1
|
Teramoto T. Dual EMCV-IRES-integrated dengue virus can express an exogenous gene and cellular Mdm2 integration suppresses the dengue viral replication. Front Microbiol 2025; 16:1533062. [PMID: 39911252 PMCID: PMC11794298 DOI: 10.3389/fmicb.2025.1533062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Flaviviruses transmit through a wide range of vertebrate and arthropod hosts, while the other genera in Flaviviridae replicate in a limited set of vertebrate hosts. Flaviviruses possess a 5' cap in their genome RNA for translation, while the other genera utilize their internal ribosome entry site (IRES) sequences instead of a 5' cap. In this study, the translational modification to add an IRES sequence was examined. An IRES sequence derived from encephalomyocarditis (EMCV) was inserted into dengue virus serotype 2 (DENV2); a non-structural (NS) polyprotein was translated by IRES separately from 5' cap-induced structural polyprotein translation. It was revealed that the IRES-integrated DENV2 is prevented from replicating in C6/36 mosquito cells, suggesting that the 5' cap is an advantageous mechanism for flavivirus translation in invertebrate species. I further created dual IRES-integrated DENV2, in which a non-viral gene can be expressed by the flanking IRESs. The insertion of eGFP fluorescently visualized the virus spread. The renilla luciferase (Rluc) integration enabled the viral replication quantification. It was also revealed that a cellular gene, Mdm2, which antagonizes tumor suppressor protein p53 (TP53), could terminate the viral replication in BHK21 cells. Thus, the modifications of the DENV genome with IRES and the subsequent foreign gene could be utilized for controlling viral replications.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Hidalgo P, Torres A, Jean Beltran PM, López-Leal G, Bertzbach LD, Dobner T, Flint SJ, Cristea IM, González RA. The protein composition of human adenovirus replication compartments. mBio 2025; 16:e0214424. [PMID: 39611842 PMCID: PMC11708036 DOI: 10.1128/mbio.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored. In this study, we isolated adenovirus RC-enriched fractions from infected cells at different times post-infection and employed a tandem mass tag-based quantitative mass spectrometry approach to identify proteins associated with RCs (data available via ProteomeXchange identifier PXD051745). These findings reveal an elaborate network of host and viral proteins potentially relevant for RC formation and function. To validate the RC-protein components identified by mass spectrometry, we employed immunofluorescence and immunoblotting techniques. Proteins previously described to colocalize in RCs in infected cells were identified in the isolated subnuclear fractions. In addition, we validated newly identified proteins associated with RCs, including the high mobility group box 1 (HMGB1), the SET nuclear proto-oncogene, the structure-specific recognition protein 1 (SSRP1), the CCCTC-binding protein (CTCF), and sirtuin 6 (SIRT6). We identified HMGB1 as a protein that binds to the viral DNA binding protein (DBP). Using shRNA knockdowns and inhibitors, we demonstrated that HMGB1 acts as a proviral factor, promoting efficient viral DNA synthesis and progeny production. Our data further suggest potential candidate targets for therapeutic intervention and provide mechanistic insights into the molecular basis of virus-host interactions.IMPORTANCEHuman adenoviruses serve as models for studying respiratory viruses and have provided critical insights into viral genome replication and gene expression, as well as the control of virus-host interactions. These processes are coordinated within virus-induced subnuclear microenvironments known as RCs. We conducted quantitative proteome analyses of RC-enriched subnuclear fractions at different times post-infection with human adenovirus species C type 5, revealing a multifaceted network of proteins that participate in the regulation of gene expression, DNA damage response, RNA metabolism, innate immunity, and other cellular antiviral defense mechanisms. Furthermore, we validated the localization of several host proteins to viral RCs using immunofluorescence microscopy and immunoblotting and identified cellular HMGB1 as a proviral factor late during infection. These findings represent the first analysis of the proteomes of isolated RCs and not only enhance our understanding of nuclear organization during infection but also shed light on the complex interplay between viral and host factors within RCs.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Amada Torres
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Gamaliel López-Leal
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
3
|
Lin CI, Wang SS, Hung CH, Chang PJ, Chen LW. Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Protein Represses Cellular MDM2 Expression via Suppressing the Sp1- and p53-Mediated Transactivation. Int J Mol Sci 2022; 23:ijms23158673. [PMID: 35955808 PMCID: PMC9369062 DOI: 10.3390/ijms23158673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded ORF50 protein is a potent transcriptional activator essential for triggering KSHV lytic reactivation. Despite extensive studies, little is known about whether ORF50 possesses the ability to repress gene expression or has an antagonistic action to cellular transcription factors. Previously, we demonstrated that human oncoprotein MDM2 can promote the degradation of ORF50 protein. Herein, we show that abundant ORF50 expression in cells can conversely downregulate MDM2 expression via repressing both the upstream (P1) and internal (P2) promoters of the MDM2 gene. Deletion analysis of the MDM2 P1 promoter revealed that there were two ORF50-dependent negative response elements located from −102 to −63 and from −39 to +1, which contain Sp1-binding sites. For the MDM2 P2 promoter, the ORF50-dependent negative response element was identified in the region from −110 to −25, which is coincident with the location of two known p53-binding sites. Importantly, we further demonstrated that overexpression of Sp1 or p53 in cells indeed upregulated MDM2 expression; however, coexpression with ORF50 protein remarkably reduced the Sp1- or p53-mediated MDM2 upregulation. Collectively, our findings propose a reciprocal negative regulation between ORF50 and MDM2 and uncover that ORF50 decreases MDM2 expression through repressing Sp1- and p53-mediated transactivation.
