1
|
Gottlieb RA, Piplani H, Sin J, Sawaged S, Hamid SM, Taylor DJ, de Freitas Germano J. At the heart of mitochondrial quality control: many roads to the top. Cell Mol Life Sci 2021; 78:3791-3801. [PMID: 33544154 PMCID: PMC8106602 DOI: 10.1007/s00018-021-03772-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochondria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded protein response, particularly in the context of the heart.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Honit Piplani
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Jon Sin
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Savannah Sawaged
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - David J Taylor
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Juliana de Freitas Germano
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
2
|
Optineurin downregulation induces endoplasmic reticulum stress, chaperone-mediated autophagy, and apoptosis in pancreatic cancer cells. Cell Death Discov 2019; 5:128. [PMID: 31428460 PMCID: PMC6689035 DOI: 10.1038/s41420-019-0206-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows a high level of basal autophagy. Here we investigated the role of optineurin (OPTN) in PDAC cell lines, which is a prominent member of the autophagy system. To that purpose, mining of publically available databases showed that OPTN is highly expressed in PDAC and that high levels of expression are related to reduced survival. Therefore, the role of OPTN on proliferation, migration, and colony formation was investigated by transient knockdown in Miapaca, BXPC3, and Suit2-007 human PDAC cells. Furthermore, gene expression modulation in response to OPTN knockdown was assessed by microarray. The influence on cell cycle distribution and cell death signaling cascades was followed by FACS, assays for apoptosis, RT-PCR, and western blot. Finally, autophagy and ROS induction were screened by acridine orange and DCFH-DA fluorescent staining respectively. OPTN knockdown caused significant inhibition of colony formation, increased migration and no significant effect on proliferation in Miapaca, BXPC3 and Suit2-007 cells. The microarray showed modulation of 293 genes in Miapaca versus 302 in Suit2-007 cells, of which 52 genes overlapped. Activated common pathways included the ER stress response and chaperone-mediated autophagy, which was confirmed at mRNA and protein levels. Apoptosis was activated as shown by increased levels of cleaved PARP, Annexin V binding and nuclear fragmentation. OPTN knockdown caused no increased vacuole formation as assessed by acridine orange. Also, there was only marginally increased ROS production. Combination of OPTN knockdown with the autophagy inducer erufosine or LY294002, an inhibitor of autophagy, showed additive effects, which led us to hypothesize that they address different pathways. In conclusion, OPTN knockdown was related to activation of ER stress response and chaperone-mediated autophagy, which tend to confine the damage caused by OPTN knockdown and thus question its value for PDAC therapy.
Collapse
|
3
|
Montecalvo A, Watkins SC, Orange J, Kane LP. Inducible turnover of optineurin regulates T cell activation. Mol Immunol 2017; 85:9-17. [PMID: 28192730 DOI: 10.1016/j.molimm.2017.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/28/2022]
Abstract
Optineurin (Optn) is an adaptor protein with homology to NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex. Dysregulation of Optn has been linked to neurodegenerative, autoimmune and bone diseases. Optn shares a high degree of homology with NEMO, but is not part of the same high-molecular weight complex containing IKKα and IKKβ. Despite its homology with NEMO and the fact that it has been the subject of extensive study in several cell types, there are no published studies addressing the role of Optn during T cell activation. Here we demonstrate that ectopic expression of Optn down-regulates TCR-induced NF-κB activation and TNF-α production, in a manner dependent on ubiquitin-binding. Conversely, knock-down of Optn enhances NF-κB activation and the production of TNF-α. Consistent with a negative regulatory role for this protein, we observed transient loss of Optn after TCR stimulation in both cell lines and in primary murine T cells. The acute loss of Optn appears to be due to both protein degradation and exocytosis, the latter via activation-induced exosomes. This study therefore provides novel information regarding the role of Optn during TCR activation, suggesting the possible importance of Optn during inflammation and/or autoimmune diseases.
Collapse
Affiliation(s)
- Angela Montecalvo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States
| | - Jordan Orange
- Texas Children's Hospital, Houston, TX 77030, United States
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States.
| |
Collapse
|
4
|
Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. BMC Cell Biol 2015; 16:14. [PMID: 25943884 PMCID: PMC4429416 DOI: 10.1186/s12860-015-0060-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Background Optineurin is a gene associated with normal tension glaucoma and amyotrophic lateral sclerosis. It has been reported previously that in cultured RGC5 cells, the turnover of endogenous optineurin involves mainly the ubiquitin-proteasome pathway (UPP). When optineurin is upregulated or mutated, the UPP function is compromised as evidenced by a decreased proteasome β5 subunit (PSMB5) level and autophagy is induced for clearance of the optineurin protein. Results Adeno-associated type 2 viral (AAV2) vectors for green fluorescence protein (GFP) only, GFP-tagged wild-type and Glu50Lys (E50K) mutated optineurin were intravitreally injected into rats for expression in retinal ganglion cells (RGCs). Following intravitreal injections, eyes that received optineurin vectors exhibited retinal thinning, as well as RGC and axonal loss compared to GFP controls. By immunostaining and Western blotting, the level of PSMB5 and autophagic substrate degradation marker p62 was reduced, and the level of autophagic marker microtubule associated protein 1 light chain 3 (LC3) was enhanced. The UPP impairment and autophagy induction evidently occurred in vivo as in vitro. The optineurin level, RGC and axonal counts, and apoptosis in AAV2-E50K-GFP-injected rat eyes were averted to closer to normal limits after treatment with rapamycin, an autophagic enhancer. Conclusions The UPP function was reduced and autophagy was induced when wild-type and E50K optineurin was overexpressed in rat eyes. This study validates the in vitro findings, confirming that UPP impairment and autophagy induction also occur in vivo. In addition, rapamycin is demonstrated to clear the accumulated mutant optineurin. This agent may potentially be useful for rescuing of the adverse optineurin phenotypes in vivo.
