1
|
Fojnica A, Gromilic Z, Ali Mohamed YA, Akhtar S, Vranic S. The potential role of cyclosporine A in cancer treatment: a comprehensive literature review. Contemp Oncol (Pozn) 2025; 28:271-282. [PMID: 39935757 PMCID: PMC11809561 DOI: 10.5114/wo.2024.147009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 02/13/2025] Open
Abstract
Cyclosporine A (CsA) is widely used as an immunosuppressant in organ transplantation to improve graft survival and prevent tissue rejection. The impact of CsA on cancer progression is highly complex, influenced by the intricate relationship between immunosuppression and malignancy. While individuals with compromised immune systems, notably organ transplant recipients, face an elevated risk of cancer invasion and progression due to immunosuppressive regimens, CsA's role in either promoting or inhibiting cancer remains elusive. Divergent outcomes from in vitro and in vivo studies suggest suppression of cancer progression under CsA treatment and complicate the translation of findings to clinical scenarios. Despite promising in vitro and in vivo results, the clinical application of CsA in oncology necessitates careful consideration of its toxicity profile in in vivo models, starting at 50-200 mg/kg/d. The divergence between preclinical and clinical findings highlights the need for further research to elucidate the true nature of CsA's impact on cancer, providing a foundation for more informed and targeted therapeutic approaches.
Collapse
|
2
|
Chomiak AA, Tiedemann RL, Liu Y, Kong X, Cui Y, Wiseman AK, Thurlow KE, Cornett EM, Topper MJ, Baylin SB, Rothbart SB. Select EZH2 inhibitors enhance viral mimicry effects of DNMT inhibition through a mechanism involving NFAT:AP-1 signaling. SCIENCE ADVANCES 2024; 10:eadk4423. [PMID: 38536911 PMCID: PMC10971413 DOI: 10.1126/sciadv.adk4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xiangqian Kong
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ying Cui
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashley K. Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kate E. Thurlow
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Evan M. Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Topper
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen B. Baylin
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Scott B. Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
3
|
Siddiqui SS, Hodeify R, Mathew S, Alsawaf S, Alghfeli A, Matar R, Merheb M, Marton J, Al Zouabi HA, Sethuvel DPM, Ragupathi NKD, Vazhappilly CG. Differential dose-response effect of cyclosporine A in regulating apoptosis and autophagy markers in MCF-7 cells. Inflammopharmacology 2023:10.1007/s10787-023-01247-4. [PMID: 37204695 DOI: 10.1007/s10787-023-01247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressant primarily used at a higher dosage in transplant medicine and autoimmune diseases with a higher success rate. At lower doses, CsA exhibits immunomodulatory properties. CsA has also been reported to inhibit breast cancer cell growth by downregulating the expression of pyruvate kinase. However, differential dose-response effects of CsA in cell growth, colonization, apoptosis, and autophagy remain largely unidentified in breast cancer cells. Herein, we showed the cell growth-inhibiting effects of CsA by preventing cell colonization and enhancing DNA damage and apoptotic index at a relatively lower concentration of 2 µM in MCF-7 breast cancer cells. However, at a higher concentration of 20 µM, CsA leads to differential expression of autophagy-related genes ATG1, ATG8, and ATG9 and apoptosis-associated markers, such as Bcl-2, Bcl-XL, Bad, and Bax, indicating a dose-response effect on differential cell death mechanisms in MCF-7 cells. This was confirmed in the protein-protein interaction network of COX-2 (PTGS2), a prime target of CsA, which had close interactions with Bcl-2, p53, EGFR, and STAT3. Furthermore, we investigated the combined effect of CsA with SHP2/PI3K-AKT inhibitors showing significant MCF-7 cell growth reduction, suggesting its potential to use as an adjuvant during breast cancer therapy.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, UK
