1
|
Feijing Z, Sun Z, Cheng L, Dong Y. Leptin Modulates Ovarian Granulosa Cell Apoptosis by Regulating Telomerase Activity and Telomere Length in Polycystic Ovary Syndrome. J Transl Med 2025; 105:102169. [PMID: 39491652 DOI: 10.1016/j.labinv.2024.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Leptin (LEP) is implicated in the pathogenesis of polycystic ovary syndrome (PCOS). This study investigates the mechanism of LEP in PCOS. The baseline information of 80 PCOS patients and matched controls was analyzed, with serum and follicular fluid (FF) LEP and LEP receptor (LEPR) levels, telomerase activity, and relative telomere length (TL) measured. The correlation of FF LEP with telomerase activity and TL was analyzed. The viability and apoptosis of KGN cells (the ovarian granulosa cells) treated with gradient LEP were assessed. LEP-LEPR interaction was examined. LEPR, v-myc avian myelocytomatosis viral oncogene homolog (c-MYC), and telomerase reverse transcriptase (TERT) levels and c-MYC protein expression in the TERT promoter region were determined. Nuclear c-MYC translocation was detected. LEP was upregulated in sera and FF of PCOS patients. FF LEP positively correlated with telomerase activity and TL. Low-concentration LEP facilitated KGN cell proliferation, and high-concentration LEP dose-dependently suppressed cell proliferation, promoted apoptosis, upregulated LEPR, and increased telomerase activity and relative TL. LEP-LEPR interaction upregulated c-MYC and facilitated its nuclear accumulation. c-MYC enrichment in the TERT promoter region upregulated TERT, altering telomerase activity and TL and inducing cell apoptosis. Briefly, LEP/LEPR activates c-MYC, modulates TERT expression, and increases telomerase activity and TL, thus inducing ovarian granulosa cell apoptosis and participating in PCOS.
Collapse
Affiliation(s)
- Zhou Feijing
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhimin Sun
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luyao Cheng
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuezhi Dong
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Moreno SP, Fusté JM, Kaiser M, Li JSZ, Nassour J, Haggblom C, Denchi EL, Karlseder J. TZAP overexpression induces telomere dysfunction and ALT-like activity in ATRX/DAXX-deficient cells. iScience 2023; 26:106405. [PMID: 37013192 PMCID: PMC10066556 DOI: 10.1016/j.isci.2023.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The appropriate regulation of telomere length homeostasis is crucial for the maintenance of genome integrity. The telomere-binding protein TZAP has been suggested to regulate telomere length by promoting t-circle and c-circle excisions through telomere trimming, yet the molecular mechanisms by which TZAP functions at telomeres are not understood. Using a system based on TZAP overexpression, we show that efficient TZAP recruitment to telomeres occurs in the context of open telomeric chromatin caused by loss of ATRX/DAXX independently of H3.3 deposition. Moreover, our data indicate that TZAP binding to telomeres induces telomere dysfunction and ALT-like activity, resulting in the generation of t-circles and c-circles in a Bloom-Topoisomerase IIIα-RMI1-RMI2 (BTR)-dependent manner.
Collapse
Affiliation(s)
- Sara Priego Moreno
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Javier Miralles Fusté
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Melanie Kaiser
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Julia Su Zhou Li
- The Ludwig Institute for Cancer Research, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joe Nassour
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Candy Haggblom
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Eros Lazzerini Denchi
- Laboratory for Genome Integrity, National Cancer Institute, Building 37, Room 2144B, Bethesda, MD 20892, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Clinical Characteristics of TZAP (ZBTB48) in Hepatocellular Carcinomas from Tissue, Cell Line, and TCGA. Medicina (B Aires) 2022; 58:medicina58121778. [PMID: 36556980 PMCID: PMC9783728 DOI: 10.3390/medicina58121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background and Objectives: ZBTB48 is a telomere-related protein that has been renamed telomeric zinc finger-associated protein (TZAP). It favorably binds to elongated telomeres to regulate their appropriate length. However, TZAP expression has not been investigated in hepatocellular carcinomas (HCC). Materials and Methods: The clinical significance of TZAP expression in 72 HCC was investigated. Additionally, its findings were supported by open big data and cancer cell lines. Results: TZAP expression level was not associated with the clinical parameters of HCC. TZAP expression induced a poorer survival result (overall survival, p = 0.020; disease-free survival, p = 0.012). TCGA data showed TZAP expression was more frequently found in HCCs with hepatitis C infection (p = 0.023). However, TCGA data revealed that TZAP expression did not predict HCC prognosis. In a cell line study, TZAP inhibition via siRNA suppressed PLC/PRF/5 cell growth; however, cell viability was increased in HepG2 cells. Conclusions: We presented the clinical and prognostic values of TZAP expression in HCC tissues and cancer cell lines. Additionally, the TCGA results also revealed a significant role for TZAP expression. TZAP expression may involve HCC progression and its prognosis.
Collapse
|
5
|
Souid S, Aissaoui D, Srairi-Abid N, Essafi-Benkhadir K. Trabectedin (Yondelis®) as a Therapeutic Option in Gynecological Cancers: A Focus on its Mechanisms of Action, Clinical Activity and Genomic Predictors of Drug Response. Curr Drug Targets 2021; 21:996-1007. [PMID: 31994460 DOI: 10.2174/1389450121666200128161733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The use of predictive biomarkers provides potential individualized cancer therapeutic options to prevent therapy failure as well as serious toxicities. Several recent studies showed that predictive and prognostic biomarkers are a notable personalized strategy to improve patients' care in several cancers. Trabectedin (Yondelis®) is a cytotoxic agent, derived from a marine organism, harbouring a significant antitumor activity against several cancers such as soft tissue sarcoma, ovarian, and breast cancers. Recently and with the advent of molecular genetic testing, BRCA mutational status was found as an important predictor of response to this anticancer drug, especially in gynecological cancers. The aim of this updated review is to discuss the mechanisms of action of trabectedin against the wellknown cancer hallmarks described until today. The current advances were also examined related to genomic biomarkers that can be used in the future to predict the efficacy of this potent anticancer natural molecule in various gynecological cancers.
