1
|
Zhang M, Liu T, Luo L, Xie Y, Wang F. Biological characteristics, immune infiltration and drug prediction of PANoptosis related genes and possible regulatory mechanisms in inflammatory bowel disease. Sci Rep 2025; 15:2033. [PMID: 39814753 PMCID: PMC11736032 DOI: 10.1038/s41598-024-84911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
PANoptosis is one of several modes of programmed cell death (PCD) and plays an important role in many inflammatory and immune diseases. The role of PANoptosis in inflammatory bowel disease (IBD) is currently unknown. Differentially expressed PANoptosis-related genes (DE-PRGs) were identified, and pathway enrichment analyses were performed. LASSO regression model construction, a nomogram model, calibration curves, ROC and DCA curves were used to evaluate the predictive value of the model. Predicts transcription factors (TFs) and small-molecule drugs of DE-PRGs were analysed. Model genes and immuno-infiltration were analysed. The PANoptosis features of IBD include 12 genes: OGT, TLR2, GZMB, TLR4, PPIF, YBX3, CASP5, BCL2L1, CASP6, MEFV, GSDMB and BAX. The enrichment analysis suggested that these genes were related to TNF signalling, NF-κB, pyroptosis and necroptosis. Machine learning identified three model genes: OGT, GZMB and CASP5. The nomogram model, calibration curves, ROC and DCA curves have strong predictive value. Immuno-infiltration analysis revealed that immune cell infiltration was increased in patients with IBD, and the model genes were closely related to the infiltration of various immune cells. The TFs associated with DE-PRGs were RELA, NFKB1, HIF1A, TP53 and SP1. In addition, the Connectivity Map (CMap) database identified the top 10 small-molecule compounds, including buspirone, chloroquine, spectinomycin and chlortetracycline. This study indicate that DE-PRGs model genes have good predictive ability for IBD. Moreover, PANoptosis may mediate the process of IBD through TNF signalling, NF-κB, pyroptosis, necroptosis and immune mechanisms. These results present a new horizon for the research and treatment of IBD.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lijun Luo
- School of Medical Laboratory Science, Hebei North University, Zhangjiakou, Hebei, China
| | - Yuxin Xie
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, 201 Dalian Street, Zunyi, 563003, Guizhou, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Lagorgette L, Bogdanova DA, Belotserkovskaya EV, Garrido C, Demidov ON. PP2C phosphatases-terminators of suicidal thoughts. Cell Death Dis 2024; 15:919. [PMID: 39702569 DOI: 10.1038/s41419-024-07269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Cell death and related signaling pathways are essential during development and in various physiological and pathological conditions. Post-translational modifications such as ubiquitination and phosphorylation play an important role in these signaling pathways. The involvement of kinases - enzymes that catalyze protein phosphorylation - in cell death signaling has been extensively studied. On the other hand, not many studies have been devoted to analyzing the role in cell death of phosphatases, enzymes involved in the removal of phosphorylated residues added to proteins by kinases. Obviously, the two opposite reactions, phosphorylation and dephosphorylation, are equally important in the regulation of protein functions and subsequently in the execution of the cell death program. Here, we have summarized recent work on the involvement of serine-threonine PP2C phosphatases in cell death pathways, senescence and autophagy, focusing in particular on the most studied phosphatase PPM1D (PP2Cδ) as an example of the regulatory role of PP2Cs in cell death. The review should help to draw attention to the importance of PP2C family phosphatases in cell death checkpoints and to discover new targets for drug development.
Collapse
Affiliation(s)
- Lisa Lagorgette
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France
| | - Daria A Bogdanova
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius University of Science and Technology, Sochi, Russia
- Institute of Cytology RAS, St. Petersburg, Russia
| | | | - Carmen Garrido
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France
- Center for Cancer Georges-François Leclerc, Dijon, France
| | - Oleg N Demidov
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France.
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius University of Science and Technology, Sochi, Russia.