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shimy Mathew
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Anood Alghfeli
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - John Marton
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Hussain AbdulKarim Al Zouabi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | | | - Naveen Kumar Devanga Ragupathi
- Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, India
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
4
|
Cho HJ, Jung HJ. Cyclophilin A Inhibitors Suppress Proliferation and Induce Apoptosis of MKN45 Gastric Cancer Stem-like Cells by Regulating CypA/CD147-Mediated Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054734. [PMID: 36902161 PMCID: PMC10003193 DOI: 10.3390/ijms24054734] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Gastric cancer stem cells (GCSCs) are a subgroup of gastric cancer (GC) cells with high self-renewal and multi-lineage differentiation abilities that lead to tumor initiation, metastasis, drug resistance, and tumor relapse. Therefore, the eradication of GCSCs can contribute to the effective treatment of advanced or metastatic GC. In our previous study, compound 9 (C9), a novel derivative of nargenicin A1, was identified as a potential natural anticancer agent that specifically targeted cyclophilin A (CypA). However, its therapeutic effect and molecular mechanisms of action on GCSC growth have not been assessed. In this study, we investigated the effects of natural CypA inhibitors, including C9 and cyclosporin A (CsA), on the growth of MKN45-derived GCSCs. Compound 9 and CsA effectively suppressed cell proliferation by inducing cell cycle arrest at the G0/G1 phase and promoted apoptosis by activating the caspase cascade in MKN45 GCSCs. In addition, C9 and CsA potently inhibited tumor growth in the MKN45 GCSC-grafted chick embryo chorioallantoic membrane (CAM) model. Furthermore, the two compounds significantly decreased the protein expression of key GCSC markers including CD133, CD44, integrin α6, Sox2, Oct4, and Nanog. Notably, the anticancer activities of C9 and CsA in MKN45 GCSCs were associated with the regulation of CypA/CD147-mediated AKT and mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, our findings suggest that the natural CypA inhibitors C9 and CsA could be novel anticancer agents used to combat GCSCs by targeting the CypA/CD147 axis.
Collapse
Affiliation(s)
- Hee Jeong Cho
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
- Correspondence: ; Tel.: +82-41-530-2354; Fax: +82-41-530-2939
| |
Collapse
|
5
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
The Effect of Cyclosporine A on Proteins Controlling Intracellular Calcium Concentration in Breast Cancer Cells. J Membr Biol 2021; 255:33-39. [PMID: 34580765 DOI: 10.1007/s00232-021-00201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug commonly used to prevent autoimmune diseases. At the same time, CsA is a calcineurin (CaN) inhibitor. It affects the intracellular calcium signaling pathway. The effect of CsA on breast cancer cells, MDA-MB-231, plasma membrane calcium pump 1 (PMCA1), calmodulin (CaM), calcineurin (CaN), and cMyc, which are proteins that affect calcium signaling, were investigated. CsA inhibited the proliferation of MDA-MB-231 cells but did not affect the migration of the cells. After 24 h of incubation, CsA suppressed the PMCA1 protein, which pumps intracellular calcium out of the cell. At the same time, calcium started to accumulate inside the cell and CaM protein was expressed, while PMCA1 was suppressed. The CaN protein was suppressed 72 h after the administration of CsA, but the cMyc protein was expressed. Interestingly, 24 h incubation when the PMCA1 protein is down-regulated after the duration of time, the cMyc protein is also down-regulated. Although the indirect effect of CaN and cMyc is known, this relationship between PMCA1 and cMyc was not known. As a result, it has been shown that CsA affects the PMCA pump by disrupting the intracellular calcium pathway in breast cancer cells.