Collapse
Affiliation(s)
- Soumaya Souid
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT04 Epidemiologie Moleculaire et Pathologie Experimentale appliquee aux Maladies infectieuses, 1002, Tunis, Tunisia
| | - Dorra Aissaoui
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT08 Venins et biomolecules therapeutiques, 1002, Tunis, Tunisia
| | - Najet Srairi-Abid
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT08 Venins et biomolecules therapeutiques, 1002, Tunis, Tunisia
| | - Khadija Essafi-Benkhadir
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT04 Epidemiologie Moleculaire et Pathologie Experimentale appliquee aux Maladies infectieuses, 1002, Tunis, Tunisia
| |
Collapse
|
6
|
Ingles ED, Deakin JE. Telomeres, species differences, and unusual telomeres in vertebrates: presenting challenges and opportunities to understanding telomere dynamics. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThere has been increasing interest in the use of telomeres as biomarkers of stress, cellular ageing and life-histories. However, the telomere landscape is a diverse feature, with noticeable differences between species, a fact which is highlighted by the unusual telomeres of various vertebrate organisms. We broadly review differences in telomere dynamics among vertebrates, and emphasize the need to understand more about telomere processes and trends across species. As part of these species differences, we review unusual telomeres in vertebrates. This includes mega-telomeres, which are present across a diverse set of organisms, but also focusing on the unusual telomeres traits of marsupials and monotremes, which have seen little to no prior discussion, yet uniquely stand out from other unusual telomere features discovered thus far. Due to the presence of at least two unique telomere features in the marsupial family Dasyuridae, as well as to the presence of physiological strategies semelparity and torpor, which have implications for telomere life-histories in these species, we suggest that this family has a very large potential to uncover novel information on telomere evolution and dynamics.
Collapse
Affiliation(s)
- Emory D. Ingles
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Janine E. Deakin
- Institute of Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Jung SJ, Seo YR, Park WJ, Heo YR, Lee YH, Kim S, Lee JH. Clinicopathological Characteristics of TZAP Expression in Colorectal Cancers. Onco Targets Ther 2020; 13:12933-12942. [PMID: 33364783 PMCID: PMC7751716 DOI: 10.2147/ott.s274394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose The zinc finger protein, ZBTB48, is a telomere-associated protein. It was renamed as telomeric zinc finger-associated protein (TZAP) binding to elongated telomeres. However, its expression level was not measured in cancers. Patients and Methods We analyzed TZAP mRNA levels in 60 colorectal cancers (CRC) and its correlation with telomere length and TERT was studied. Results TZAP mRNA in CRC was higher statistically than that in paired non-cancerous tissues (p = 0.033). Higher TZAP was found in carcinoembryonic antigen (CEA)-positive CRCs (>5 ng/mL) (p = 0.012). Shorter telomere was found in CRCs with high TZAP expression than that with low TZAP expression (p = 0.010). According to quantitative correlation analysis, TZAP has a correlation with age (r = −0.349, p = 0.007), TERT (r = 0.279, p = 0.041) and telomere length (r = −0.305, p = 0.021). TZAP expression did not harbor prognostic value in CRC. Inhibition of TZAP expression by siRNA suppresses cell growth in HT29 cells; however, it resulted in increased cell viability in HCT116 cells. TZAP inhibition induces a decrease in mRNA levels of TERT in both HT29 and HCT116 cells. TCGA data analysis showed higher expression of TZAP showed poorer overall survival in colon cancer (p = 0.001); however, it did not have a significance in rectal cancer (p = 0.951). Conclusion We suggested that TZAP may be a possible biomarker for CRC.
Collapse
Affiliation(s)
- Soo-Jung Jung
- Department of Anatomy, Keimyung University School of Medicine, Daegu, South Korea
| | - Yu-Ri Seo
- Department of Molecular Medicine, School of Medicine, Keimyung University, Daegu, South Korea
| | - Won-Jin Park
- Department of Anatomy, Keimyung University School of Medicine, Daegu, South Korea
| | - Yu-Ran Heo
- Department of Anatomy, Keimyung University School of Medicine, Daegu, South Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, School of Medicine, Keimyung University, Daegu, South Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu, South Korea
| |
Collapse
|
8
|
Mehrsafar AH, Serrano Rosa MA, Moghadam Zadeh A, Gazerani P. Stress, Professional Lifestyle, and Telomere Biology in Elite Athletes: A Growing Trend in Psychophysiology of Sport. Front Psychol 2020; 11:567214. [PMID: 33250812 PMCID: PMC7673416 DOI: 10.3389/fpsyg.2020.567214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Professional lifestyle and championship period often put a great deal of pressure on athletes, who usually experience highly stressful periods during training for competitions. Recently, biomarkers of cellular aging, telomere length (TL) and telomerase activity (TA), have been considered to investigate the effects of stress and lifestyle factors. Studies in non-athletic populations have shown that stress and poor lifestyle decrease TL and TA. On the other hand, it has been shown that in general, exercise increases TL and its activity, although the underlying mechanisms remained largely unexplored. TL and TA outcomes in elite athletes remain inconclusive and mainly affected by confounding factors, such as age. Elite athletes, therefore, might offer a unique target group for studying exercise-telomere hypothesis for further investigation of the roles of stressors on telomere-related biomarkers. In this perspective, we highlight the potentials for studying these psychophysiological markers in elite athletes in order to understand stress-aging relationship and potential underlying mechanisms. Moreover, we present important methodological aspects that could help in the development of future experimental designs.
Collapse
Affiliation(s)
- Amir Hossien Mehrsafar
- Department of Sport Psychology, Faculty of Sports Sciences, University of Tehran, Tehran, Iran
| | - Miguel Angel Serrano Rosa
- Department of Psychobiology, Faculty of Psychology, University of Valencia, Valencia, Spain.,Laboratory of Cognitive and Affective Neuroscience, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Ali Moghadam Zadeh
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Parisa Gazerani
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Polettini J, da Silva MG. Telomere-Related Disorders in Fetal Membranes Associated With Birth and Adverse Pregnancy Outcomes. Front Physiol 2020; 11:561771. [PMID: 33123024 PMCID: PMC7573552 DOI: 10.3389/fphys.2020.561771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Telomere disorders have been associated with aging-related diseases, including diabetes, vascular, and neurodegenerative diseases. The main consequence of altered telomere is the induction of the state of irreversible cell cycle arrest. Though several mechanisms responsible for the activation of senescence have been identified, it is still unclear how a cell is indeed induced to become irreversibly arrested. Most tissues in the body will experience senescence throughout its lifespan, but intrinsic and extrinsic stressors, such as chemicals, pollution, oxidative stress (OS), and inflammation accelerate the process. Pregnancy is a state of OS, as the higher metabolic demand of the growing fetus results in increased reactive oxygen species production. As a temporary organ in the mother, senescence in fetal membranes and placenta is expected and linked to term parturition (>37 weeks of gestation). However, a persistent, overwhelming, or premature OS affects placental antioxidant capacity, with consequent accumulation of OS causing damage to lipids, proteins, and DNA in the placental tissues. Therefore, senescence and its main inducer, telomere length (TL) reduction, have been associated with pregnancy complications, including stillbirth, preeclampsia, intrauterine growth restriction, and prematurity. Fetal membranes have a notable role in preterm births, which continue to be a major health issue associated with increased risk of neo and perinatal adverse outcomes and/or predisposition to disease in later life; however, the ability to mediate a delay in parturition during such cases is limited, because the pathophysiology of preterm births and physiological mechanisms of term births are not yet fully elucidated. Here, we review the current knowledge regarding the regulation of telomere-related senescence mechanisms in fetal membranes, highlighting the role of inflammation, methylation, and telomerase activity. Moreover, we present the evidences of TL reduction and senescence in gestational tissues by the time of term parturition. In conclusion, we verified that telomere regulation in fetal membranes requires a more complete understanding, in order to support the development of successful effective interventions of the molecular mechanisms that triggers parturition, including telomere signals, which may vary throughout placental tissues.
