Collapse
|
5
|
Qian Y, Mao M, Nian F. The Effect of TNF- α on CHD and the Relationship between TNF- α Antagonist and CHD in Rheumatoid Arthritis: A Systematic Review. Cardiol Res Pract 2022; 2022:6192053. [PMID: 36060429 PMCID: PMC9433296 DOI: 10.1155/2022/6192053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an important role in coronary heart disease (CHD), a chronic inflammatory process. Meanwhile, this pro-inflammatory factor is also involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Patients with RA correspond to a higher risk of CHD. TNF-α antagonist, one of the main treatments for RA, may reduce the risk of CHD in patients with RA. This review summarizes the pathogenesis of TNF-α in CHD and discusses the relationship between TNF-α antagonist and CHD in patients with RA.
Collapse
Affiliation(s)
- Yezhou Qian
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Menghui Mao
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Feige Nian
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Evans BR, Yerly A, van der Vorst EPC, Baumgartner I, Bernhard SM, Schindewolf M, Döring Y. Inflammatory Mediators in Atherosclerotic Vascular Remodeling. Front Cardiovasc Med 2022; 9:868934. [PMID: 35600479 PMCID: PMC9114307 DOI: 10.3389/fcvm.2022.868934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/11/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerotic vascular disease remains the most common cause of ischemia, myocardial infarction, and stroke. Vascular function is determined by structural and functional properties of the arterial vessel wall, which consists of three layers, namely the adventitia, media, and intima. Key cells in shaping the vascular wall architecture and warranting proper vessel function are vascular smooth muscle cells in the arterial media and endothelial cells lining the intima. Pathological alterations of this vessel wall architecture called vascular remodeling can lead to insufficient vascular function and subsequent ischemia and organ damage. One major pathomechanism driving this detrimental vascular remodeling is atherosclerosis, which is initiated by endothelial dysfunction allowing the accumulation of intimal lipids and leukocytes. Inflammatory mediators such as cytokines, chemokines, and modified lipids further drive vascular remodeling ultimately leading to thrombus formation and/or vessel occlusion which can cause major cardiovascular events. Although it is clear that vascular wall remodeling is an elementary mechanism of atherosclerotic vascular disease, the diverse underlying pathomechanisms and its consequences are still insufficiently understood.
Collapse
Affiliation(s)
- Bryce R. Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anaïs Yerly
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR) and Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sarah Maike Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- *Correspondence: Yvonne Döring
| |
Collapse
|
7
|
Lin HH, Hsieh MC, Wang CP, Yu PR, Lee MS, Chen JH. Anti-Atherosclerotic Effect of Gossypetin on Abnormal Vascular Smooth Muscle Cell Proliferation and Migration. Antioxidants (Basel) 2021; 10:antiox10091357. [PMID: 34572989 PMCID: PMC8470489 DOI: 10.3390/antiox10091357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Gossypetin (GTIN), known as 3,5,7,8,3′,4′-hexahydroxyflavone, has been demonstrated to exert anti-atherosclerotic potential against apoptotic injury in oxidized low-density lipoprotein-incubated endothelial cells, and atherosclerotic lesions of cholesterol-fed rabbits. However, the effect and underlying mechanism of GTIN on abnormal vascular smooth muscle cells (VSMCs) proliferation and migration, a major event in the pathogenesis of atherosclerosis, is still unknown. In this study, non-cytotoxic doses of GTIN abolished the VSMCs A7r5 proliferation and cell-cycle S phase distribution. The GTIN-arrested G0/G1 phase might be performed by increasing the expressions of phosphorylated p53 and its downstream molecules that inhibit the activation of cyclin E/cyclin-dependent kinase (cdk)-2, blocking retinoblastoma protein (Rb) phosphorylation and the subsequent dissociation of Rb/transcription factor E2F1 complex. In addition, the results indicated that GTIN inhibited VSMCs wound-healing and migratory abilities through reducing matrix metalloproteinase (MMP)-9 activity and expression, as well as down-regulating protein kinase B (PKB)/nuclear factor-kappaB (NF-κB) signaling. GTIN also revealed potential in diminishing reactive oxygen species (ROS) generation. These findings suggested the inhibitory effects of GTIN on VSMCs dysfunction could likely lead to the containment of atherosclerosis and other cardiovascular illness.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (H.-H.L.); (M.-C.H.); (C.-P.W.)
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Ming-Chang Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (H.-H.L.); (M.-C.H.); (C.-P.W.)
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chi-Ping Wang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (H.-H.L.); (M.-C.H.); (C.-P.W.)
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Ming-Shih Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan; (H.-H.L.); (M.-C.H.); (C.-P.W.)
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Correspondence: (M.-S.L.); (J.-H.C.); Tel.: +886-424-730-022 (ext. 12404) (M.-S.L.); +886-424-730-022 (ext. 12195) (J.-H.C.)
| | - Jing-Hsien Chen
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan;
- Correspondence: (M.-S.L.); (J.-H.C.); Tel.: +886-424-730-022 (ext. 12404) (M.-S.L.); +886-424-730-022 (ext. 12195) (J.-H.C.)
| |
Collapse
|
8
|
Abstract
E2F transcription factor 2 (E2F2) is a member of the E2F family of transcription factors. The classical view is that some E2Fs act as "activators" and others "inhibitors" of cell cycle gene expression. However, the so-called "activator" E2F2 is particularly enigmatic, with seemingly contradictory roles in the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. How can we rationalize the apparently opposing functions of E2F2 in different situations? This is difficult because different methods of studying E2F2 have yielded conflicting results, so extrapolating mechanisms from an observed endpoint is challenging. This review will attempt to summarize and clarify these issues. This review focuses on genetic studies that have helped elucidate the biological functions of E2F2 and that have enhanced our understanding of how E2F2 is integrated into pathways controlling the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. This review will also discuss the function of E2F2 in cancer and other diseases. This review provides a strong basis for further research on the biological function and clinical potential of E2F2.