Collapse
|
7
|
Jang YK, Chung TY, Shin YJ. Effect of Cyclosporine A-induced Senescence on Cultured Human Corneal Endothelial Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2020. [DOI: 10.3341/jkos.2020.61.9.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
The calcium pump PMCA4 prevents epithelial-mesenchymal transition by inhibiting NFATc1-ZEB1 pathway in gastric cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118833. [PMID: 32860837 DOI: 10.1016/j.bbamcr.2020.118833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is considered as the key mechanism involved in cancer metastasis. Several studies showed that various cell membrane calcium channels play different roles in cancer metastasis. In the present study, the potential role of ATPase plasma membrane Ca2+ transporting 4 (PMCA4) in regulating EMT in gastric cancer (GC) was investigated. GC patients who underwent radical surgery were enrolled in this study. In vitro human GC cell lines MKN45 and NCI-N87 were used, and MKN45 cells were injected in nude mice to evaluate tumor development. Our results showed that low PMCA4 expression was associated with advanced TNM stage and poor prognosis in GC patients. Knockdown of PMCA4 suppressed E-cadherin, grainyhead like 2 (GRHL2) and ovo-like 1 (OVOL1) expression, up-regulated vimentin expression, increased migration and invasion ability, and promoted the resistance to cytotoxic drug. Furthermore, GC cells displayed an elongated fibroblastoid morphology when PMCA4 was knockdown. PMCA4 overexpression resulted in an up-regulated E-cadherin expression and decreased migration and invasion ability. In vivo metastasis assay showed that PMCA4 overexpression resulted in a decreased incidence of lung metastasis. PMCA4 inhibition increased ZEB1 expression and nuclear accumulation of nuclear factor of activated T-cell isoform c1 (NFATc1). EMT induced by PMCA4 inhibition could be prevented by the knockdown of NFATc1 or ZEB1. In addition, cyclosporine A prevented EMT induced by PMCA4 inhibition by suppressing the NFATc1-ZEB1 pathway. Our data identified a novel mechanism in the regulation of EMT in GC, and provided a novel target in the treatment of EMT subtype in GC.
Collapse
|
9
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Fu Y, Liao C, Cui K, Liu X, Fang W. Antitumor pharmacotherapy of colorectal cancer in kidney transplant recipients. Ther Adv Med Oncol 2019; 11:1758835919876196. [PMID: 31579127 PMCID: PMC6759705 DOI: 10.1177/1758835919876196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/19/2019] [Indexed: 11/15/2022] Open
Abstract
Renal transplantation has become the sole most preferred therapy modality for end-stage renal disease patients. The growing tendency for renal transplants, and prolonged survival of renal recipients, have resulted in a certain number of post-transplant colorectal cancer patients. Antitumor pharmacotherapy in these patients is a dilemma. Substantial impediments such as carcinogenesis of immunosuppressive drugs (ISDs), drug interaction between ISDs and anticancer drugs, and toxicity of anticancer drugs exist. However, experience of antitumor pharmacotherapy in these patients is limited, and the potential risks and benefits have not been reviewed systematically. This review evaluates the potential impediments, summarizes current experience, and provides potential antitumor strategies, including adjuvant, palliative, and subsequent regimens. Moreover, special pharmaceutical care, such as ISDs therapeutic drug monitoring, metabolic enzymes genotype, and drug interaction, are also highlighted.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Pharmacy, First Affiliated Hospital of Nanjing Medical University, China
| | - Chengheng Liao
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kai Cui
- Department of Pharmacy, Liaocheng Infectious Disease Hospital, Liaocheng, Shandong, China
| | - Xiao Liu
- Department of Pharmacy, Qinghai provincial Peoples Hospital, Xining, China
| | - Wentong Fang
- Department of Pharmacy, First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| |
Collapse
|
11
|
Gang W, Yu-Zhu W, Yang Y, Feng S, Xing-Li F, Heng Z. The critical role of calcineurin/NFAT (C/N) pathways and effective antitumor prospect for colorectal cancers. J Cell Biochem 2019; 120:19254-19273. [PMID: 31489709 DOI: 10.1002/jcb.29243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Transcription factors (TFs) like a nuclear factor of activated T-cells (NFAT) and its controller calcineurin are highly expressed in primary intestinal epithelial cells (IECs) due to delamination, damage by tumor-associated flora and selective activation in the intestinal tract tumor are crucial in the progression and growth of colorectal cancer (CRC). This study sought to summarize the current findings concerning the dysregulated calcineurin/NFAT (C/N) signaling involved in CRC initiation and progression. These signalings include proliferation, T-cell functions, and glycolysis with high lactate production that remodels the acidosis, which genes in tumor cells provide an evolutionary advantage, or even increased their attack phenotype. Moreover, the relationship between C/N and gut microbiome in CRC, especially role of NFAT and toll-like receptor signaling in regulating intestinal microbiota are also discussed. Furthermore, this review will discuss the proteins and genes relating to C/N induced acidosis in CRC, which includes ASIC2 regulated C/N1 and TFs associated with the glycolytic by-product that affect T-cell functions and CRC cell growth. It is revealed that calcineurin or NFAT targeting to antitumor, selective calcineurin inhibition or targets in NFAT signaling may be useful for clinical treatment of CRC. This can further aid in the identification of specific targets via cancer patient-personalized approach. Future studies should be focused on targeting to C/N or TLR signaling by the combination of therapeutic agents to regulate T-cell functions and gut microbiome for activating potent anticancer property with the prospect of potentiating the antitumor therapy for CRC.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eight People's Hospital, Jiangsu University, Shanghai, China