Collapse
Affiliation(s)
- Jossimara Polettini
- Universidade Federal da Fronteira Sul (UFFS), Programa de Pós Graduação em Ciências Biomédicas, Faculdade de Medicina, Campus Passo Fundo, Brazil
| | - Marcia Guimarães da Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Departamento de Patologia, Botucatu, Brazil
| |
Collapse
|
10
|
Koroleva AG, Evtushenko EV, Vershinin AV, Zaytseva EP, Timoshkin OA, Kirilchik SV. Age Dynamics of Telomere Length in Endemic Baikal Planarians. Mol Biol 2020. [DOI: 10.1134/s002689332004007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Bonafè M, Sabbatinelli J, Olivieri F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res Rev 2020; 59:101027. [PMID: 32068123 DOI: 10.1016/j.arr.2020.101027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Telomere shortening accompanies mammalian aging in vivo, and the burden of senescent cells with short telomeres and a senescence-associated secretory phenotype (SASP) increases with aging. The release into the cytoplasm and the extracellular vesicle-mediated intercellular exchange of telomeric TTAGGG repeats could exert an anti-inflammatory activity by preventing the activation of the misplaced nucleic acid-sensing pathway. Many pharmacological and genetic strategies have been developed to prevent telomere shortening or to achieve telomere elongation. Recently, it was demonstrated that telomere elongation can be obtained - without genetic manipulation - by culturing mice embryonic stem cells into appropriate media. Based on this observation, we hypothesize that environmental factors could affect the initial length of telomeres by modulating the activity of telomerase during the early stages of pregnancy. Therefore, organisms with longer telomeres could exploit the anti-inflammatory activity of telomeric sequences over an extended time span, eventually delaying the development and progression of age-related diseases.
Collapse
Affiliation(s)
- Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, Università di Bologna, Bologna, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
12
|
Loe TK, Li JSZ, Zhang Y, Azeroglu B, Boddy MN, Denchi EL. Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres. Genes Dev 2020; 34:650-662. [PMID: 32217664 PMCID: PMC7197349 DOI: 10.1101/gad.333963.119] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
In this study, Loe et al. sought to understand ALT-associated PML bodies (APBs) and their function in the alternative lengthening of telomeres (ALT) pathway, a telomerase-independent mechanism of telomere extension that some cancer cells that use. Using CRISPR/Cas9 to delete PML and APB components from ALT-positive cells, they found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity.
Collapse
Affiliation(s)
- Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Julia Su Zhou Li
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuxiang Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Nicholas Boddy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Sommer A, Royle NJ. ALT: A Multi-Faceted Phenomenon. Genes (Basel) 2020; 11:E133. [PMID: 32012790 PMCID: PMC7073516 DOI: 10.3390/genes11020133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 01/13/2023] Open
Abstract
One of the hallmarks of cancer cells is their indefinite replicative potential, made possible by the activation of a telomere maintenance mechanism (TMM). The majority of cancers reactivate the reverse transcriptase, telomerase, to maintain their telomere length but a minority (10% to 15%) utilize an alternative lengthening of telomeres (ALT) pathway. Here, we review the phenotypes and molecular markers specific to ALT, and investigate the significance of telomere mutations and sequence variation in ALT cell lines. We also look at the recent advancements in understanding the different mechanisms behind ALT telomere elongation and finally, the progress made in identifying potential ALT-targeted therapies, including those already in use for the treatment of both hematological and solid tumors.
Collapse
Affiliation(s)
| | - Nicola J. Royle
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
14
|
Cell cycle-dependent and -independent telomere shortening accompanies murine brain aging. Aging (Albany NY) 2019; 10:3397-3420. [PMID: 30472697 PMCID: PMC6286833 DOI: 10.18632/aging.101655] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Replication-based telomere shortening during lifetime is species- and tissue-specific, however, its impact on healthy aging is unclear. In particular, the contribution of telomere truncation to the aging process of the CNS, where replicative senescence alone fails to explain organ aging due to low to absent mitotic activity of intrinsic populations, is undefined. Here, we assessed changes in relative telomere length in non-replicative and replicative neural brain populations and telomerase activity as a function of aging in C57BL/6 mice. Telomeres in neural cells and sub-selected neurons shortened with aging in a cell cycle-dependent and -independent manner, with preponderance in replicative moieties, implying that proliferation accelerates, but is not prerequisite for telomere shortening. Consistent with this telomere erosion, telomerase activity and nuclear TERT protein were not induced with aging. Knockdown of the Rela subunit of NF-κB, which controls both telomerase enzyme and subcellular TERT protein allocation, did also not influence telomerase activity or telomere length, in spite of its naive up-regulation selectively under aging conditions. We conclude that telomere instability is intrinsic to physiological brain aging beyond cell replication, and appears to occur independently of a functional interplay with NF-κB, but rather as a failure to induce or relocate telomerase.