Collapse
Affiliation(s)
- Luwen Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Shiguan Wang
- Medical College, Shandong University, Ji'nan, China
| | - Yihang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Jihong Pan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| |
Collapse
|
9
|
Liberale L, Ministrini S, Carbone F, Camici GG, Montecucco F. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases. Basic Res Cardiol 2021; 116:23. [PMID: 33770265 PMCID: PMC7997823 DOI: 10.1007/s00395-021-00863-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Lamb FS, Choi H, Miller MR, Stark RJ. TNFα and Reactive Oxygen Signaling in Vascular Smooth Muscle Cells in Hypertension and Atherosclerosis. Am J Hypertens 2020; 33:902-913. [PMID: 32498083 DOI: 10.1093/ajh/hpaa089] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertension and atherosclerosis, the predecessors of stroke and myocardial infarction, are chronic vascular inflammatory reactions. Tumor necrosis factor alpha (TNFα), the "master" proinflammatory cytokine, contributes to both the initiation and maintenance of vascular inflammation. TNFα induces reactive oxygen species (ROS) production which drives the redox reactions that constitute "ROS signaling." However, these ROS may also cause oxidative stress which contributes to vascular dysfunction. Mice lacking TNFα or its receptors are protected against both acute and chronic cardiovascular injury. Humans suffering from TNFα-driven inflammatory conditions such as rheumatoid arthritis and psoriasis are at increased cardiovascular risk. When treated with highly specific biologic agents that target TNFα signaling (Etanercept, etc.) they display marked reductions in that risk. The ability of TNFα to induce endothelial dysfunction, often the first step in a progression toward serious vasculopathy, is well recognized and has been reviewed elsewhere. However, TNFα also has profound effects on vascular smooth muscle cells (VSMCs) including a fundamental change from a contractile to a secretory phenotype. This "phenotypic switching" promotes proliferation and production of extracellular matrix proteins which are associated with medial hypertrophy. Additionally, it promotes lipid storage and enhanced motility, changes that support the contribution of VSMCs to neointima and atherosclerotic plaque formation. This review focuses on the role of TNFα in driving the inflammatory changes in VSMC biology that contribute to cardiovascular disease. Special attention is given to the mechanisms by which TNFα promotes ROS production at specific subcellular locations, and the contribution of these ROS to TNFα signaling.
Collapse
Affiliation(s)
- Fred S Lamb
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hyehun Choi
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael R Miller
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan J Stark
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Bell RD, White RJ, Garcia-Hernandez ML, Wu E, Rahimi H, Marangoni RG, Slattery P, Duemmel S, Nuzzo M, Huertas N, Yee M, O’Reilly MA, Morrell C, Ritchlin CT, Schwarz EM, Korman BD. Tumor Necrosis Factor Induces Obliterative Pulmonary Vascular Disease in a Novel Model of Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Arthritis Rheumatol 2020; 72:1759-1770. [PMID: 32388926 PMCID: PMC7652720 DOI: 10.1002/art.41309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Connective tissue disease (CTD)-associated pulmonary arterial hypertension (PAH) is the second most common etiology of PAH and carries a poor prognosis. Recently, it has been shown that female human tumor necrosis factor (TNF)-transgenic (Tg) mice die of cardiopulmonary disease by 6 months of age. This study was undertaken to characterize this pathophysiology and assess its potential as a novel model of CTD-PAH. METHODS Histologic analysis was performed on TNF-Tg and wild-type (WT) mice to characterize pulmonary vascular and right ventricular (RV) pathology (n = 40 [4-5 mice per group per time point]). Mice underwent right-sided heart catheterization (n = 29) and micro-computed tomographic angiography (n = 8) to assess vascular disease. Bone marrow chimeric mice (n = 12), and anti-TNF-treated mice versus placebo-treated mice (n = 12), were assessed. RNA sequencing was performed on mouse lung tissue (n = 6). RESULTS TNF-Tg mice displayed a pulmonary vasculopathy marked by collagen deposition (P < 0.001) and vascular occlusion (P < 0.001) with associated RV hypertrophy (P < 0.001) and severely increased RV systolic pressure (mean ± SD 75.1 ± 19.3 mm Hg versus 26.7 ± 1.7 mm Hg in WT animals; P < 0.0001). TNF-Tg mice had increased α-smooth muscle actin (α-SMA) staining, which corresponded to proliferation and loss of von Willebrand factor (vWF)-positive endothelial cells (P < 0.01). There was an increase in α-SMA-positive, vWF-positive cells (P < 0.01), implicating endothelial-mesenchymal transition. Bone marrow chimera experiments revealed that mesenchymal but not bone marrow-derived cells are necessary to drive this process. Treatment with anti-TNF therapy halted the progression of disease. This pathology closely mimics human CTD-PAH, in which patient lungs demonstrate increased TNF signaling and significant similarities in genomic pathway dysregulation. CONCLUSION The TNF-Tg mouse represents a novel model of CTD-PAH, recapitulates key disease features, and can serve as a valuable tool for discovery and assessment of therapeutics.