Collapse
|
5
|
Génin P, Cuvelier F, Lambin S, Côrte-Real Filipe J, Autrusseau E, Laurent C, Laplantine E, Weil R. Optineurin regulates the interferon response in a cell cycle-dependent manner. PLoS Pathog 2015; 11:e1004877. [PMID: 25923723 PMCID: PMC4414543 DOI: 10.1371/journal.ppat.1004877] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/13/2015] [Indexed: 01/12/2023] Open
Abstract
Viral invasion into a host is initially recognized by the innate immune system, mainly through activation of the intracellular cytosolic signaling pathway and coordinated activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB) transcription factors that promote type I interferon gene induction. The TANK-binding Kinase 1 (TBK1) phosphorylates and activates IRF3. Here, we show that Optineurin (Optn) dampens the antiviral innate immune response by targeting the deubiquitinating enzyme CYLD to TBK1 in order to inhibit its enzymatic activity. Importantly, we found that this regulatory mechanism is abolished at the G2/M phase as a consequence of the nuclear translocation of CYLD and Optn. As a result, we observed, at this cell division stage, an increased activity and phosphorylation of TBK1 that lead to its relocalization to mitochondria and to enhanced interferon production, suggesting that this process, which relies on Optn function, might be of major importance to mount a preventive antiviral response during mitosis. The innate immune system has evolved to detect and neutralize viral invasion. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate an intracellular antiviral defense mechanism. The protein Optineurin was shown to negatively regulate this process. Importantly, we discovered the mechanism by which Optineurin inhibits antiviral activity and showed that this regulation is prevented during a critical step of cell division leading to enhancement of the cellular defense mechanism. This paper shows that the antiviral immune system is controlled during the cell cycle and that Optineurin-mediated induction of this system might serve to protect cells from infection during cell division.
Collapse
Affiliation(s)
- Pierre Génin
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
- * E-mail:
| | - Frédérique Cuvelier
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Sandrine Lambin
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | | | - Elodie Autrusseau
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | | | - Emmanuel Laplantine
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Robert Weil
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Turturro S, Shen X, Shyam R, Yue BY, Ying H. Effects of mutations and deletions in the human optineurin gene. SPRINGERPLUS 2014; 3:99. [PMID: 24683533 PMCID: PMC3967732 DOI: 10.1186/2193-1801-3-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023]
Abstract
Optineurin is a gene associated with normal tension glaucoma (NTG) and amyotrophic lateral sclerosis (ALS). Foci formation and functional consequences including Golgi fragmentation, impairment of vesicle trafficking and apoptosis were observed previously upon overexpression and/or mutation of optineurin. In the current study, a total of 15 GFP tagged constructs that included NTG (E50K and 2 bp-AG insertion), ALS (exon 5 deletion, R96L, Q398X, and E478G) and non-disease (L157A and D474N) associated mutants and a series of deletion fragments were cloned into mammalian expression vectors and transfected into RGC5 and/or Neuro2A cells to evaluate whether their expression confer the optineurin phenotypes. The cells were monitored for foci formation and stained by immunofluorescence with anti-GM130 to analyze the Golgi integrity. Transferrin uptake experiments were performed to evaluate the protein trafficking process and apoptosis was assessed with the active caspase 3/7 detection kit. We demonstrated that cells expressing E50K and R96L optineurin exhibited all of the optineurin phenotypes. Q398X mutant did not induce foci formation, but triggered Golgi fragmentation, impairment of transferrin uptake and increase in apoptosis. The 2 bp-AG insertion mutant had a nuclear localization, compromised the transferrin uptake and strongly induced apoptosis. The foci formation, which might not predict the rest of the phenotypes, appeared to require both the leucine zipper and ubiquitin binding domains of the optineurin sequence. Interactions of optineurin with proteins including Rab8, myosin VI, huntingtin and transferrin receptor might directly determine whether the Golgi and protein trafficking phenotypes would be manifested. Examination of mutants and deletion fragments located at various sites of optineurin gene provide clues as to what regions of the gene may play a critical role in the development of pathologic consequences.
Collapse
Affiliation(s)
- Sanja Turturro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Beatrice Yjt Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| |
Collapse
|