Collapse
|
15
|
Abstract
The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Himabindu Gali
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Stojiljkovic MR, Ain Q, Bondeva T, Heller R, Schmeer C, Witte OW. Phenotypic and functional differences between senescent and aged murine microglia. Neurobiol Aging 2018; 74:56-69. [PMID: 30439594 DOI: 10.1016/j.neurobiolaging.2018.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
Microglia, the key innate immune cells in the brain, have been reported to drive brain aging and neurodegenerative disorders; however, few studies have analyzed microglial senescence and the impact of aging on the properties of microglia. In the present study, we characterized senescence- and aging-associated phenotypes of murine brain microglia using well-accepted markers, including telomere length, telomerase activity, expression of p16INK4a, p21, p53, senescence-associated β-galactosidase, and a senescence-associated secretory phenotype. Quantitative real-time polymerase chain reaction analysis and a Telomeric Repeat Amplification Protocol assay indicated shortened telomeres and increased telomerase activity in senescent microglia, whereas telomeres remained unaltered and telomerase activity was reduced in aged microglia. Senescent microglia upregulated p16INK4a, p21, and p53, whereas acutely isolated microglia from the aged brain only exhibited a modest upregulation of p16INK4a. Senescent microglia showed decreased proliferation, while it was unchanged in aged microglia. Furthermore, microglia at late passages strongly upregulated expression of the senescent marker senescence-associated β-galactosidase. Senescent and aged microglia exhibited differential activation profiles and altered responses to stimulation. We conclude that microglia from the aged mouse brain do not show typical senescent changes because their phenotype and functional response strongly differ from those of senescent microglia in vitro.
Collapse
Affiliation(s)
| | - Quratul Ain
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tzvetanka Bondeva
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Christian Schmeer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
17
|
Lopes AC, Oliveira PF, Sousa M. Shedding light into the relevance of telomeres in human reproduction and male factor infertility†. Biol Reprod 2018; 100:318-330. [DOI: 10.1093/biolre/ioy215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon (FCT-UNL), Campus Caparica, Caparica, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S- Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| |
Collapse
|
18
|
Abstract
Telomere length measurement is increasingly recognized as a clinical gauge for age-related disease risk. There are several methods for studying blood telomere length (BTL) as a clinical biomarker. The first is an observational study approach, which directly measures telomere lengths using either cross-sectional or longitudinal patient cohorts and compares them to a population of age- and sex-matched individuals. These direct traceable measurements can be considered reflective of an individual's current health or disease state. Escalating interest in personalized medicine, access to high-throughput genotyping and resulting acquisition of large volumes of genetic data corroborates the second method, Mendelian randomization (MR). MR employs telomere length-associated genetic variants to indicate predisposition to disease risk based on the genomic composition of the individual. When assessed from cells in the bloodstream, telomeres can show variation from their genetically predisposed lengths due to environmental-induced changes. These alterations in telomere length act as an indicator of cellular health, which, in turn, can provide disease risk status. Overall, BTL measurement is a dynamic marker of biological health and well-being that together with genetically defined telomere lengths can provide insights into improved healthcare for the individual.
Collapse
|
19
|
Brosnan-Cashman JA, Yuan M, Graham MK, Rizzo AJ, Myers KM, Davis C, Zhang R, Esopi DM, Raabe EH, Eberhart CG, Heaphy CM, Meeker AK. ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner. PLoS One 2018; 13:e0204159. [PMID: 30226859 PMCID: PMC6143253 DOI: 10.1371/journal.pone.0204159] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/03/2018] [Indexed: 12/05/2022] Open
Abstract
Cancers must maintain their telomeres at lengths sufficient for cell survival. In several cancer subtypes, a recombination-like mechanism termed alternative lengthening of telomeres (ALT), is frequently used for telomere length maintenance. Cancers utilizing ALT often have lost functional ATRX, a chromatin remodeling protein, through mutation or deletion, thereby strongly implicating ATRX as an ALT suppressor. Herein, we have generated functional ATRX knockouts in four telomerase-positive, ALT-negative human glioma cell lines: MOG-G-UVW, SF188, U-251 and UW479. After loss of ATRX, two of the four cell lines (U-251 and UW479) show multiple characteristics of ALT-positive cells, including ultrabright telomeric DNA foci, ALT-associated PML bodies, and c-circles. However, telomerase activity and overall telomere length heterogeneity are unaffected after ATRX loss, regardless of cellular context. The two cell lines that showed ALT hallmarks after complete ATRX loss also did so upon ATRX depletion via shRNA-mediated knockdown. These results suggest that other genomic or epigenetic events, in addition to ATRX loss, are necessary for the induction of ALT in human cancer.
Collapse
Affiliation(s)
| | - Ming Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Mindy K. Graham
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Anthony J. Rizzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kaylar M. Myers
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Rebecca Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David M. Esopi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eric H. Raabe
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christopher M. Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alan K. Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
20
|
Nickens DG, Rogers CM, Bochman ML. The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro. J Biol Chem 2018; 293:14481-14496. [PMID: 30068549 DOI: 10.1074/jbc.ra118.004092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/23/2018] [Indexed: 11/06/2022] Open
Abstract
Telomere length homeostasis is vital for maintaining genomic stability and is regulated by multiple factors, including telomerase activity and DNA helicases. The Saccharomyces cerevisiae Pif1 helicase was the first discovered catalytic inhibitor of telomerase, but recent experimental evidence suggests that Hrq1, the yeast homolog of the disease-linked human RecQ-like helicase 4 (RECQL4), plays a similar role via an undefined mechanism. Using yeast extracts enriched for telomerase activity and an in vitro primer extension assay, here we determined the effects of recombinant WT and inactive Hrq1 and Pif1 on total telomerase activity and telomerase processivity. We found that titrations of these helicases alone have equal-but-opposite biphasic effects on telomerase, with Hrq1 stimulating activity at high concentrations. When the helicases were combined in reactions, however, they synergistically inhibited or stimulated telomerase activity depending on which helicase was catalytically active. These results suggest that Hrq1 and Pif1 interact and that their concerted activities ensure proper telomere length homeostasis in vivo We propose a model in which Hrq1 and Pif1 cooperatively contribute to telomere length homeostasis in yeast.
Collapse
Affiliation(s)
- David G Nickens
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Cody M Rogers
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| | - Matthew L Bochman
- From the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
21
|
Dagg RA, Pickett HA, Neumann AA, Napier CE, Henson JD, Teber ET, Arthur JW, Reynolds CP, Murray J, Haber M, Sobinoff AP, Lau LMS, Reddel RR. Extensive Proliferation of Human Cancer Cells with Ever-Shorter Telomeres. Cell Rep 2018. [PMID: 28636942 DOI: 10.1016/j.celrep.2017.05.087] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acquisition of replicative immortality is currently regarded as essential for malignant transformation. This is achieved by activating a telomere lengthening mechanism (TLM), either telomerase or alternative lengthening of telomeres, to counter normal telomere attrition. However, a substantial proportion of some cancer types, including glioblastomas, liposarcomas, retinoblastomas, and osteosarcomas, are reportedly TLM-negative. As serial samples of human tumors cannot usually be obtained to monitor telomere length changes, it has previously been impossible to determine whether tumors are truly TLM-deficient, there is a previously unrecognized TLM, or the assay results are false-negative. Here, we show that a subset of high-risk neuroblastomas (with ∼50% 5-year mortality) lacked significant TLM activity. Cancer cells derived from these highly aggressive tumors initially had long telomeres and proliferated for >200 population doublings with ever-shorter telomeres. This indicates that prevention of telomere shortening is not always required for oncogenesis, which has implications for inhibiting TLMs for cancer therapy.