Collapse
Affiliation(s)
- Richard D. Bell
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
| | - R. James White
- University of Rochester Medical Center, Department of Medicine-Division of Pulmonary Diseases and Critical Care, Department of Pharmacology and Physiology
| | - Maria L. Garcia-Hernandez
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
- University of Rochester Medical Center, Department of Medicine-Division of Allergy, Immunology, and Rheumatology
| | - Emily Wu
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
| | - Homaira Rahimi
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
| | - Roberta G. Marangoni
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
- University of Rochester Medical Center, Department of Medicine-Division of Allergy, Immunology, and Rheumatology
| | - Pamela Slattery
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
| | - Stacey Duemmel
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
- University of Rochester Medical Center, Department of Medicine-Division of Allergy, Immunology, and Rheumatology
| | - Marc Nuzzo
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
- University of Rochester Medical Center, Department of Medicine-Division of Allergy, Immunology, and Rheumatology
| | - Nelson Huertas
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
- University of Rochester Medical Center, Department of Medicine-Division of Allergy, Immunology, and Rheumatology
| | - Min Yee
- University of Rochester Medical Center, Department of Pediatrics, Division of Neonatology, Department of Environmental Medicine
| | - Michael A. O’Reilly
- University of Rochester Medical Center, Department of Pediatrics, Division of Neonatology, Department of Environmental Medicine
| | - Craig Morrell
- University of Rochester Medical Center, Department of Medicine , Aab Cardiovascular Research Institute (CVRI)
| | - Christopher T. Ritchlin
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
- University of Rochester Medical Center, Department of Medicine-Division of Allergy, Immunology, and Rheumatology
| | - Edward M. Schwarz
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
| | - Benjamin D. Korman
- University of Rochester Medical Center, Center for Musculoskeletal Research (CMSR)
- University of Rochester Medical Center, Department of Medicine-Division of Allergy, Immunology, and Rheumatology
| |
Collapse
|
12
|
Cao Y, Desai TA. TiO 2-Based Nanotopographical Cues Attenuate the Restenotic Phenotype in Primary Human Vascular Endothelial and Smooth Muscle Cells. ACS Biomater Sci Eng 2020; 6:923-932. [PMID: 32529030 PMCID: PMC7288980 DOI: 10.1021/acsbiomaterials.9b01475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coronary and peripheral stents are implants that are inserted into blocked arteries to restore blood flow. After stent deployment, the denudation of the endothelial cell (EC) layer and the resulting inflammatory cascade can lead to restenosis, the renarrowing of the vessel wall due to the hyperproliferation and excessive matrix secretion of smooth muscle cells (SMCs). Despite advances in drug-eluting stents (DES), restenosis remains a clinical challenge and can require repeat revascularizations. In this study, we investigated how vascular cell phenotype can be modulated by nanotopographical cues on the stent surface, with the goal of developing an alternative strategy to DES for decreasing restenosis. We fabricated TiO2 nanotubes and demonstrated that this topography can decrease SMC surface coverage without affecting endothelialization. In addition, to our knowledge, this is the first study reporting that TiO2 nanotube topography dampens the response to inflammatory cytokine stimulation in both endothelial and smooth muscle cells. We observed that compared to flat titanium surfaces, nanotube surfaces attenuated tumor necrosis factor alpha (TNFα)-induced vascular cell adhesion molecule-1 (VCAM-1) expression in ECs by 1.8-fold and decreased TNFα-induced SMC growth by 42%. Further, we found that the resulting cellular phenotype is sensitive to changes in nanotube diameter and that 90 nm diameter nanotubes leads to the greatest magnitude in cell response compared to 30 or 50 nm nanotubes.
Collapse
Affiliation(s)
- Yiqi Cao
- UC San Francisco, San Francisco, California
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Group in Bioengineering, San Francisco, California
| |
Collapse
|
13
|
Caon I, Bartolini B, Moretto P, Parnigoni A, Caravà E, Vitale DL, Alaniz L, Viola M, Karousou E, De Luca G, Hascall VC, Passi A, Vigetti D. Sirtuin 1 reduces hyaluronan synthase 2 expression by inhibiting nuclear translocation of NF-κB and expression of the long-noncoding RNA HAS2-AS1. J Biol Chem 2020; 295:3485-3496. [PMID: 31932306 PMCID: PMC7076221 DOI: 10.1074/jbc.ra119.011982] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA) is one of the most prevalent glycosaminoglycans of the vascular extracellular matrix (ECM). Abnormal HA accumulation within blood vessel walls is associated with tissue inflammation and is prominent in most vascular pathological conditions such as atherosclerosis and restenosis. Hyaluronan synthase 2 (HAS2) is the main hyaluronan synthase enzyme involved in HA synthesis and uses cytosolic UDP-glucuronic acid and UDP-GlcNAc as substrates. The synthesis of UDP-glucuronic acid can alter the NAD+/NADH ratio via the enzyme UDP-glucose dehydrogenase, which oxidizes the alcohol group at C6 to the COO- group. Here, we show that HAS2 expression can be modulated by sirtuin 1 (SIRT1), the master metabolic sensor of the cell, belonging to the class of NAD+-dependent deacetylases. Our results revealed the following. 1) Treatments of human aortic smooth muscle cells (AoSMCs) with SIRT1 activators (SRT1720 and resveratrol) inhibit both HAS2 expression and accumulation of pericellular HA coats. 2) Tumor necrosis factor α (TNFα) induced HA-mediated monocyte adhesion and AoSMC migration, whereas SIRT1 activation prevented immune cell recruitment and cell motility by reducing the expression levels of the receptor for HA-mediated motility, RHAMM, and the HA-binding protein TNF-stimulated gene 6 protein (TSG6). 3) SIRT1 activation prevented nuclear translocation of NF-κB (p65), which, in turn, reduced the levels of HAS2-AS1, a long-noncoding RNA that epigenetically controls HAS2 mRNA expression. In conclusion, we demonstrate that both HAS2 expression and HA accumulation by AoSMCs are down-regulated by the metabolic sensor SIRT1.