- Institute of Cytology RAS, St. Petersburg, Russia.
| |
Collapse
|
3
|
Clausse V, Fang Y, Tao D, Tagad HD, Sun H, Wang Y, Karavadhi S, Lane K, Shi ZD, Vasalatiy O, LeClair CA, Eells R, Shen M, Patnaik S, Appella E, Coussens NP, Hall MD, Appella DH. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen. ACS Pharmacol Transl Sci 2022; 5:993-1006. [PMID: 36268125 PMCID: PMC9578142 DOI: 10.1021/acsptsci.2c00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Fang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongmao Sun
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Wang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelly Lane
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhen-Dan Shi
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Olga Vasalatiy
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A. LeClair
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rebecca Eells
- Reaction
Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Samarjit Patnaik
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Coussens
- Molecular
Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Yin S, Yang L, Zheng Y, Zang R. MS: Wip1 suppresses angiogenesis through the STAT3-VEGF signalling pathway in serous ovarian cancer. J Ovarian Res 2022; 15:56. [PMID: 35538489 PMCID: PMC9087943 DOI: 10.1186/s13048-022-00990-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
Multifaceted functions of the so-called “oncogene” Wip1 have been reported in a previous study, while its actual role remains to be explored in serous ovarian cancer (SOC). In this study, by performing bioinformatic analysis with a public database and immunohistochemical staining of Wip1 in tumour tissue from SOC, we concluded that decreased expression of Wip1 was associated with a higher rate of tumour metastasis and platinum-based therapy resistance and increased ascites volume, which led to poorer prognosis in SOC patients. We also found that overexpression of Wip1 in SKOV3 cells decreased the levels of several cytokines, including VEGF, by secretome profiling analysis, and Wip1 overexpression suppressed angiogenesis both in vitro and in vivo. Mechanistic studies indicated that overexpression of Wip1 decreased the expression of VEGF at both the protein and mRNA levels and that the inhibitory effect was mediated by dephosphorylation of STAT3 at Ser727. Our study uncovered the role of Wip1 in SOC and provides a novel therapeutic strategy for suppressing angiogenesis.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Gynaecologic Oncology, Ovarian Cancer Program, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lina Yang
- Department of Obstetrics and Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yiyan Zheng
- Department of Gynaecologic Oncology, Ovarian Cancer Program, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongyu Zang
- Department of Gynaecologic Oncology, Ovarian Cancer Program, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
6
|
Zhang J, Fang H, Zhang J, Guan W, Xu G. Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells. Dose Response 2020; 18:1559325820926732. [PMID: 32489337 PMCID: PMC7238453 DOI: 10.1177/1559325820926732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
Garcinol is a plant-derived compound that has some physiological benefits to human cells. However, the effect of garcinol on ovarian cancer (OC) cell proliferation and apoptosis is unknown. The current study aimed to examine the effects of garcinol alone and in combination with cisplatin (DDP) on cellular behavior and to explore the expression pattern of PI3K/AKT and nuclear factor-κB (NF-κB) in human OC cells. We found that OVCAR-3 cell viability was decreased after garcinol treatment. Garcinol alone and in combination with DDP significantly inhibited cell proliferation and had a synergistic effect evaluated by CompuSyn software. The cell cycle analysis showed the S phase arrest by garcinol. Furthermore, garcinol alone and in combination with DDP promoted cell apoptosis. The garcinol-induced apoptosis was further confirmed by the detection of cleavage forms of PARP and caspase 3. An increase in proapoptotic factor Bax expression was also found in garcinol-treated cells. Moreover, garcinol significantly decreased the phosphorylation of PI3K and AKT proteins and downregulated the expression of NF-κB. Thus, our data demonstrated that garcinol has the potential to be used as an anticancer agent and may synergize the effect of DDP. These actions are most likely through the regulation of the PI3K/AKT and NF-κB pathways.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Nutrition, Jinshan Hospital, Fudan
University, Shanghai, China
| | - Huan Fang
- Department of Clinical Pharmacy, Jinshan Hospital, Fudan University,
Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan
University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan
University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan
University, Shanghai, China
| |
Collapse
|
7
|
Clausse V, Tao D, Debnath S, Fang Y, Tagad HD, Wang Y, Sun H, LeClair CA, Mazur SJ, Lane K, Shi ZD, Vasalatiy O, Eells R, Baker LK, Henderson MJ, Webb MR, Shen M, Hall MD, Appella E, Appella DH, Coussens NP. Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens. J Biol Chem 2019; 294:17654-17668. [PMID: 31481464 PMCID: PMC6873202 DOI: 10.1074/jbc.ra119.010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Indexed: 01/07/2023] Open
Abstract