| | - Wang Yu-Zhu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Yang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi Feng
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fu Xing-Li
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhang Heng
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Miao Y, Shen Q, Zhang S, Huang H, Meng X, Zheng X, Yao Z, He Z, Lu S, Cai C, Zou F. Calcium-sensing stromal interaction molecule 2 upregulates nuclear factor of activated T cells 1 and transforming growth factor-β signaling to promote breast cancer metastasis. Breast Cancer Res 2019; 21:99. [PMID: 31464639 PMCID: PMC6716836 DOI: 10.1186/s13058-019-1185-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Stromal interaction molecule (STIM) 2 is a key calcium-sensing molecule that regulates the stabilization of calcium ions (Ca2+) and therefore regulates downstream Ca2+-associated signaling and cellular events. We hypothesized that STIM2 regulates epithelial-mesenchymal transition (EMT) to promote breast cancer metastasis. Methods We determined the effects of gain, loss, and rescue of STIM2 on cellular motility, levels of EMT-related proteins, and secretion of transforming growth factor-β (TGF-β). We also conducted bioinformatics analyses and in vivo assessments of breast cancer growth and metastasis using xenograft models. Results We found a significant association between STIM2 overexpression and metastatic breast cancer. STIM2 overexpression activated the nuclear factor of activated T cells 1 (NFAT1) and TGF-β signaling. Knockdown of STIM2 inhibited the motility of breast cancer cells by inhibiting EMT via specific suppression of NFAT1 and inhibited mammary tumor metastasis in mice. In contrast, STIM2 overexpression promoted metastasis. These findings were validated in human tissue arrays of 340 breast cancer samples for STIM2. Conclusion Taken together, our results demonstrated that STIM2 specifically regulates NFAT1, which in turn regulates the expression and secretion of TGF-β1 to promote EMT in vitro and in vivo, leading to metastasis of breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1185-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yutian Miao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siheng Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hehai Huang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianchong Zheng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuocheng Yao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanxin He
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sitong Lu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chunqing Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
13
|
HSF1 phosphorylation by cyclosporin A confers hyperthermia sensitivity through suppression of HSP expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:846-857. [DOI: 10.1016/j.bbagrm.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
|
14
|
Tubita V, Segui-Barber J, Lozano JJ, Banon-Maneus E, Rovira J, Cucchiari D, Moya-Rull D, Oppenheimer F, Del Portillo H, Campistol JM, Diekmann F, Ramirez-Bajo MJ, Revuelta I. Effect of immunosuppression in miRNAs from extracellular vesicles of colorectal cancer and their influence on the pre-metastatic niche. Sci Rep 2019; 9:11177. [PMID: 31371743 PMCID: PMC6672014 DOI: 10.1038/s41598-019-47581-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) occurs with more aggressiveness in kidney transplant recipients compared to the general population. Immunosuppressive therapy plays a crucial role in the development of post-transplant malignancy. Concretely, cyclosporine A (CsA) has intrinsic pro-oncologic properties, while several studies report a regression of cancer after the introduction of rapamycin (RAPA). However, their effect on the extracellular vesicle (EV) content from CRC cell lines and their relevance in the pre-metastatic niche have not yet been studied. Here, we investigated the effect of RAPA and CsA in EV-miRNAs from metastatic and non-metastatic CRC cell lines and the role of relevant miRNAs transferred into a pre-metastatic niche model. EV-miRNA profiles showed a significant upregulation of miR-6127, miR-6746-5p, and miR-6787-5p under RAPA treatment compared to CsA and untreated conditions in metastatic cell lines that were not observed in non-metastatic cells. From gene expression analysis of transfected lung fibroblasts, we identified 22 shared downregulated genes mostly represented by the histone family involved in chromatin organization, DNA packaging, and cell cycle. These results suggest that EV-miR-6127, miR-6746-5p and miR-6787-5p could be a potential epigenetic mechanism induced by RAPA therapy in the regulation of the pre-metastatic niche of post-transplant colorectal cancer.