Collapse
Affiliation(s)
- Ilaria Caon
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Barbara Bartolini
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Elena Caravà
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Daiana L Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Pcia. de Bs. As., Centro de Investigaciones y Transferencia del Noroeste de la Pcia. de Bs. As. (CIT NOBA UNNOBA-CONICET), B6000, Junín, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Pcia. de Bs. As., Centro de Investigaciones y Transferencia del Noroeste de la Pcia. de Bs. As. (CIT NOBA UNNOBA-CONICET), B6000, Junín, Argentina
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Giancarlo De Luca
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Vincent C Hascall
- Lerner Research Institute, ND20, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
14
|
microRNA-331-3p maintains the contractile type of vascular smooth muscle cells by regulating TNF-α and CD14 in intracranial aneurysm. Neuropharmacology 2019; 164:107858. [PMID: 31785262 DOI: 10.1016/j.neuropharm.2019.107858] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 01/31/2023]
Abstract
Dysfunction of vascular smooth muscle cells (VSMCs) may be linked to intracranial aneurysm (IA) formation. VSMCs possess a phenotypic plasticity, capable of changing from a mature, contractile to a less differentiated, synthetic phenotype. In this study, we identify a microRNA candidate miR-331-3p that participates in regulating differentiation properties of VSMCs. The expression of TNF-α and CD14 was quantified in IA wall tissues obtained from 96 IA patients and their associations with clinicopathological features of IA were assessed. Then the interactions between miR-331-3p, TNF-α and CD14 were evaluated by determination of luciferase activity. Differentiated properties of VSMCs were assessed from phenotypic markers of contractile VSMCs, a-SMA and E-cadherin, and of synthetic VSMCs, ICAM-1, MCP-1, IL-6, MMP-2 and MMP-9. Rat IA models by ligation of left carotid artery and left renal artery and histological analysis of induced IAs were performed. The TNF-α and CD14 was highly expressed in IA wall tissues and associated with the type and diameter of aneurysm. Depletion of TNF-α or CD14 retarded VSMC apoptosis and transformation to the synthetic type but facilitated cell proliferation. Elevations in miR-331-3p, a direct negative regulator of both TNF-α and CD14, also reduced VSMC apoptosis and prevented VSMCs from synthetic type and increase their proliferation. Furthermore, miR-331-3p was demonstrated to inhibit the formation of IA by down-regulating TNF-α and CD14 in vivo. In conclusion, miR-331-3p maintains the contractile type of VSMCs, thus possibly inhibiting the progression of IA. These findings provide potential new strategies for the clinical treatment of IA.
Collapse
|
15
|
Rong N, Mistriotis P, Wang X, Tseropoulos G, Rajabian N, Zhang Y, Wang J, Liu S, Andreadis ST. Restoring extracellular matrix synthesis in senescent stem cells. FASEB J 2019; 33:10954-10965. [PMID: 31287964 PMCID: PMC6766659 DOI: 10.1096/fj.201900377r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/10/2019] [Indexed: 01/13/2023]
Abstract
Collagen type III (COL3) is one of the 3 major collagens in the body, and loss of expression or mutations in the COL3 gene have been associated with the onset of vascular diseases such the Ehlers-Danlos syndrome. Previous work reported a significant reduction of COL3 in tissues such as skin and vessels with aging. In agreement, we found that COL3 was significantly reduced in senescent human mesenchymal stem cells and myofibroblasts derived from patients with Hutchinson-Gilford progeria syndrome, a premature aging syndrome. Most notably, we discovered that ectopic expression of the embryonic transcription factor Nanog homeobox (NANOG) restored COL3 expression by restoring the activity of the TGF-β pathway that was impaired in senescent cells. RNA sequencing analysis showed that genes associated with the activation of the TGF-β pathway were up-regulated, whereas negative regulators of the pathway were down-regulated upon NANOG expression. Chromatin immunoprecipitation sequencing and immunoprecipitation experiments revealed that NANOG bound to the mothers against decapentaplegic (SMAD)2 and SMAD3 promoters, in agreement with increased expression and phosphorylation levels of both proteins. Using chemical inhibition, short hairpin RNA knockdown, and gain of function approaches, we established that both SMAD2 and SMAD3 were necessary to mediate the effects of NANOG, but SMAD3 overexpression was also sufficient for COL3 production. In summary, NANOG restored production of COL3, which was impaired by cellular aging, suggesting novel strategies to restore the impaired extracellular matrix production and biomechanical function of aged tissues, with potential implications for regenerative medicine and anti-aging treatments.-Rong, N., Mistriotis, P., Wang, X., Tseropoulos, G., Rajabian, N., Zhang, Y., Wang, J., Liu, S., Andreadis, S. T. Restoring extracellular matrix synthesis in senescent stem cells.
Collapse
Affiliation(s)
- Na Rong
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Xiaoyan Wang
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| |
Collapse
|
16
|
Mummidi S, Das NA, Carpenter AJ, Yoshida T, Yariswamy M, Mostany R, Izadpanah R, Higashi Y, Sukhanov S, Noda M, Siebenlist U, Rector RS, Chandrasekar B. RECK suppresses interleukin-17/TRAF3IP2-mediated MMP-13 activation and human aortic smooth muscle cell migration and proliferation. J Cell Physiol 2019; 234:22242-22259. [PMID: 31074012 DOI: 10.1002/jcp.28792] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases.
Collapse
Affiliation(s)
- Srinivas Mummidi
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas
| | - Nitin A Das
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | - Andrea J Carpenter
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | - Tadashi Yoshida
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Manjunath Yariswamy
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Reza Izadpanah
- Department of Medicine/Cardiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Yusuke Higashi
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Sergiy Sukhanov
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Randy S Rector
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Medicine/Gastroenterology and Hepatology/Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Bysani Chandrasekar
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
17
|
A new CHO (Chinese hamster ovary)-derived cell line expressing anti-TNFα monoclonal antibody with biosimilar potential. Immunol Res 2018; 66:392-405. [DOI: 10.1007/s12026-018-8997-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
The Impact of Uremic Toxins on Vascular Smooth Muscle Cell Function. Toxins (Basel) 2018; 10:toxins10060218. [PMID: 29844272 PMCID: PMC6024314 DOI: 10.3390/toxins10060218] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with profound vascular remodeling, which accelerates the progression of cardiovascular disease. This remodeling is characterized by intimal hyperplasia, accelerated atherosclerosis, excessive vascular calcification, and vascular stiffness. Vascular smooth muscle cell (VSMC) dysfunction has a key role in the remodeling process. Under uremic conditions, VSMCs can switch from a contractile phenotype to a synthetic phenotype, and undergo abnormal proliferation, migration, senescence, apoptosis, and calcification. A growing body of data from experiments in vitro and animal models suggests that uremic toxins (such as inorganic phosphate, indoxyl sulfate and advanced-glycation end products) may directly impact the VSMCs’ physiological functions. Chronic, low-grade inflammation and oxidative stress—hallmarks of CKD—are also strong inducers of VSMC dysfunction. Here, we review current knowledge about the impact of uremic toxins on VSMC function in CKD, and the consequences for pathological vascular remodeling.