WT P53-Induced Phosphatase 1 (WIP1) is a member of the magnesium-dependent serine/threonine protein phosphatase (PPM) family and is induced by P53 in response to DNA damage. In several human cancers, the WIP1 protein is overexpressed, which is generally associated with a worse prognosis. Although WIP1 is an attractive therapeutic target, no potent, selective, and bioactive small-molecule modulator with favorable pharmacokinetics has been reported. Phosphatase enzymes are among the most challenging targets for small molecules because of the difficulty of achieving both modulator selectivity and bioavailability. Another major obstacle has been the availability of robust and physiologically relevant phosphatase assays that are suitable for high-throughput screening. Here, we describe orthogonal biochemical WIP1 activity assays that utilize phosphopeptides from native WIP1 substrates. We optimized an MS assay to quantify the enzymatically dephosphorylated peptide reaction product in a 384-well format. Additionally, a red-shifted fluorescence assay was optimized in a 1,536-well format to enable real-time WIP1 activity measurements through the detection of the orthogonal reaction product, Pi. We validated these two optimized assays by quantitative high-throughput screening against the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection and used secondary assays to confirm and evaluate inhibitors identified in the primary screen. Five inhibitors were further tested with an orthogonal WIP1 activity assay and surface plasmon resonance binding studies. Our results validate the application of miniaturized physiologically relevant and orthogonal WIP1 activity assays to discover small-molecule modulators from high-throughput screens.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Subrata Debnath
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Harichandra D Tagad
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuhong Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Kelly Lane
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Zhen-Dan Shi
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Olga Vasalatiy
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Rebecca Eells
- Reaction Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355
| | - Lynn K Baker
- Reaction Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Martin R Webb
- Francis Crick Institute, 1 Midland Road, London NW1 AT, United Kingdom
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| |
Collapse
|
8
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
9
|
Salmanzadeh R, Eskandani M, Mokhtarzadeh A, Vandghanooni S, Ilghami R, Maleki H, Saeeidi N, Omidi Y. Propyl gallate (PG) and tert-butylhydroquinone (TBHQ) may alter the potential anti-cancer behavior of probiotics. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Pechackova S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget 2018; 7:14458-75. [PMID: 26883108 PMCID: PMC4924728 DOI: 10.18632/oncotarget.7363] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy.
Collapse
Affiliation(s)
- Sona Pechackova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Kamila Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Jan Benada
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Petra Kleiblova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic.,Institute of Biochemistry and Experimental Oncology, Charles University in Prague, CZ-12853 Prague, Czech Republic
| | - Gabriela Jenikova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| |
Collapse
|
11
|
Abstract
Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical compounds synthesized to improve specificity of manipulation with Wip1 activity. Here we reviewed the history of Wip1 studies in vitro and in vivo, in genetically modified animal models that support Wip1 role in tumorigenesis through regulation of p53 and p38MAPK pathways. Based on our knowledge we propose several recommendations for future more accurate studies of Wip1 interactions with other pathways involved in tumorigenesis using recently developed tools and for adoption of Wip1 manipulation strategies in anti-cancer therapy.
Collapse
|
12
|
Wip1 suppresses ovarian cancer metastasis through the ATM/AKT/Snail mediated signaling. Oncotarget 2017; 7:29359-70. [PMID: 27121065 PMCID: PMC5045401 DOI: 10.18632/oncotarget.8833] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/28/2016] [Indexed: 01/03/2023] Open
Abstract
Inactivation of p53 greatly contributes to serous ovarian cancer, while the role of the wild-type p53 induced phosphatase 1 (Wip1) is quite unclear. In this study, by silencing or overexpression of Wip1, we found that Wip1 suppressed ovarian cancer cell invasion, migration, epithelial to mesenchymal transition (EMT), and ovarian cancer metastasis in xenograft animal models. Mechanistic studies showed that Wip1 may block ovarian cancer metastasis through inhibition of Snail and p-Akt expression because silencing or overexpression of Wip1 either upregulated or downregulated the expression of Snail and p-Akt (Ser 473), while further knockdown of Snail by shRNA or inhibition of p-Akt by a chemical compound attenuated cell invasion, migration and EMT in Wip1 silencing cells. We also found that the phosphorylation of Akt at Ser 473 might be mediated through p-ATM (Ser 1981). Thus, Wip1 may suppress ovarian cancer metastasis through negative regulation of p-ATM, p-Akt, and Snail, which was also evidenced in the limited clinical specimens. Therefore, our data may provide a novel therapeutic indication for serous ovarian cancer based on the uncovered mechanism associated with the precise function of Wip1 independent of p53.