Collapse
Affiliation(s)
- Rebecca A Dagg
- Children's Cancer Research Unit, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Axel A Neumann
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Christine E Napier
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Jeremy D Henson
- Cancer Cell Immortality Group, Adult Cancer Program, Prince of Wales Clinical School, University of New South Wales, Randwick, NSW 2052, Australia
| | - Erdahl T Teber
- Bioinformatics Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Jonathan W Arthur
- Bioinformatics Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - C Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Randwick, NSW 2031, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Australia, Randwick, NSW 2031, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Loretta M S Lau
- Children's Cancer Research Unit, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia; Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
22
|
Monaghan P, Ozanne SE. Somatic growth and telomere dynamics in vertebrates: relationships, mechanisms and consequences. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160446. [PMID: 29335370 PMCID: PMC5784066 DOI: 10.1098/rstb.2016.0446] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/11/2023] Open
Abstract
Much telomere loss takes place during the period of most rapid growth when cell proliferation and potentially energy expenditure are high. Fast growth is linked to reduced longevity. Therefore, the effects of somatic cell proliferation on telomere loss and cell senescence might play a significant role in driving the growth-lifespan trade-off. While different species will have evolved a growth strategy that maximizes lifetime fitness, environmental conditions encountered during periods of growth will influence individual optima. In this review, we first discuss the routes by which altered cellular conditions could influence telomere loss in vertebrates, with a focus on oxidative stress in both in vitro and in vivo studies. We discuss the relationship between body growth and telomere length, and evaluate the empirical evidence that this relationship is generally negative. We further discuss the potentially conflicting hypotheses that arise when other factors are taken into account, and the further work that needs to be undertaken to disentangle confounding variables.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Susan E Ozanne
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Level 4, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
23
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
24
|
Donati B, Valenti L. Telomeric zinc-finger associated protein (TZAP): a new player in telomere diseases? ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:472. [PMID: 29285505 DOI: 10.21037/atm.2017.09.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRRCS, Reggio Emilia, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Policlinico Hospital, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
25
|
Pompili L, Leonetti C, Biroccio A, Salvati E. Diagnosis and treatment of ALT tumors: is Trabectedin a new therapeutic option? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:189. [PMID: 29273061 PMCID: PMC5741932 DOI: 10.1186/s13046-017-0657-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Telomeres are specialized nucleoprotein structures responsible for protecting chromosome ends in order to prevent the loss of genomic information. Telomere maintenance is required for achieving immortality by neoplastic cells. While most cancer cells rely on telomerase re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively referred to as Alternative Lengthening of Telomeres (ALT). ALT mechanisms involve different types of homology-directed telomere recombination and synthesis. These processes are facilitated by loss of the ATRX or DAXX chromatin-remodeling factors and by abnormalities of the telomere nucleoprotein architecture. Although the functional consequences of telomerase and ALT up-regulation are similar in that they both prevent overall telomere shortening in tumors, these telomere maintenance mechanisms (TMMs) differ in several aspects which may account for their differential prognostic significance and response to therapy in various tumor types. Therefore, reliable methods for detecting telomerase activity and ALT are likely to become an important pre-requisite for the use of treatments targeting one or other of these mechanisms. However, the question whether ALT presence can confer sensitivity to rationally designed anti-cancer therapies is still open. Here we review the latest discoveries in terms of mechanisms of ALT activation and maintenance in human tumors, methods for ALT identification in cell lines and human tissues and biomarkers validation. Then, original results on sensitivity to rational based pre-clinical and clinical anti-tumor drugs in ALT vs hTERT positive cells will be presented.
Collapse
Affiliation(s)
- Luca Pompili
- UOSD SAFU, Regina Elena National Cancer Institute, Rome, Italy.,University of Tuscia, Viterbo, Italy
| | - Carlo Leonetti
- UOSD SAFU, Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 53 -, 00144, Rome, Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 53 -, 00144, Rome, Italy.
| |
Collapse
|
26
|
Zhao Y, Zhang G, He C, Mei Y, Shi Y, Li F. The 11th C2H2 zinc finger and an adjacent C-terminal arm are responsible for TZAP recognition of telomeric DNA. Cell Res 2017; 28:130-134. [PMID: 29134956 DOI: 10.1038/cr.2017.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yaqing Zhao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guang Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Sagie S, Edni O, Weinberg J, Toubiana S, Kozlovski T, Frostig T, Katzin N, Bar-Am I, Selig S. Non-random length distribution of individual telomeres in immunodeficiency, centromeric instability and facial anomalies syndrome, type I. Hum Mol Genet 2017; 26:4244-4256. [PMID: 28973513 DOI: 10.1093/hmg/ddx313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the de novo DNA methyltransferase DNMT3B lead to Immunodeficiency, Centromeric Instability and Facial anomalies (ICF) syndrome, type I. This syndrome is characterized, among other hypomethylated genomic loci, by severe subtelomeric hypomethylation that is associated with abnormally short telomere length. While it was demonstrated that the mean telomere length is significantly shorter in ICF type I cells, it is unknown whether all telomeres are equally vulnerable to shortening. To study this question we determined by combined telomere-FISH and spectral karyotyping the relative length of each individual telomere in lymphoblastoid cell lines (LCLs) generated from multiple ICF syndrome patients and control individuals. Here we confirm the short telomere lengths, and demonstrate that telomere length variance in the ICF patient group is much larger than in the control group, suggesting that not all telomeres shorten in a uniform manner. We identified a subgroup of telomeres whose relatively short lengths can distinguish with a high degree of certainty between a control and an ICF metaphase, proposing that in ICF syndrome cells, certain individual telomeres are consistently at greater risk to shorten than others. The majority of these telomeres display high sequence identity at the distal 2 kb of their subtelomeres, suggesting that the attenuation in DNMT3B methylation capacity affects individual telomeres to different degrees based, at least in part, on the adjacent subtelomeric sequence composition.