Collapse
Affiliation(s)
- Chia-I Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Lee-Wen Chen
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
- Correspondence: ; Tel.: +886-5362-8800 (ext. 2235)
| |
Collapse
|
4
|
B HDM, Guru A, Sudhakaran G, Murugan R, Arshad A, Arockiaraj J. Double‐edged sword role of shrimp miRNA explains an evolutionary language between shrimp‐pathogen interactions that unties the knot of shrimp infection. REVIEWS IN AQUACULTURE 2022; 14:578-593. [DOI: 10.1111/raq.12613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/21/2021] [Indexed: 10/16/2023]
Abstract
AbstractShrimp production, using a small‐scale enclosed pond system, is a rapidly growing aquaculture sector, which is valued around USD 18.30 billion in 2020. Intensified shrimp culture leads to the outbreak of transmissible diseases to eventually cause a huge loss in the production process and thus the economy. Studies on microRNA (miRNA) reveal that miRNA has an influential role in the host‐pathogen interaction during an infection. Recently, shrimp miRNA has been shown to help pathogen‐like viruses for their replication and infection. Several shrimp miRNAs were reported to be involved in enhancing host immunity against viral infection, especially white spot syndrome virus (WSSV) infection and Vibrio infection caused by bacterial species, whereas some shrimp miRNAs were reported to be hijacked by WSSV and to enhance the viral replication and establish the infection in shrimp. This gives an insight into the double‐edged sword role played by shrimp miRNA during host‐pathogen interaction. In future, this role could be employed against the virus to strengthen the shrimp culture. In this review, we discuss the role of shrimp miRNA and their mechanism(s) associated with the establishment of host‐pathogen interaction during infection, which will reveal the complexity associated with shrimp infection.
Collapse
Affiliation(s)
- Hari Deva Muthu B
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Ajay Guru
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Gokul Sudhakaran
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Raghul Murugan
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS), Universiti Putra Malaysia Negeri Sembilan Malaysia
- Department of Aquaculture, Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
5
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Gong Y, Ju C, Zhang X. Shrimp miR-1000 Functions in Antiviral Immunity by Simultaneously Triggering the Degradation of Two Viral mRNAs. Front Immunol 2018; 9:2999. [PMID: 30619352 PMCID: PMC6305465 DOI: 10.3389/fimmu.2018.02999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) function as crucial suppressors of gene expression via translational repression or direct mRNA degradation. However, the mechanism of multi-gene regulation by a host miRNA in antiviral immunity has not been extensively explored. In this study, the regulation of two white spot syndrome virus (WSSV) genes by its host (Marsupenaeus japonicus shrimp) miRNA (shrimp miR-1000) was characterized. The miRNA target gene prediction showed that only two virus genes (wsv191 and wsv407) might be the targets of miR-1000. The results of insect cell transfection assays revealed that shrimp miR-1000 could target multiple virus genes (wsv191 and wsv407). The mRNA degradation analysis and RNA FISH (fluorescence in situ hybridization) analysis indicated that miR-1000 triggered the mRNA degradation of target genes through 5′-3′ exonucleolytic digestion in vivo and thereby inhibited the virus infection in shrimp. The miRNA-mediated 5′-3′ exonucleolytic digestion of target mRNAs stopped near the 3′UTR (3′untranslated region) sequence complementary to the seed sequence of miR-1000. Therefore, our study provided novel insights into how a host miRNA targeted multiple viral genes and prevented host from virus infection.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chenyu Ju
- Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Li D, Tian G, Wang J, Zhao LY, Co O, Underill ZC, Mymryk JS, Claessens F, Dehm SM, Daaka Y, Liao D. Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate 2018; 78:1140-1156. [PMID: 30009471 PMCID: PMC6424568 DOI: 10.1002/pros.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations or truncation of the ligand-binding domain (LBD) of androgen receptor (AR) underlie treatment resistance for prostate cancer (PCa). Thus, targeting the AR N-terminal domain (NTD) could overcome such resistance. METHODS Luciferase reporter assays after transient transfection of various DNA constructs were used to assess effects of E1A proteins on AR-mediated transcription. Immunofluorescence microscopy and subcellular fractionation were applied to assess intracellular protein localization. Immunoprecipitation and mammalian two-hybrid assays were used to detect protein-protein interactions. qRT-PCR was employed to determine RNA levels. Western blotting was used to detect protein expression in cells. Effects of adenoviruses on prostate cancer cell survival were evaluated with CellTiter-Glo assays. RESULTS Adenovirus 12 E1A (E1A12) binds specifically to the AR. Interestingly, the full-length E1A12 (266 aa) preferentially binds to full-length AR, while the small E1A12 variant (235 aa) interacts more strongly with AR-V7. E1A12 promotes AR nuclear translocation, likely through mediating intramolecular AR NTD-LBD interactions. In the nucleus, AR and E1A12 co-expression in AR-null PCa cells results in E1A12 redistribution from nuclear foci containing CBX4 (also known as Pc2), suggesting a preferential AR-E1A12 interaction over other E1A12 interactors. E1A12 represses AR-mediated transcription in reporter gene assays and endogenous AR target genes such as ATAD2 and MYC in AR-expressing PCa cells. AR-expressing PCa cells are more sensitive to death induced by a recombinant adenovirus expressing E1A12 (Ad-E1A12) than AR-deficient PCa cells, which could be attributed to the increased viral replication promoted by androgen stimulation. Targeting the AR by E1A12 promotes apoptosis in PCa cells that express the full-length AR or C-terminally truncated AR variants. Importantly, inhibition of mTOR signaling that blocks the expression of anti-apoptotic proteins markedly augments Ad-E1A12-induced apoptosis of AR-expressing cells. Mechanistically, Ad-E1A12 infection triggers apoptotic response while activating the PI3K-AKT-mTOR signaling axis; thus, mTOR inhibition enhances apoptosis in AR-expressing PCa cells infected by Ad-E1A12. CONCLUSION Ad12 E1A inhibits AR-mediated transcription and suppresses PCa cell survival, suggesting that targeting the AR by E1A12 might have therapeutic potential for treating advanced PCa with heightened AR signaling.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, P. R. China
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jia Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Affiliated Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Present address: Department of Medicine, University of Florida, Gainesville, FL 32610
| | - Olivia Co
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Zoe C. Underill
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, the University of Western Ontario, London Regional Cancer Centre, Ontario, Canada
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO box 901, 3000 Leuven, Belgium
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Corresponding author: Department of Anatomy and Cell Biology, University of Florida, 1333 Center Drive, Gainesville, Florida, 32610-0235, , Phone: 352-273-8188, Fax: 352-846-1248
| |
Collapse
|
8
|
Rovira-Rigau M, Raimondi G, Marín MÁ, Gironella M, Alemany R, Fillat C. Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Mol Ther 2018; 27:230-243. [PMID: 30341009 DOI: 10.1016/j.ymthe.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses are designed for cancer treatment. Cell-virus interactions are key determinants for successful viral replication. Therefore, the extensive reprogramming of gene expression that occurs in tumor cells might create a hurdle for viral propagation. We used a replication-based approach of a microRNA (miRNA) adenoviral library encoding up to 243 human miRNAs as a bioselection strategy to identify miRNAs that facilitate adenoviral oncolytic activity in pancreatic ductal adenocarcinoma. We identify two miRNAs, miR-99b and miR-485, that function as enhancers of adenoviral oncolysis by improving the intra- and extracellular yield of mature virions. An increased adenoviral activity is the consequence of enhanced E1A and late viral protein expression, which is probably mediated by the downregulation of the transcriptional repressors ELF4, MDM2, and KLF8, which we identify as miR-99b or miR-485 target genes. Arming the oncolytic adenovirus ICOVIR15 with miR-99b or miR-485 enhances its fitness and its antitumoral activity. Our results demonstrate the potential of this strategy to improve oncolytic adenovirus potency, and they highlight miR-99b and miR-485 as sensitizers of adenoviral replication.