Collapse
|
13
|
Wang ZP, Tian Y, Lin J. Role of wild-type p53-induced phosphatase 1 in cancer. Oncol Lett 2017; 14:3893-3898. [PMID: 28959360 DOI: 10.3892/ol.2017.6685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/16/2016] [Indexed: 12/23/2022] Open
Abstract
Wild-type p53-induced phosphatase (Wip1) is a member of the protein phosphatase type 2C family and is an established oncogene due to its dephosphorylation of several tumor suppressors and negative control of the DNA damage response system. It has been reported to dephosphorylate p53, ataxia telangiectasia mutated, checkpoint kinase 1 and p38 mitogen activated protein kinases, forming negative feedback loops to inhibit apoptosis and cell cycle arrest. Wip1 serves a major role in tumorigenesis, progression, invasion, distant metastasis and apoptosis in various types of human cancer. Therefore, it may be a potential biomarker and therapeutic target in the diagnosis and treatment of cancer. Furthermore, previous evidence has revealed a new role for Wip1 in the regulation of chemotherapy resistance. In the present review, the current knowledge on the role of Wip1 in cancer is discussed, as well as its potential as a novel target for cancer treatment and its function in chemotherapy resistance.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jun Lin
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
14
|
Pecháčková S, Burdová K, Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J Mol Med (Berl) 2017; 95:589-599. [PMID: 28439615 PMCID: PMC5442293 DOI: 10.1007/s00109-017-1536-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
DNA damage response (DDR) pathway protects cells from genome instability and prevents cancer development. Tumor suppressor p53 is a key molecule that interconnects DDR, cell cycle checkpoints, and cell fate decisions in the presence of genotoxic stress. Inactivating mutations in TP53 and other genes implicated in DDR potentiate cancer development and also influence the sensitivity of cancer cells to treatment. Protein phosphatase 2C delta (referred to as WIP1) is a negative regulator of DDR and has been proposed as potential pharmaceutical target. Until recently, exploitation of WIP1 inhibition for suppression of cancer cell growth was compromised by the lack of selective small-molecule inhibitors effective at cellular and organismal levels. Here, we review recent advances in development of WIP1 inhibitors and discuss their potential use in cancer treatment.
Collapse
Affiliation(s)
- Soňa Pecháčková
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Kamila Burdová
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic.
| |
Collapse
|
15
|
Feng Y, Liu F, Du Z, Zhao D, Cheng J, Guo W. Wip1 regulates SKOV3 cell apoptosis through the p38 MAPK signaling pathway. Mol Med Rep 2017; 15:3651-3657. [PMID: 28440479 PMCID: PMC5436208 DOI: 10.3892/mmr.2017.6469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to explore the effect of silencing wild-type p53-induced phosphatase 1 (Wip1) on apoptosis of human ovarian cancer SKOV3 cells. SKOV3 cells cultured in vitro were divided into three groups: untreated cells, cells transfected with control small interfering RNA (siRNA) and cells transfected with siRNA targeting Wip1. Flow cytometry analysis was used to detect cell apoptosis. Western blot analysis was performed to determine expression of tumor protein 53 (p53), cleaved caspase-3, caspase-3, BCL2 associated X (Bax), BCL2 apoptosis regulator (Bcl-2), p38 mitogen-activated protein kinase (p38 MAPK) and phosphorylated (p)-p38 MAPK. Reverse transcription-quantitative polymerase chain reaction was used to detect expression of p53, Bax, Bcl-2 and caspase-3 mRNAs. Compared with control, apoptosis of SKOV3 cell was significantly increased following Wip1 siRNA silencing. Wip1 silencing also resulted in a significant increase of p53 and p-p38 MAPK expression, as well as increased cleaved caspase-3/caspase-3 and Bax/Bcl-2 protein ratios. No significant differences were observed in apoptosis and apoptosis-related protein expression in the control siRNA transfected cells. The present study demonstrated that Wip1 silencing promotes apoptosis of human ovarian cancer SKOV3 cells by activation of the p38 MAPK signaling pathways and through subsequent upregulation of p53, and cleaved caspase-3/caspase-3 and Bax/Bcl-2 protein ratios. Overall, the findings of the present study suggest that targeting Wip1 may be a potential therapeutic avenue for the treatment of human ovarian cancer in the future.