Collapse
|
19
|
Wang D, Uhrin P, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv 2018; 36:1586-1607. [PMID: 29684502 DOI: 10.1016/j.biotechadv.2018.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Strada Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, 1618 Sofia, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
20
|
Kim J, Chakraborty S, Jayaprakasha GK, Muthuchamy M, Patil BS. Citrus nomilin down-regulates TNF-α-induced proliferation of aortic smooth muscle cells via apoptosis and inhibition of IκB. Eur J Pharmacol 2017; 811:93-100. [PMID: 28551013 DOI: 10.1016/j.ejphar.2017.05.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Nomilin is a bitter compound present in citrus and has been demonstrated as useful for various disease preventions through anti-proliferative, anti-inflammatory, and pro-apoptotic activities. Although in vitro disease models have shown that certain limonoids in the p38 mitogen-activated protein kinase signal cascade, the downstream signaling pathways remain unclear. In this study, the effects of nomilin on the proliferation and apoptotic pathways of human aortic smooth muscle cells (HASMCs) that forms the basis of progression of atherosclerotic diseases and restenosis was tested for the first time. The cellular uptake level and stability of nomilin were determined by high-performance liquid chromatography and high-resolution mass spectra. Pretreatment of HASMCs with nomilin stimulated extrinsic caspase-8, intrinsic caspase-9, and apoptotic caspase-3 and resulted in significant inhibition of TNF-α-induced proliferation. Additionally, results showed a decreased ratio of anti-apoptotic Bcl-2 protein to pro-apoptotic Bax (Bcl2/Bax), indicating mitochondrial dysfunction consistent with apoptosis. Furthermore, nomilin significantly decreased the phosphorylation of IκBα, an inhibitor of NF-κB and subsequently, reduced the downstream inflammatory signaling in TNF-α treated HASMCs. Our findings indicate that the anti-proliferative activity of nomilin on TNF-α-induced HASMCs results from apoptosis through a mitochondrial-dependent pathway and suppression of inflammatory signaling mediated through NF-κB.
Collapse
Affiliation(s)
- Jinhee Kim
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843-1114, USA
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA
| | - Mariappan Muthuchamy
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843-1114, USA.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, USA.
| |
Collapse
|
21
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
22
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Eisenman ST, Gibbons SJ, Verhulst PJ, Cipriani G, Saur D, Farrugia G. Tumor necrosis factor alpha derived from classically activated "M1" macrophages reduces interstitial cell of Cajal numbers. Neurogastroenterol Motil 2017; 29:10.1111/nmo.12984. [PMID: 27781339 PMCID: PMC5367986 DOI: 10.1111/nmo.12984] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Delayed gastric emptying in diabetic mice and humans is associated with changes in macrophage phenotype and loss of interstitial cells of Cajal (ICC) in the gastric muscle layers. In diabetic mice, classically activated M1 macrophages are associated with delayed gastric emptying, whereas alternatively activated M2 macrophages are associated with normal gastric emptying. This study aimed to determine if secreted factors from M1 macrophages could injure mouse ICC in primary culture. METHODS Cultures of gastric ICC were treated with conditioned medium (CM) from activated bone marrow-derived macrophages (BMDMs) and the effect of CM was quantified by counting ICC per high-powered field. KEY RESULTS Bone marrow-derived macrophages were activated to a M1 or M2 phenotype confirmed by qRT-PCR. Conditioned medium from M1 macrophages reduced ICC numbers by 41.1%, whereas M2-CM had no effect as compared to unconditioned, control media. Immunoblot analysis of 40 chemokines/cytokines found 12 that were significantly increased in M1-CM, including tumor necrosis factor alpha (TNF-α). ELISA detected 0.697±0.03 ng mL-1 TNF-α in M1-CM. Recombinant mouse TNF-α reduced Kit expression and ICC numbers in a concentration-dependent manner (EC50 = 0.817 ng mL-1 ). Blocking M1-CM TNF-α with a neutralizing antibody preserved ICC numbers. The caspase inhibitor Z-VAD.fmk partly preserved ICC numbers (cells/field; 6.63±1.04, 9.82±1.80 w/Z-VAD.fmk, n=6, P<.05). CONCLUSIONS & INFERENCES This work demonstrates that TNF-α secreted from M1 macrophages can result in Kit loss and directly injure ICC in vitro partly through caspase-dependent apoptosis and may play an important role in ICC depletion in diabetic gastroparesis.
Collapse
Affiliation(s)
| | | | | | | | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | |
Collapse
|
24
|
Shahini A, Mistriotis P, Asmani M, Zhao R, Andreadis ST. NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues. Tissue Eng Part A 2017; 23:535-545. [PMID: 28125933 DOI: 10.1089/ten.tea.2016.0494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in the field of tissue engineering as a source of smooth muscle cells (SMCs). However, recent studies showed deficits in the contractile function of SMCs derived from senescent MSCs and there are no available strategies to restore the contractile function that is impaired due to cellular or organismal senescence. In this study, we developed a tetracycline-regulatable system and employed micropost tissue arrays to evaluate the effects of the embryonic transcription factor, NANOG, on the contractility of senescent MSCs. Using this system, we show that expression of NANOG fortified the actin cytoskeleton and restored contractile function that was impaired in senescent MSCs. NANOG increased the expression of smooth muscle α-actin (ACTA2) as well as the contractile force generated by cells in three-dimensional microtissues. Interestingly, NANOG worked together with transforming growth factor-beta1 to further enhance the contractility of senescent microtissues. The effect of NANOG on contractile function was sustained for about 10 days after termination of its expression. Our results show that NANOG could reverse the effects of stem cell senescence and restore the myogenic differentiation potential of senescent MSCs. These findings may enable development of novel strategies to restore the function of senescent cardiovascular and other SMC-containing tissues.