Collapse
Affiliation(s)
- Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Giulia Raimondi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Miguel Ángel Marín
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Meritxell Gironella
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain
| | - Ramon Alemany
- Institut Català d'Oncologia-IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain.
| |
Collapse
|
9
|
Wang Y, Li D, Luo J, Tian G, Zhao LY, Liao D. Intrinsic cellular signaling mechanisms determine the sensitivity of cancer cells to virus-induced apoptosis. Sci Rep 2016; 6:37213. [PMID: 27849011 PMCID: PMC5111159 DOI: 10.1038/srep37213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Cancer cells of epithelial and mesenchymal phenotypes exhibit different sensitivities to apoptosis stimuli, but the mechanisms underlying this phenomenon remain partly understood. We constructed a novel recombinant adenovirus expressing Ad12 E1A (Ad-E1A12) that can strongly induce apoptosis. Ad-E1A12 infection of epithelial cancer cells displayed dramatic detachment and apoptosis, whereas cancer cells of mesenchymal phenotypes with metastatic propensity were markedly more resistant to this virus. Notably, forced detachment of epithelial cells did not further sensitize them to Ad-E1A12-induced apoptosis, suggesting that cell detachment is a consequence rather than the cause of Ad-E1A12-induced apoptosis. Ad-E1A12 increased phosphorylation of AKT1 and ribosomal protein S6 through independent mechanisms in different cell types. Ad-E1A12–induced AKT1 phosphorylation was PI3K-dependent in epithelial cancer cells, and mTOR-dependent in mesenchymal cancer cells. Epithelial cancer cells upon Ad-E1A12-induced detachment could not sustain AKT activation due to AKT1 degradation, but AKT1 activation was maintained in mesenchymal cancer cells. Expression of epithelial cell-restricted miR-200 family in mesenchymal cells limited mTOR signaling and sensitized them to Ad-E1A12-induced cell killing. Thus, epithelial cancer cells rely on the canonical PI3K-AKT signaling pathway for survival, while mesenchymal cancer cells deploy the PI3K-independent mTORC2-AKT axis in response to strong death stimuli.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA.,Shaanxi Key Laboratory of Agriculture Molecular Biology, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Dawei Li
- Department of Anatomy and Cell Biology, UF Health Cancer Center, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jian Luo
- Department of Anatomy and Cell Biology, UF Health Cancer Center, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lisa Y Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
10
|
Zheng M, Zhang X, Guo S, Zhang X, Choi HJ, Lee MY, Kim KM. PKCβII inhibits the ubiquitination of β-arrestin2 in an autophosphorylation-dependent manner. FEBS Lett 2015; 589:3929-37. [DOI: 10.1016/j.febslet.2015.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/07/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023]
|
11
|
Kofman AV, Letson C, Dupart E, Bao Y, Newcomb WW, Schiff D, Brown J, Abounader R. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses. Med Hypotheses 2013; 81:62-7. [PMID: 23643704 DOI: 10.1016/j.mehy.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.
Collapse
Affiliation(s)
- Alexander V Kofman
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu C, Öberg D, Rashid A, Gupta R, Mignardi M, Johansson S, Akusjärvi G, Svensson C. A mouse mammary epithelial cell line permissive for highly efficient human adenovirus growth. Virology 2012; 435:363-71. [PMID: 23168297 DOI: 10.1016/j.virol.2012.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 11/16/2022]
Abstract
Although a few immunocompetent animal models to study the immune response against human adenoviruses (HAdV) are available, such as Syrian hamsters and cotton rats, HAdV replication is several logs lower compared to human control cells. We have identified a non-transformed mouse epithelial cell line (NMuMG) where HAdV-2 gene expression and progeny formation was as efficient as in the highly permissive human A549 cells. HAdV from species, D and E (HAdV-37 and HAdV-4, respectively) also caused a rapid cytopathic effect in NMuMG cells, while HAdV from species A, B1, B2 and F (HAdV-12, HAdV-3, HAdV-11 and HAdV-41, respectively) failed to do so. NMuMG cells might therefore be useful in virotherapy research and the analysis of antiviral defense mechanisms and the determination of toxicity, biodistribution and specific antitumour activity of oncolytic HAdV vectors.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|