Collapse
Affiliation(s)
- Yanping Feng
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Fang Liu
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zhixiang Du
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Dongjie Zhao
- Department of Surgery, The Third Hospital of Tangshan, Tangshan, Hebei 063100, P.R. China
| | - Jianxin Cheng
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Guo
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
16
|
Uyanik B, Grigorash BB, Goloudina AR, Demidov ON. DNA damage-induced phosphatase Wip1 in regulation of hematopoiesis, immune system and inflammation. Cell Death Discov 2017; 3:17018. [PMID: 28417018 PMCID: PMC5377063 DOI: 10.1038/cddiscovery.2017.18] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/04/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023] Open
Abstract
PP2C serine-threonine phosphatase, Wip1, is an important regulator of stress response. Wip1 controls a number of critical cellular functions: proliferation, cell cycle arrest, senescence and programmed cell death, apoptosis or autophagy. Ppm1d, the gene encoding Wip1 phosphatase, is expressed in hematopoietic progenitors, stem cells, neutrophils, macrophages B and T lymphocytes in bone marrow and peripheral blood. The Wip1-/- mice display immunodeficiency, abnormal lymphoid histopathology in thymus and spleen, defects in B- and T-cell differentiation, as well as susceptibility to viral infection. At the same time, Wip1 knockout mice exhibit pro-inflammatory phenotype in skin and intestine in the model of inflammatory bowel disease (IBD) with elevated levels of inflammation-promoting cytokines TNF-α, IL-6, IL-12, IL-17. Several Wip1 downstream targets can mediate Wip1 effects on hematopoietic system including, p53, ATM, p38MAPK kinase, NFkB, mTOR. Here, we summarized the current knowledge on the role of Wip1 in the differentiation of various hematopoietic lineages and how Wip1 deficiency affects the functions of immune cells.
Collapse
Affiliation(s)
- B Uyanik
- INSERM U866, University of Burgundy, Dijon, France
| | | | | | - O N Demidov
- INSERM U866, University of Burgundy, Dijon, France.,Institute of Cytology RAS, St. Petersburg, Russia
| |
Collapse
|
17
|
Liu R, Zhong X, Zeng J, Huang Z, Li X, Xiao H, Chen Q, Li D. 3′-Daidzein sulfonate sodium inhibits neuronal apoptosis induced by cerebral ischemia-reperfusion. Int J Mol Med 2017; 39:1021-1028. [DOI: 10.3892/ijmm.2017.2915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/15/2017] [Indexed: 11/05/2022] Open
|
18
|
Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 2017; 33:49-58. [PMID: 28189587 DOI: 10.1016/j.cellsig.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
19
|
Ma X, Liu X, Zhou D, Bai Y, Gao B, Zhang Z, Qin Z. The NF-κB pathway participates in the response to sulfide stress in Urechis unicinctus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:229-238. [PMID: 27633672 DOI: 10.1016/j.fsi.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 05/26/2023]
Abstract
The NF-κB pathway is known to be involved in regulating apoptosis, inflammation and immunity in organisms. In this study, we first identified full-length cDNA sequences of two key molecules in the NF-κB pathway, namely, NEMO and p65, and characterized their responses in the hindgut of Urechis unicinctus (Echiura, Urechidae) exposed to sulfide. The full-length of cDNA was 2491 bp for U. unicinctus NEMO (UuNEMO) and 1971 bp for U. unicinctus p65 (Uup65), and both polyclonal antibodies were prepared using UuNEMO or Uup65 expressed prokaryotically with the sequence of their whole open reading frame. Immunoprecipitation and Western blotting showed that the NF-κB pathway was activated in U. unicinctus exposed to sulfide, in which the content of UuNEMO ubiquitination and nuclear Uup65 increased significantly (p < 0.05) in hindgut tissue of U. unicinctus exposed to sulfide. Furthermore, the mRNA level of UuBcl-xL, a downstream anti-apoptosis gene of the NF-κB pathway, increased significantly (p < 0.05) from 48 h to 72 h and the mRNA level of UuBax, a Bcl-xL antagonist gene, decreased significantly (p < 0.05) at 48 h in the hindgut of U. unicinctus exposed to 50 μM sulfide. During the 150 μM sulfide exposure, the level of UuBcl-xL showed no obvious change, whereas the UuBax mRNA level increased significantly (p < 0.05) at 72 h post-exposure to 150 μM sulfide. We suggested that the activated NF-κB pathway up-regulates UuBcl-xL expression, and evokes an anti-apoptotic response to resist sulfide damage at 50 μM in U. unicinctus. Meanwhile, a Bax-mediated pro-apoptotic response occurs when U. unicinctus is exposed to 150 μM sulfide.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Clausse V, Goloudina AR, Uyanik B, Kochetkova EY, Richaud S, Fedorova OA, Hammann A, Bardou M, Barlev NA, Garrido C, Demidov ON. Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy. Cell Death Dis 2016; 7:e2195. [PMID: 27077811 PMCID: PMC4855675 DOI: 10.1038/cddis.2016.96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
Inactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criterion of the screen was increased sensitivity of p53-negative tumor cells to cisplatin (CDDP) in a Wip1-dependent manner. We have found that a treatment with a low dose (75 nM) of MK-1775, a recently described specific chemical inhibitor of Wee1, decreases CDDP-induced H2AX phosphorylation in p53-negative cells and enhances the Wip1-sensitization of p53-negative tumors. We were able to reduce CDDP effective concentration by 40% with a combination of Wip1 overexpression and Wee1 kinase inhibition. We have observed that Wee1 inhibition potentiates Wip1-dependent tumor sensitization effect by reducing levels of Hipk2 kinase, a negative regulator of Wip1 pathway. In addition, during CDDP treatment, the combination of Wee1 inhibition and Wip1 overexpression has a mild but significant protective effect in normal cells and tissues. Our results indicate that inhibition of the negative regulators of Wip1 pathway, Wee1 and Hipk2, in p53-negative tumors could potentiate efficiency of chemotherapeutic agents without concomitant increase of cytotoxicity in normal tissues. The development and clinical use of Wee1 and Hipk1 kinase chemical inhibitors might be a promising strategy to improve anti-cancer therapy.
Collapse
Affiliation(s)
- V Clausse
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - A R Goloudina
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - B Uyanik
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | | | - S Richaud
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - O A Fedorova
- Institute of Cytology, RAS, St. Petersburg, Russia
| | - A Hammann
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - M Bardou
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - N A Barlev
- Institute of Cytology, RAS, St. Petersburg, Russia
| | - C Garrido
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France.,Anticancer Center Georges François Leclerc, Dijon, France
| | - O N Demidov
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France.,Institute of Cytology, RAS, St. Petersburg, Russia
| |
Collapse
|
21
|
Anticancer efficacy of unique pyridine-based tetraindoles. Eur J Med Chem 2015; 104:165-76. [DOI: 10.1016/j.ejmech.2015.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023]
|
22
|
Vimalraj S, Arumugam B, Miranda P, Selvamurugan N. Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 2015; 78:202-8. [PMID: 25881954 DOI: 10.1016/j.ijbiomac.2015.04.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023]
|
23
|
Ma X, Han J, Wu Q, Liu H, Shi S, Wang C, Wang Y, Xiao J, Zhao J, Jiang J, Wan C. Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis. Toxicol Lett 2015; 235:17-27. [PMID: 25791630 DOI: 10.1016/j.toxlet.2014.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
Overexposure to manganese (Mn) has been known to induce neuronal death and neurodegenerative symptoms. However, the precise mechanisms underlying Mn neurotoxicity remain incompletely understood. In the present study, we established a Mn-exposed rat model and found that downregulation of wild type p53-induced phosphatase 1 (Wip1) might contribute to p53 activation and resultant neuronal apoptosis following Mn exposure. Western blot and immunohistochemical analyses revealed that the expression of Wip1 was markedly decreased following Mn exposure. In addition, immunofluorescence assay demonstrated that Mn exposure led to significant reduction in the number of Wip1-positive neurons. Accordingly, the expression of Mdm2 was progressively decreased, which was accompanied with markedly increased expression of p53, as well as the ratio of Bax/Bcl-xl. Furthermore, we showed that Mn exposure decreased the viability and induced apparent apoptosis in NFG-differentiated neuron-like PC12 cells. Importantly, the expression of Wip1 decreased progressively, whereas the level of cellular p53 and the ratio of Bax/Bcl-xl were elevated, which resembled the expression of the proteins in animal model studies. Depletion of p53 significantly ameliorated Mn-mediated cytotoxic effect in PC12 cells. In addition, ectopic expression of Wip1 attenuated Mn-induced p53 signaling as well as apoptosis in PC12 cells. Finally, we observed that depletion of Wip1 augmented Mn-induced apoptosis in PC12 cells. Collectively, these findings suggest that downregulated Wip1 expression plays an important role in Mn-induced neuronal death in the brain striatum via the modulation of p53 signaling.
Collapse
Affiliation(s)
- Xia Ma
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jingling Han
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Qiyun Wu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Hanzhang Liu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Shangshi Shi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Cheng Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Yueran Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jing Xiao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, People's Republic of China; The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China.