Collapse
Affiliation(s)
- Valeria Tubita
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain
| | - Joan Segui-Barber
- Instituto de Salud Global de Barcelona (ISGlobal), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | | | - Elisenda Banon-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), FCRB, Barcelona, Spain.,Spanish Kidney Research Network, ISCIII-RETIC REDinREN RD016/0 009, Madrid, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain.,Spanish Kidney Research Network, ISCIII-RETIC REDinREN RD016/0 009, Madrid, Spain
| | - David Cucchiari
- Department of Nephrology and Renal Transplantation, ICNU, Hospital Clínic, Barcelona, Spain
| | - Daniel Moya-Rull
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), FCRB, Barcelona, Spain.,Spanish Kidney Research Network, ISCIII-RETIC REDinREN RD016/0 009, Madrid, Spain
| | - Federico Oppenheimer
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), FCRB, Barcelona, Spain.,Department of Nephrology and Renal Transplantation, ICNU, Hospital Clínic, Barcelona, Spain
| | - Hernando Del Portillo
- Instituto de Salud Global de Barcelona (ISGlobal), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), FCRB, Barcelona, Spain.,Spanish Kidney Research Network, ISCIII-RETIC REDinREN RD016/0 009, Madrid, Spain.,Department of Nephrology and Renal Transplantation, ICNU, Hospital Clínic, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), FCRB, Barcelona, Spain.,Spanish Kidney Research Network, ISCIII-RETIC REDinREN RD016/0 009, Madrid, Spain.,Department of Nephrology and Renal Transplantation, ICNU, Hospital Clínic, Barcelona, Spain
| | - Maria José Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain. .,Spanish Kidney Research Network, ISCIII-RETIC REDinREN RD016/0 009, Madrid, Spain.
| | - Ignacio Revuelta
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), IDIBAPS, Barcelona, Spain. .,Spanish Kidney Research Network, ISCIII-RETIC REDinREN RD016/0 009, Madrid, Spain. .,Department of Nephrology and Renal Transplantation, ICNU, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
15
|
Flores C, Fouquet G, Moura IC, Maciel TT, Hermine O. Lessons to Learn From Low-Dose Cyclosporin-A: A New Approach for Unexpected Clinical Applications. Front Immunol 2019; 10:588. [PMID: 30984176 PMCID: PMC6447662 DOI: 10.3389/fimmu.2019.00588] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 01/09/2023] Open
Abstract
Cyclosporin-A has been known and used for a long time, since its "fast track" approval in the early 80's. This molecule has rapidly demonstrated unexpected immunosuppressive properties, transforming the history of organ transplantation. Cyclosporin's key effect relies on modulation on T-lymphocyte activity, which explains its role in the prevention of graft rejection. However, whether cyclosporin-A exerts other effects on immune system remains to be determined. Until recently, cyclosporin-A was mainly used at a high-dose, but given the drug toxicity and despite the fear of losing its immunosuppressive effects, there is nowadays a tendency to decrease its dose. The literature has been reporting data revealing a paradoxical effect of low dosage of cyclosporin-A. These low-doses appear to have immunomodulatory properties, with different effects from high-doses on CD8+ T lymphocyte activation, auto-immune diseases, graft-vs.-host disease and cancer. The aim of this review is to discuss the role of cyclosporin-A, not only as a consecrated immunosuppressive agent, but also as an immunomodulatory drug when administrated at low-dose. The use of low-dose cyclosporin-A may become a new therapeutic strategy, particularly to treat cancer.