Collapse
Affiliation(s)
- Aref Shahini
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Panagiotis Mistriotis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Mohammadnabi Asmani
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Ruogang Zhao
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Stelios T Andreadis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York.,2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York.,3 Center of Excellence in Bioinformatics and Life Sciences , Buffalo, New York
| |
Collapse
|
25
|
Yan X, Wu L, Li B, Meng X, Dai H, Zheng Y, Fu J. Cyanidin-3-O-glucoside Induces Apoptosis and Inhibits Migration of Tumor Necrosis Factor-α-Treated Rat Aortic Smooth Muscle Cells. Cardiovasc Toxicol 2017; 16:251-9. [PMID: 26138096 DOI: 10.1007/s12012-015-9333-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Blueberries are rich in anthocyanins (ACNs), which have recently been noted to protect against atherosclerosis development in mice. Cyanidin-3-O-glucoside (C3G), a member of blueberry ACN family, can inhibit the tumor necrosis factor-α (TNF-α)-induced proliferation of vascular smooth muscle cells (VSMCs). However, the effects of C3G on VSMC apoptosis and migration remain unclear. This study was thus conducted to examine whether and how C3G affected the apoptosis and migration of rat aortic smooth muscle cells (RASMCs) challenged by TNF-α. Primary cultured RASMCs were pretreated with C3G (25, 50 or 100 μM) for 2 h and then stimulated with TNF-α (10 ng/ml) for additional 24 h. Our results illustrated that C3G pretreatment induced significant apoptosis in TNF-α-stimulated RASMCs in a dose-dependent way, which was accompanied with increased cleaved caspase-3, caspase-9 and Bax and decreased Bcl-2. Moreover, RASMC migration was enhanced by TNF-α, but markedly suppressed by C3G pretreatment. The expressions and activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 were inhibited by C3G. In addition, TNF-α-enhanced nuclear translocation of nuclear factor kappa B (NF-κB) subunit p65 and phosphorylation of NF-κB inhibitor α (IκBα) in RASMCs were attenuated by C3G. In summary, our study reveals that C3G can induce significant apoptosis in TNF-α-treated RASMCs and markedly inhibit their migration.
Collapse
Affiliation(s)
- Xuerui Yan
- Plant Protection College, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110161, Liaoning, People's Republic of China
| | - Lin Wu
- Jilin Province Pulan High-Tech Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Bin Li
- Food College, Shenyang Agricultural University, Shenyang, 110161, Liaoning, People's Republic of China
| | - Xianjun Meng
- Food College, Shenyang Agricultural University, Shenyang, 110161, Liaoning, People's Republic of China
| | - Hanping Dai
- Horticulture College, Shenyang Agricultural University, Shenyang, 110161, Liaoning, People's Republic of China
| | - Yanan Zheng
- College of Forestry, Shenyang Agricultural University, Shenyang, 110161, Liaoning, People's Republic of China
| | - Junfan Fu
- Plant Protection College, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110161, Liaoning, People's Republic of China.
| |
Collapse
|
26
|
Qi L, Zhi J, Zhang T, Cao X, Sun L, Xu Y, Li X. Inhibition of microRNA-25 by tumor necrosis factor α is critical in the modulation of vascular smooth muscle cell proliferation. Mol Med Rep 2015; 11:4353-8. [PMID: 25672882 DOI: 10.3892/mmr.2015.3329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis and coronary heart disease are characterized by a hyperplastic neointima and inflammation involving cytokines, such as tumor necrosis factor‑α (TNF‑α). TNF‑α is pleiotropic and mediates inflammation and proliferation in various cell types, such as vascular smooth muscle cells (VSMCs). The molecular mechanism for the pleiotropic effects of TNF‑α has not previously been fully elucidated. The current study identified that the expression of microRNA‑25 (miR‑25), a small noncoding RNA, was reduced in response to TNF‑α signaling in VSMCs. Restored miR‑25 expression inhibited cell proliferation and Ki‑67 expression. The present study indicated that cyclin‑dependent kinase 6 (CDK6) was the direct target gene of miR‑25 using mRNA and protein expression analysis, and luciferase assays. It was also observed that restored CDK6 expression in the miR‑25 mimic‑treated VSMCs partly reduced miR‑25‑mediated VSMC proliferation. In conclusion, miR‑25 is suggested to be important in TNF‑α‑induced abnormal proliferation of VSMCs.
Collapse
Affiliation(s)
- Lichun Qi
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jixin Zhi
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tong Zhang
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue Cao
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lixiu Sun
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuanyuan Xu
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xueqi Li
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
27
|
Wang XH, Hong X, Zhu L, Wang YT, Bao JP, Liu L, Wang F, Wu XT. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Exp Biol Med (Maywood) 2014; 240:411-7. [PMID: 25304312 DOI: 10.1177/1535370214554533] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Although tumor necrosis factor alpha (TNF-α) is known to play a critical role in intervertebral disc (IVD) degeneration, the effect of TNF-α on nucleus pulposus (NP) cells has not yet been elucidated. The aim of this study was to explore the effect of TNF-α on proliferation of human NP cells. NP cells were treated with different concentrations of TNF-α. Cell proliferation was determined by cell counting kit-8 (CCK-8) analysis and Ki67 immunofluorescence staining, and expression of cyclin B1 was studied by quantitative real-time RT-PCR. Cell cycle was measured by flow cytometry and cell apoptosis was analyzed using an Annexin V-fluorescein isothiocyanate (FITC) & propidium iodide (PI) apoptosis detection kit. To identify the mechanism by which TNF-α induced proliferation of NP cells, selective inhibitors of major signaling pathways were used and Western blotting was carried out. Treatment with TNF-α increased cell viability (as determined by CCK-8 analysis) and expression of cyclin B1 and the number of Ki67-positive and S-phase NP cells, indicating enhancement of proliferation. Consistent with this, NP cell apoptosis was suppressed by TNF-α treatment. Moreover, inhibition of NF-κB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) blocked TNF-α-stimulated proliferation of NP cells. In conclusion, the current findings suggest that the effect of TNF-α on IVD degeneration involves promotion of the proliferation of human NP cells via the NF-κB, JNK, and p38 MAPK pathways.