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China; The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China.
| |
Collapse
|
24
|
Wip1 phosphatase in breast cancer. Oncogene 2014; 34:4429-38. [PMID: 25381821 DOI: 10.1038/onc.2014.375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
Understanding the factors contributing to tumor initiation, progression and evolution is of paramount significance. Among them, wild-type p53-induced phosphatase 1 (Wip1) is emerging as an important oncogene by virtue of its negative control on several key tumor suppressor pathways. Originally discovered as a p53-regulated gene, Wip1 has been subsequently found amplified and more recently mutated in a significant fraction of human cancers including breast tumors. Recent development in the field further uncovered the utility of anti-Wip1-directed therapies in delaying tumor onset or in reducing the tumor burden. Furthermore, Wip1 could be an important factor that contributes to tumor heterogeneity, suggesting that its inhibition may decrease the rate of cancer evolution. These effects depend on several signaling pathways modulated by Wip1 phosphatase in a spatial and temporal manner. In this review we discuss the recent development in understanding how Wip1 contributes to tumorigenesis with its relevance to breast cancer.
Collapse
|
25
|
Hsia TC, Yu CC, Hsu SC, Tang NY, Lu HF, Huang YP, Wu SH, Lin JG, Chung JG. Cantharidin induces apoptosis of H460 human lung cancer cells through mitochondria-dependent pathways. Int J Oncol 2014; 45:245-54. [PMID: 24818581 DOI: 10.3892/ijo.2014.2428] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/25/2014] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the leading causes of death in cancer-related diseases. Cantharidin (CTD) is one of the components of natural mylabris (Mylabris phalerata Pallas). Numerous studies have shown that CTD induced cytotoxic effects on cancer cells. However, there is no report to demonstrate that CTD induced apoptosis in human lung cancer cells. Herein, we investigated the effect of CTD on the cell death via the induction of apoptosis in H460 human lung cancer cells. Flow cytometry assay was used for examining the percentage of cell viability, sub-G1 phase of the cell cycle, reactive oxygen species (ROS) and Ca²⁺ productions and the levels of mitochondrial membrane potential (∆Ψm). Annexin V/PI staining and DNA gel electrophoresis were also used for examining cell apoptosis. Western blot analysis was used to examine the changes of apoptosis associated protein expression and confocal microscopy for examining the translocation apoptosis associated protein. Results indicated that CTD significantly induced cell morphological changes and decreased the percentage of viable H460 cells. CTD induced apoptosis based on the occurrence of sub-G1 phase and DNA fragmentation. We found that CTD increased gene expression (mRNA) of caspase-3 and -8. Moreover, CTD increased ROS and Ca2+ production and decreased the levels of ∆Ψm. Western blot analysis results showed that CTD increased the expression of cleavage caspase-3 and -8, cytochrome c, Bax and AIF but inhibited the levels of Bcl-xL. CTD promoted ER stress associated protein expression such as GRP78, IRE1α, IRE1β, ATF6α and caspase-4 and it also promoted the expression of calpain 2 and XBP-1, but inhibited calpain 1 that is associated with apoptosis pathways. Based on those observations, we suggest that CTD may be used as a novel anticancer agent for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Te-Chun Hsia
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Nou-Ying Tang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - Shin-Hwar Wu
- Division of Critical Care Medicine, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Jaung-Geng Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
26
|
WIP1 regulates the proliferation and invasion of nasopharyngeal carcinoma in vitro. Tumour Biol 2014; 35:7651-7. [PMID: 24801909 DOI: 10.1007/s13277-014-2034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 01/07/2023] Open
Abstract
Wild-type p53-induced phosphatase (WIP1) is overexpressed and functionally altered in multiple human malignancies. The present study investigated its abnormal expression and dysfunctions in nasopharyngeal carcinoma (NPC) in vitro. Here, analysis of WIP1 mRNA and protein in human NPC tissues revealed that both WIP1 messenger RNA (mRNA) and protein were elevated and were correlated with NPC clinical stage and metastasis in patients. In vitro experiments further showed that WIP1 inhibition led to a decrease in the proliferative ability of NPC CNE-2 and 5-8F cells accompanied by cell cycle arrest and increased apoptosis. In addition, WIP1 knockdown inhibited the invasiveness of CNE-2 and 5-8F cells and was associated with the down-regulation of the expression of matrix metallopeptidase 9 (MMP-9) mRNA and protein. Taken together, our data demonstrate that WIP1 regulates the proliferation and invasiveness of NPC cells in vitro, and this may be correlated with its modulation of MMP-9 expression, cell cycle progression and apoptosis. WIP1 functioned as a potential therapeutic target in NPC management.