Collapse
Affiliation(s)
- Shira Sagie
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Omer Edni
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Joseph Weinberg
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Tal Kozlovski
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Tzviel Frostig
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Nirit Katzin
- Applied Spectral Imaging Ltd., Yokneam 2069200, Israel
| | - Irit Bar-Am
- Applied Spectral Imaging Ltd., Yokneam 2069200, Israel
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
28
|
Zhang T, Zhang Z, Li F, Hu Q, Liu H, Tang M, Ma W, Huang J, Songyang Z, Rong Y, Zhang S, Chen BP, Zhao Y. Looping-out mechanism for resolution of replicative stress at telomeres. EMBO Rep 2017; 18:1412-1428. [PMID: 28615293 DOI: 10.15252/embr.201643866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 01/03/2023] Open
Abstract
Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t-circle-tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single-stranded tail. Structurally, the t-circle-tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II-mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t-circle-tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA-PKcs impairs telomere replication, leading to multiple-telomere sites (MTS) and telomere shortening. Collectively, our results support a "looping-out" mechanism, in which the stalled replication fork is cut out and cyclized to form t-circle-tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Zepeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qian Hu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| | - Mengfan Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yikang Rong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin Pc Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China .,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, China
| |
Collapse
|
29
|
Li JSZ, Miralles Fusté J, Simavorian T, Bartocci C, Tsai J, Karlseder J, Lazzerini Denchi E. TZAP: A telomere-associated protein involved in telomere length control. Science 2017; 355:638-641. [PMID: 28082411 DOI: 10.1126/science.aah6752] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Telomeres are found at the end of chromosomes and are important for chromosome stability. Here we describe a specific telomere-associated protein: TZAP (telomeric zinc finger-associated protein). TZAP binds preferentially to long telomeres that have a low concentration of shelterin complex, competing with the telomeric-repeat binding factors TRF1 and TRF2. When localized at telomeres, TZAP triggers a process known as telomere trimming, which results in the rapid deletion of telomeric repeats. On the basis of these results, we propose a model for telomere length regulation in mammalian cells: The reduced concentration of the shelterin complex at long telomeres results in TZAP binding and initiation of telomere trimming. Binding of TZAP to long telomeres represents the switch that triggers telomere trimming, setting the upper limit of telomere length.
Collapse
Affiliation(s)
- Julia Su Zhou Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Miralles Fusté
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tatevik Simavorian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Bartocci
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jill Tsai
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jan Karlseder
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eros Lazzerini Denchi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Sarkar J, Liu Y. Fanconi anemia proteins in telomere maintenance. DNA Repair (Amst) 2016; 43:107-12. [PMID: 27118469 DOI: 10.1016/j.dnarep.2016.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/15/2022]
Abstract
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.
Collapse
Affiliation(s)
- Jaya Sarkar
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA.
| |
Collapse
|
31
|
Lustig AJ. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins. Front Genet 2016; 7:10. [PMID: 26904098 PMCID: PMC4748036 DOI: 10.3389/fgene.2016.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans LA, USA
| |
Collapse
|
32
|
Lustig AJ. Potential Risks in the Paradigm of Basic to Translational Research: A Critical Evaluation of qPCR Telomere Size Techniques. JOURNAL OF CANCER EPIDEMIOLOGY & TREATMENT 2015; 1:28-37. [PMID: 26435846 PMCID: PMC4590993 DOI: 10.24218/jcet.2015.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real time qPCR has become the method of choice for rapid large-scale telomere length measurements. Large samples sizes are critical for clinical trials, and epidemiological studies. QPCR has become such routine procedure that it is often used with little critical analysis. With proper controls, the mean telomere size can be derived from the data and even the size can be estimated. But there is a need for more consistent and reliable controls that will provide closer to the actual mean size can be obtained with uniform consensus controls. Although originating at the level of basic telomere research, many researchers less familiar with telomeres often misunderstand the source and significance of the qPCR metric. These include researchers and clinicians who are interested in having a rapid tool to produce exciting results in disease prognostics and diagnostics than in the multiple characteristics of telomeres that form the basis of the measurement. But other characteristics of the non-bimodal and heterogeneous telomeres as well as the complexities of telomere dynamics are not easily related to qPCR mean telomere values. The qPCR metric does not reveal the heterogeneity and dynamics of telomeres. This is a critical issue since mutations in multiple genes including telomerase can cause telomere dysfunction and a loss of repeats. The smallest cellular telomere has been shown to arrest growth of the cell carrying the dysfunction telomere. A goal for the future is a simple method that takes into account the heterogeneity by measuring the highest and lowest values as part of the scheme to compare. In the absence of this technique, Southern blots need to be performed in a subset of qPCR samples for both mean telomere size and the upper and lower extremes of the distribution. Most importantly, there is a need for greater transparency in discussing the limitations of the qPCR data. Given the potentially exciting qPCR telomere size results emerging from clinical studies that relate qPCR mean telomere size estimates to disease states, the current ambiguities have become urgent issues to validate the findings and to set the right course for future clinical investigations.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, USA
| |
Collapse
|
33
|
Ma L, Li Y, Wang J. Telomeres and essential hypertension. Clin Biochem 2015; 48:1195-9. [PMID: 26169243 DOI: 10.1016/j.clinbiochem.2015.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/05/2015] [Accepted: 07/08/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVES This review aims to clarify the relationship between telomeres and essential hypertension. DESIGN AND METHODS A PubMed search and a critical review were performed relating to studies about the clinical and biological relevance of telomeres in essential hypertension. RESULTS Telomeres and telomerase activity play an important role in the occurrence and development of hypertension in both animal and human studies. CONCLUSIONS A more complete understanding of the molecular mechanisms underlying the development of hypertension could reduce the incidence of hypertension-related diseases.
Collapse
Affiliation(s)
- Lina Ma
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| | - Yun Li
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| | - Jieyu Wang
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
34
|
Reddel RR. Telomere maintenance mechanisms in cancer: clinical implications. Curr Pharm Des 2015; 20:6361-74. [PMID: 24975603 PMCID: PMC4262939 DOI: 10.2174/1381612820666140630101047] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 01/20/2023]
Abstract
The presence of immortal cell populations with an up-regulated telomere maintenance mechanism (TMM) is an almost universal characteristic of cancers, whereas normal somatic cells are unable to prevent proliferation-associated telomere shortening and have a limited proliferative potential. TMMs and related aspects of telomere structure and function therefore appear to be ideal targets for the development of anticancer therapeutics. Such treatments would be targeted to a specific cancer-related molecular abnormality, and also be broad-spectrum in that they would be expected to be potentially applicable to most cancers. However, the telomere biology of normal and malignant human cells is a relatively young research field with large numbers of unanswered questions, so the optimal design of TMM-targeted therapeutic approaches remains unclear. This review outlines the opportunities and challenges presented by telomeres and TMMs for clinical management of cancer.