Collapse
Affiliation(s)
- Xiao-Hu Wang
- Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| | - Xin Hong
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Zhu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yun-Tao Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jun-Ping Bao
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Liu
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich D-81675, Germany
| | - Feng Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiao-Tao Wu
- Medical School of Southeast University, Nanjing 210009, Jiangsu, China Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
28
|
Kim EJ, Choi YK, Han YH, Kim HJ, Lee IK, Lee MO. RORα suppresses proliferation of vascular smooth muscle cells through activation of AMP-activated protein kinase. Int J Cardiol 2014; 175:515-21. [DOI: 10.1016/j.ijcard.2014.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/05/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
|
29
|
Wang H, Zhang Z, Tian W, Liu T, Han H, Garcia B, Li XC, Du C. Memory T Cells Mediate Cardiac Allograft Vasculopathy and are Inactivated by Anti-OX40L Monoclonal Antibody. Cardiovasc Drugs Ther 2014; 28:115-22. [PMID: 24254032 PMCID: PMC4539019 DOI: 10.1007/s10557-013-6502-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Cardiac allograft vasculopathy (CAV) is a major complication limiting the long-term survival of cardiac transplants. The role of memory T cells (Tmem) in the pathogenesis of CAV remains elusive. This study investigated the role of Tmem cells in the development of CAV and the therapeutic potential of targeting the OX40/OX40L pathway for heart transplant survival. METHODS Tmem cells were generated in Rag-1(-/-) C57BL/6 (B6) mice by homeostatic proliferation (HP) of CD40L null CD3(+) T cells from B6 mice. Rag-1(-/-) B6 mice (H-2(b)) harboring Tmem cells received cardiac allografts from BALB/c mice (H-2(d)), and were either untreated or treated with anti-OX40L monoclonal antibody (mAb) (0.5 mg/mouse/day) for 10 days. RESULTS Six weeks after HP, the majority of transferred CD40L(-/-) T cells in Rag-1(-/-) B6 mice were differentiated to CD44(high) and CD62L(low) Tmem cells. BALB/c heart allografts in Rag-1(-/-) B6 recipient mice in the presence of these Tmem cells developed a typical pathological feature of CAV; intimal thickening, 100 days after transplantation. However, functionally blocking the OX40/OX40L pathway with anti-OX40L mAb significantly prevented CAV development and reduced the Tmem cell population in recipient mice. Anti-OX40L mAb therapy also significantly decreased cellular infiltration and cytokine (IFN-γ, TNF-α and TGF-β) expression in heart allografts. CONCLUSIONS Tmem cells mediate CAV in heart transplants. Functionally blocking the OX40/OX40L pathway using anti-OX40L mAb therapy prevents Tmem cell-mediated CAV, suggesting therapeutic potential for disrupting OX40-OX40L signaling in order to prevent CAV in heart transplant patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin General Surgery Institute, Tianjin, China,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Seijkens T, Hoeksema MA, Beckers L, Smeets E, Meiler S, Levels J, Tjwa M, de Winther MPJ, Lutgens E. Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. FASEB J 2014; 28:2202-13. [PMID: 24481967 DOI: 10.1096/fj.13-243105] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Modulation of hematopoietic stem and progenitor cells (HSPCs) determines immune cell function. In this study, we investigated how hypercholesterolemia affects HSPC biology and atherosclerosis. Hypercholesterolemia induced loss of HSPC quiescence, characterized by increased proliferation and expression of cyclin B1, C1, and D1, and a decreased expression of Rb, resulting in a 3.6- fold increase in the number of HSPCs in hypercholesterolemic Ldlr(-/-) mice. Competitive bone marrow (BM) transplantations showed that a hypercholesterolemic BM microenvironment activates HSPCs and skews their development toward myeloid lineages. Conversely, hypercholesterolemia-primed HSPCs acquired an enhanced propensity to generate myeloid cells, especially granulocytes and Ly6C(high) monocytes, even in a normocholesterolemic BM microenvironment. In conformity, macrophages differentiated from hypercholesterolemia-primed HSPCs produced 17.0% more TNF-α, 21.3% more IL-6, and 10.5% more MCP1 than did their normocholesterolemic counterparts. Hypercholesterolemia-induced priming of HSPCs generated leukocytes that more readily migrated into the artery, which resulted in a 2.1-fold increase in atherosclerotic plaque size. In addition, these plaques had a more advanced phenotype and exhibited a 1.2-fold increase in macrophages and 1.8-fold increase in granulocytes. These results identify hypercholesterolemia-induced activation and priming of HSPCs as a novel pathway in the development of atherosclerosis. Inhibition of this proinflammatory differentiation pathway on the HSPC level has the potential to reduce atherosclerosis.