Collapse
|
27
|
Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci 2014; 73:125-34. [DOI: 10.1016/j.jdermsci.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/15/2013] [Accepted: 09/05/2013] [Indexed: 01/05/2023]
|
28
|
Wip1 suppresses apoptotic cell death through direct dephosphorylation of BAX in response to γ-radiation. Cell Death Dis 2013; 4:e744. [PMID: 23907458 PMCID: PMC3763429 DOI: 10.1038/cddis.2013.252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 12/13/2022]
Abstract
Wild-type p53-induced phosphatase 1 (Wip1) is a p53-inducible serine/threonine phosphatase that switches off DNA damage checkpoint responses by the dephosphorylation of certain proteins (i.e. p38 mitogen-activated protein kinase, p53, checkpoint kinase 1, checkpoint kinase 2, and uracil DNA glycosylase) involved in DNA repair and the cell cycle checkpoint. Emerging data indicate that Wip1 is amplified or overexpressed in various human tumors, and its detection implies a poor prognosis. In this study, we show that Wip1 interacts with and dephosphorylates BAX to suppress BAX-mediated apoptosis in response to γ-irradiation in prostate cancer cells. Radiation-resistant LNCaP cells showed dramatic increases in Wip1 levels and impaired BAX movement to the mitochondria after γ-irradiation, and these effects were reverted by a Wip1 inhibitor. These results show that Wip1 directly interacts with and dephosphorylates BAX. Dephosphorylation occurs at threonines 172, 174 and 186, and BAX proteins with mutations at these sites fail to translocate efficiently to the mitochondria following cellular γ-irradiation. Overexpression of Wip1 and BAX, but not phosphatase-dead Wip1, in BAX-deficient cells strongly reduces apoptosis. Our results suggest that BAX dephosphorylation of Wip1 phosphatase is an important regulator of resistance to anticancer therapy. This study is the first to report the downregulation of BAX activity by a protein phosphatase.
Collapse
|
29
|
Hage-Sleiman R, Esmerian MO, Kobeissy H, Dbaibo G. p53 and Ceramide as Collaborators in the Stress Response. Int J Mol Sci 2013; 14:4982-5012. [PMID: 23455468 PMCID: PMC3634419 DOI: 10.3390/ijms14034982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023] Open
Abstract
The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this "tumor suppressor lipid", ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +961-1-350-000 (ext. 4883)
| | - Maria O. Esmerian
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Hadile Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| |
Collapse
|
30
|
Manoharan S, Palanimuthu D, Baskaran N, Silvan S. Modulating Effect of Lupeol on the Expression Pattern of Apoptotic Markers in 7, 12-Dimethylbenz(a)anthracene Induced Oral Carcinogenesis. Asian Pac J Cancer Prev 2012; 13:5753-7. [DOI: 10.7314/apjcp.2012.13.11.5753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Yunlei Z, Zhe C, Yan L, Pengcheng W, Yanbo Z, Le S, Qianjin L. INMAP, a novel truncated version of POLR3B, represses AP-1 and p53 transcriptional activity. Mol Cell Biochem 2012; 374:81-9. [PMID: 23124897 DOI: 10.1007/s11010-012-1507-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022]
Abstract
INMAP was first identified as an interphase nucleus and mitotic apparatus-associated protein that plays essential roles in the formation of the spindle and cell-cycle progression. Here, we report that INMAP might be conserved from prokaryotes to humans, is a truncated version of the RNA polymerase III subunit B POLR3B, and is up-regulated in several human cancer cell lines including HeLa, Bel-7402, HepG2 and BGC-823. Deletion analysis revealed that the 209-290 amino-acid region is necessary for the punctate distribution of INMAP in the nucleus. Furthermore, over-expression of INMAP inhibited the transcriptional activities of p53 and AP-1 in a dose-dependent manner. These results suggest that INMAP may function through the p53 and AP-1 pathways, thus providing a possible link of its activity with tumourigenesis. Integrating our data and those in previous studies, it can be concluded that INMAP plays dual functional roles in the coordination of mitotic kinetics with gene expression as well as in cell-fate determination and proliferation.
Collapse
Affiliation(s)
- Zhou Yunlei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|