Collapse
Affiliation(s)
- Roger R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
35
|
Specific Localization of the Drosophila Telomere Transposon Proteins and RNAs, Give Insight in Their Behavior, Control and Telomere Biology in This Organism. PLoS One 2015; 10:e0128573. [PMID: 26068215 PMCID: PMC4467039 DOI: 10.1371/journal.pone.0128573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/28/2015] [Indexed: 01/02/2023] Open
Abstract
Drosophila telomeres constitute a remarkable exception to the telomerase mechanism. Although maintaining the same cytological and functional properties as telomerase maintain telomeres, Drosophila telomeres embed the telomere retrotransposons whose specific and highly regulated terminal transposition maintains the appropriate telomere length in this organism. Nevertheless, our current understanding of how the mechanism of the retrotransposon telomere works and which features are shared with the telomerase system is very limited. We report for the first time a detailed study of the localization of the main components that constitute the telomeres in Drosophila, HeT-A and TART RNAs and proteins. Our results in wild type and mutant strains reveal localizations of HeT-A Gag and TART Pol that give insight in the behavior of the telomere retrotransposons and their control. We find that TART Pol and HeT-A Gag only co-localize at the telomeres during the interphase of cells undergoing mitotic cycles. In addition, unexpected protein and RNA localizations with a well-defined pattern in cells such as the ovarian border cells and nurse cells, suggest possible strategies for the telomere transposons to reach the oocyte, and/or additional functions that might be important for the correct development of the organism. Finally, we have been able to visualize the telomere RNAs at different ovarian stages of development in wild type and mutant lines, demonstrating their presence in spite of being tightly regulated by the piRNA mechanism.
Collapse
|
36
|
Sarkar J, Wan B, Yin J, Vallabhaneni H, Horvath K, Kulikowicz T, Bohr VA, Zhang Y, Lei M, Liu Y. SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Res 2015; 43:5912-23. [PMID: 25990736 PMCID: PMC4499145 DOI: 10.1093/nar/gkv522] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/07/2015] [Indexed: 11/14/2022] Open
Abstract
SLX4 assembles a toolkit of endonucleases SLX1, MUS81 and XPF, which is recruited to telomeres via direct interaction of SLX4 with TRF2. Telomeres present an inherent obstacle for DNA replication and repair due to their high propensity to form branched DNA intermediates. Here we provide novel insight into the mechanism and regulation of the SLX4 complex in telomere preservation. SLX4 associates with telomeres throughout the cell cycle, peaking in late S phase and under genotoxic stress. Disruption of SLX4's interaction with TRF2 or SLX1 and SLX1's nuclease activity independently causes telomere fragility, suggesting a requirement of the SLX4 complex for nucleolytic resolution of branched intermediates during telomere replication. Indeed, the SLX1-SLX4 complex processes a variety of telomeric joint molecules in vitro. The nucleolytic activity of SLX1-SLX4 is negatively regulated by telomeric DNA-binding proteins TRF1 and TRF2 and is suppressed by the RecQ helicase BLM in vitro. In vivo, in the presence of functional BLM, telomeric circle formation and telomere sister chromatid exchange, both arising out of nucleolytic processing of telomeric homologous recombination intermediates, are suppressed. We propose that the SLX4-toolkit is a telomere accessory complex that, in conjunction with other telomere maintenance proteins, ensures unhindered, but regulated telomere maintenance.
Collapse
Affiliation(s)
- Jaya Sarkar
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Bingbing Wan
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 200031, China Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jinhu Yin
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Haritha Vallabhaneni
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Kent Horvath
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Tomasz Kulikowicz
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ming Lei
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 200031, China
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institute of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
A correlation study of telomere length in peripheral blood leukocytes and kidney function with age. Mol Med Rep 2015; 11:4359-64. [DOI: 10.3892/mmr.2015.3292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/02/2015] [Indexed: 11/05/2022] Open
|
38
|
Vasianovich Y, Harrington LA, Makovets S. Break-induced replication requires DNA damage-induced phosphorylation of Pif1 and leads to telomere lengthening. PLoS Genet 2014; 10:e1004679. [PMID: 25329304 PMCID: PMC4199488 DOI: 10.1371/journal.pgen.1004679] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway - Rad51, Rad52, Pol32, and Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with impaired DNA replication, cdc44-5 and rrm3Δ, were similar to cdc9-1: their long telomere phenotype was dependent on the Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase activity and leads to telomere lengthening.
Collapse
Affiliation(s)
- Yulia Vasianovich
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lea A. Harrington
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada
| | - Svetlana Makovets
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Gao H, Moss DL, Parke C, Tatum D, Lustig AJ. The Ctf18RFC clamp loader is essential for telomere stability in telomerase-negative and mre11 mutant alleles. PLoS One 2014; 9:e88633. [PMID: 24533124 PMCID: PMC3923045 DOI: 10.1371/journal.pone.0088633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
The function of the replication clamp loaders in the semi-conservative telomere replication and their relationship to telomerase- and recombination mechanisms of telomere addition remains ambiguous. We have investigated the variant clamp loader Ctf18 RFC (Replication Factor C). To understand the role of Ctf18 at the telomere, we first investigated genetic interactions after loss of Ctf18 and TLC1 (the yeast telomerase RNA). We find that the tlc1Δ ctf18Δ double mutant confers a rapid >1000-fold decrease in viability. The rate of loss was similar to the kinetics of cell death in rad52Δ tlc1Δ cells. However, the Ctf18 pathway is distinct from Rad52, required for the repair of DSBs, as demonstrated by the synthetic lethality of rad52▵ tlc1Δ ctf18Δ triple mutants. These data suggest that each mutant elicits non-redundant defects acting on the same substrate. Second, interactions of the yeast hyper-recombinational mutant, mre11A470T, with ctf18▵ confer a synergistic cold sensitivity. The phenotype of these double mutants ultimately results in telomere loss and the generation of recombinational survivors. We observed a similar synergism between single mutants that led to hypersensitivity to the DNA alkylating agent, methane methyl sulphonate (MMS), the replication fork inhibitor hydroxyurea (HU), and to a failure to separate telomeres of sister chromatids. Hence, ctf18Δ and mre11A470T act in different pathways on telomere substrates for multiple phenotypes. The mre11A470T cells also displayed a DNA damage response (DDR) at 15°C but not at 30°C while ctf18Δ mutants conferred a constitutive DDR activity. Both the 15°C DDR pattern and growth rate were reversible at 30°C and displayed telomerase activity in vivo. We hypothesize that Ctf18 confers protection against stalling and/or breaks at the replication fork in cells that either lack, or are compromised for, telomerase activity. This Ctf18-based function is likely to contribute another level to telomere size homeostasis.