Collapse
Affiliation(s)
- Tom Seijkens
- 1Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 CZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lange M, Fujikawa T, Koulova A, Kang S, Griffin MJ, Lassaletta AD, Erat A, Tobiasch E, Bianchi C, Elmadhun N, Sellke FW, Usheva A. Arterial territory-specific phosphorylated retinoblastoma protein species and CDK2 promote differences in the vascular smooth muscle cell response to mitogens. Cell Cycle 2013; 13:315-23. [PMID: 24240190 DOI: 10.4161/cc.27056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite recent advances in medical procedures, cardiovascular disease remains a clinical challenge and the leading cause of mortality in the western world. The condition causes progressive smooth muscle cell (SMC) dedifferentiation, proliferation, and migration that contribute to vascular restenosis. The incidence of disease of the internal mammary artery (IMA), however, is much lower than in nearly all other arteries. The etiology of this IMA disease resistance is not well understood. Here, using paired primary IMA and coronary artery SMCs, serum stimulation, siRNA knockdowns, and verifications in porcine vessels in vivo, we investigate the molecular mechanisms that could account for this increased disease resistance of internal mammary SMCs. We show that the residue-specific phosphorylation profile of the retinoblastoma tumor suppressor protein (Rb) appears to differ significantly between IMA and coronary artery SMCs in cultured human cells. We also report that the differential profile of Rb phosphorylation may follow as a consequence of differences in the content of cyclin-dependent kinase 2 (CDK2) and the CDK4 phosphorylation inhibitor p15. Finally, we present evidence that siRNA-mediated CDK2 knockdown alters the profile of Rb phosphorylation in coronary artery SMCs, as well as the proliferative response of these cells to mitogenic stimulation. The intrinsic functional and protein composition specificity of the SMCs population in the coronary artery may contribute to the increased prevalence of restenosis and atherosclerosis in the coronary arteries as compared with the internal mammary arteries.
Collapse
Affiliation(s)
- Martin Lange
- Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Tatsuya Fujikawa
- Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Anna Koulova
- Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Sona Kang
- Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Michael J Griffin
- Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Antonio D Lassaletta
- Division of Cardiothoracic Surgery; Alpert Medical School of Brown University; Providence, RI USA
| | - Anna Erat
- Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA; Eidgenössisches Departement des Innern EDI Bundesamt für Gesundheit BAG Direktionsbereich Öffentliche Gesundheit; Bern, Switzerland
| | - Edda Tobiasch
- Department of Natural Sciences; University of Applied Sciences Bonn-Rhein-Sieg; Rheinbach, Germany
| | - Cesario Bianchi
- Division of Cardiothoracic Surgery; Alpert Medical School of Brown University; Providence, RI USA
| | - Nassrene Elmadhun
- Division of Cardiothoracic Surgery; Alpert Medical School of Brown University; Providence, RI USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery; Alpert Medical School of Brown University; Providence, RI USA
| | - Anny Usheva
- Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| |
Collapse
|
32
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|
33
|
D’Amici S, Ceccarelli S, Vescarelli E, Romano F, Frati L, Marchese C, Angeloni A. TNFα modulates Fibroblast Growth Factor Receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif. PLoS One 2013; 8:e61491. [PMID: 23613863 PMCID: PMC3629046 DOI: 10.1371/journal.pone.0061491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
Interactions between epithelium and mesenchyme during wound healing are not fully understood, but Fibroblast Growth Factors (FGFs) and their receptors FGFRs are recognized as key elements. FGFR2 gene encodes for two splicing transcript variants, FGFR2-IIIb or Keratinocyte Growth Factor Receptor (KGFR) and FGFR2-IIIc, which differ for tissue localization and ligand specificity. Proinflammatory cytokines play an essential role in the regulation of epithelial-mesenchymal interactions, and have been indicated to stimulate FGFs production. Here we demonstrated that upregulation of FGFR2 mRNA and protein expression is induced by the proinflammatory cytokines Tumor Necrosis Factor-α, Interleukin-1β and Interleukin 2. Furthermore, we found that TNFα determines FGFR2 transcriptional induction through activation of pRb, mediated by Raf and/or p38 pathways, and subsequent release of the transcription factor E2F1. Experiments based on FGFR2 promoter serial deletions and site-directed mutagenesis allowed us to identify a minimal responsive element that retains the capacity to be activated by E2F1. Computational analysis indicated that this element is a non-canonical E2F responsive motif. Thus far, the molecular mechanisms of FGFR2 upregulation during wound healing or in pathological events are not known. Our data suggest that FGFR2 expression can be modulated by local recruitment of inflammatory cytokines. Furthermore, since alterations in FGFR2 expression have been linked to the pathogenesis of certain human cancers, these findings could also provide elements for diagnosis and potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sirio D’Amici
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Frati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
34
|
Alamanda V, Singh S, Lawrence NJ, Chellappan SP. Nicotine-mediated induction of E-selectin in aortic endothelial cells requires Src kinase and E2F1 transcriptional activity. Biochem Biophys Res Commun 2012; 418:56-61. [PMID: 22240023 DOI: 10.1016/j.bbrc.2011.12.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/25/2011] [Indexed: 01/19/2023]
Abstract
Smoking is highly correlated with enhanced likelihood of atherosclerosis by inducing endothelial dysfunction. In endothelial cells, various cell-adhesion molecules including E-selectin, are shown to be upregulated upon exposure to nicotine, the addictive component of tobacco smoke; however, the molecular mechanisms underlying this induction are poorly understood. Here we demonstrate that nicotine-induced E-selectin transcription in human aortic endothelial cells (HAECs) could be significantly blocked by α7-nAChR subunit inhibitor, α-BT, Src-kinase inhibitor, PP2, or siRNAs against Src or β-Arrestin-1 (β-Arr1). Further, chromatin immunoprecipitations show that E-selectin is an E2F1 responsive gene and nicotine stimulation results in increased recruitment of E2F1 on E-selectin promoter. Inhibiting E2F1 activity using RRD-251, a disruptor of the Rb-Raf-1 kinase interaction, could significantly inhibit the nicotine-induced recruitment of E2F1 to the E-selectin promoter as well as E-selectin expression. Interestingly, stimulation of HAECs with nicotine results in increased adhesion of U937 monocytic cells to HAECs and could be inhibited by pre-treatment with RRD-251. Similarly, depletion of E2F1 or Src using RNAi blocked the increased adhesion of monocytes to nicotine-stimulated HAECs. These results suggest that nicotine-stimulated adhesion of monocytes to endothelial cells is dependent on the activation of α7-nAChRs, β-Arr1 and cSrc regulated increase in E2F1-mediated transcription of E-selectin gene. Therefore, agents such as RRD-251 that can target activity of E2F1 may have potential therapeutic benefit against cigarette smoke induced atherosclerosis.
Collapse
Affiliation(s)
- Vignesh Alamanda
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|