Collapse
Affiliation(s)
- Honghai Gao
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Daniel L. Moss
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Courtney Parke
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Danielle Tatum
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Arthur J. Lustig
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
40
|
Wilson JSJ, Tejera AM, Castor D, Toth R, Blasco MA, Rouse J. Localization-dependent and -independent roles of SLX4 in regulating telomeres. Cell Rep 2013; 4:853-60. [PMID: 23994477 PMCID: PMC3969258 DOI: 10.1016/j.celrep.2013.07.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022] Open
Abstract
SLX4, a scaffold for structure-specific DNA repair nucleases, is important for several types of DNA repair. Many repair proteins bind to sites of DNA damage, resulting in subnuclear "foci," but SLX4 forms foci in human cells even without DNA damage. Using several approaches, we show that most, but not all, SLX4 foci localize to telomeres in a range of human cell lines irrespective of the mechanisms used to maintain telomere length. The SLX1 Holliday-junction-processing enzyme is recruited to telomeres by SLX4, and SLX4, in turn, is recruited by a motif that binds to the shelterin subunit TRF2 directly. We also show that TRF2-dependent recruitment of SLX4 prevents telomere damage. Furthermore, SLX4 prevents telomere lengthening and fragility in a manner that appears to be independent of telomere association. These findings reveal that SLX4 plays multiple roles in regulating telomere homeostasis.
Collapse
Affiliation(s)
- Jamie S J Wilson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
41
|
Dlaska M, Schöffski P, Bechter OE. Inter-telomeric recombination is present in telomerase-positive human cells. Cell Cycle 2013; 12:2084-99. [PMID: 23759591 DOI: 10.4161/cc.25136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immortal cells require a mechanism of telomere length control in order to divide infinitely. One mechanism is telomerase, an enzyme that compensates the loss of telomeric DNA. The second mechanism is the alternative lengthening of telomeres (ALT) pathway. In ALT pathway cells, homologous recombination between telomeric DNA is the mechanism by which telomere homeostasis is achieved. We developed a novel homologous recombination reporter system that is able to measure inter-telomeric recombination in a sensitive manner. We asked the fundamental question if homologous recombination between different telomeres is present in telomerase-positive cells. In this in vitro study, we showed that homologous recombination between telomeres is detectable in ALT cells with the same frequency as in cells that utilize the telomerase pathway. We further described an ALT cell clone that showed peaks of recombination which were not detected in telomerase-positive clones. In telomerase-positive cells the frequency of inter-telomeric recombination was not increased by shortened telomeres or by a fragile telomere phenotype induced with aphidicolin. ALT cells, in contrast, responded to aphidicolin with an increase in the frequency of recombination. Our results indicate that inter-telomeric recombination is present in both pathways of telomere length control, but the factors that increase recombination are different in ALT and telomerase-positive cells.
Collapse
Affiliation(s)
- Margit Dlaska
- Department for Internal Medicine I, University Hospital Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
42
|
Novo CL, Polese C, Matheus N, Decottignies A, Londono-Vallejo A, Castronovo V, Mottet D. A new role for histone deacetylase 5 in the maintenance of long telomeres. FASEB J 2013; 27:3632-42. [PMID: 23729589 DOI: 10.1096/fj.12-224204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy.
Collapse
Affiliation(s)
- Clara Lopes Novo
- University of Liege Sart-Tilman, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Cancer, Metastasis Research Laboratory, Pathology Institute B23, Liege, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Bender HS, Murchison EP, Pickett HA, Deakin JE, Strong MA, Conlan C, McMillan DA, Neumann AA, Greider CW, Hannon GJ, Reddel RR, Graves JAM. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLoS One 2012; 7:e46195. [PMID: 23049977 PMCID: PMC3458001 DOI: 10.1371/journal.pone.0046195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.
Collapse
Affiliation(s)
- Hannah S Bender
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thilagavathi J, Venkatesh S, Dada R. Telomere length in reproduction. Andrologia 2012; 45:289-304. [DOI: 10.1111/and.12008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 01/22/2023] Open
Affiliation(s)
- J. Thilagavathi
- Laboratory for Molecular Reproduction and Genetics; Department of Anatomy; All India Institute of Medical Sciences; New Delhi; India
| | - S. Venkatesh
- Laboratory for Molecular Reproduction and Genetics; Department of Anatomy; All India Institute of Medical Sciences; New Delhi; India
| | - R. Dada
- Laboratory for Molecular Reproduction and Genetics; Department of Anatomy; All India Institute of Medical Sciences; New Delhi; India
| |
Collapse
|
45
|
D'Souza Y, Lauzon C, Chu TW, Autexier C. Regulation of telomere length and homeostasis by telomerase enzyme processivity. J Cell Sci 2012. [PMID: 23178942 DOI: 10.1242/jcs.119297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomerase is a ribonucleoprotein consisting of a catalytic subunit, the telomerase reverse transcriptase, TERT, and an integrally associated RNA, TR, which contains a template for the synthesis of short repetitive G-rich DNA sequences at the ends of telomeres. Telomerase can repetitively reverse transcribe its short RNA template, acting processively to add multiple telomeric repeats onto the same DNA substrate. The contribution of enzyme processivity to telomere length regulation in human cells is not well characterized. In cancer cells, under homeostatic telomere length-maintenance conditions, telomerase acts processively, while under nonequilibrium conditions, telomerase acts distributively on the shortest telomeres. To investigate the role of increased telomerase processivity on telomere length regulation in human cells with limited lifespan that are dependent on human TERT (hTERT) for lifespan extension and immortalization, we mutated the leucine at position 866 in the reverse transcriptase C motif of hTERT to a tyrosine (L866Y), which is the amino acid found at a similar position in HIV-1 reverse transcriptase. We report that, similar to the previously reported ‘gain of function’ Tetrahymena telomerase mutant (L813Y), the human telomerase variant displays increased processivity. hTERT-L866Y, like wild-type hTERT can immortalize and extend the lifespan of limited lifespan cells. Moreover, hTERT-L866Y expressing cells display heterogenous telomere lengths, telomere elongation, multiple telomeric signals indicative of fragile sites and replicative stress, and an increase in short telomeres, which is accompanied by telomere trimming events. Our results suggest that telomere length and homeostasis in human cells may be regulated by telomerase enzyme processivity.
Collapse
Affiliation(s)
- Yasmin D'Souza
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|