Collapse
Affiliation(s)
- Camila Flores
- INSERM UMR1163 and CNRS URL 8254, Imagine Institute, Paris, France
- Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Guillemette Fouquet
- INSERM UMR1163 and CNRS URL 8254, Imagine Institute, Paris, France
- Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Ivan Cruz Moura
- INSERM UMR1163 and CNRS URL 8254, Imagine Institute, Paris, France
- Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Thiago Trovati Maciel
- INSERM UMR1163 and CNRS URL 8254, Imagine Institute, Paris, France
- Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Olivier Hermine
- INSERM UMR1163 and CNRS URL 8254, Imagine Institute, Paris, France
- Paris Descartes University-Sorbonne Paris Cité, Paris, France
- Department of Hematology, Necker Children's Hospital, APHP, Paris, France
| |
Collapse
|
16
|
Wang M, Ferreira RB, Law ME, Davis BJ, Yaaghubi E, Ghilardi AF, Sharma A, Avery BA, Rodriguez E, Chiang CW, Narayan S, Heldermon CD, Castellano RK, Law BK. A novel proteotoxic combination therapy for EGFR+ and HER2+ cancers. Oncogene 2019; 38:4264-4282. [PMID: 30718919 DOI: 10.1038/s41388-019-0717-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/08/2023]
Abstract
While HER2 and EGFR are overexpressed in breast cancers and multiple other types of tumors, the use of EGFR and/or HER2 inhibitors have failed to cure many cancer patients, largely because cancers acquire resistance to HER2/EGFR-specific drugs. Cancers that overexpress the HER-family proteins EGFR, HER2, and HER3 are uniquely sensitive to agents that disrupt HER2 and EGFR protein folding. We previously showed that disruption of disulfide bond formation by Disulfide Disrupting Agents (DDAs) kills HER2/EGFR overexpressing cells through multiple mechanisms. Herein, we show that interference with proline isomerization in HER2/EGFR overexpressing cells also induces cancer cell death. The peptidyl-prolyl isomerase inhibitor Cyclosporine A (CsA) selectively kills EGFR+ or HER2+ breast cancer cells in vitro by activating caspase-dependent apoptotic pathways. Further, CsA synergizes with the DDA tcyDTDO to kill HER2/EGFR overexpressing cells in vitro and the two agents cooperate to kill HER2+ tumors in vivo. There is a critical need for novel strategies to target HER2+ and EGFR+ cancers that are resistant to currently available mechanism-based agents. Drugs that target HER2/EGFR protein folding, including DDAs and CsA, have the potential to kill cancers that overexpress EGFR or HER2 through the induction of proteostatic synthetic lethality.
Collapse
Affiliation(s)
- Mengxiong Wang
- Department of Pharmacology, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Mary E Law
- Department of Pharmacology, University of Florida, Gainesville, FL, 32610, USA
| | - Bradley J Davis
- Department of Pharmacology, University of Florida, Gainesville, FL, 32610, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, 32610, USA
| | - Bonnie A Avery
- Department of Pharmaceutics, University of Florida, Gainesville, FL, 32610, USA
| | - Edgardo Rodriguez
- Department of Pharmacology, University of Florida, Gainesville, FL, 32610, USA
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine and Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Coy D Heldermon
- UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA. .,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Brian K Law
- Department of Pharmacology, University of Florida, Gainesville, FL, 32610, USA. .,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Inhibition of the AnxA1/FPR1 autocrine axis reduces MDA-MB-231 breast cancer cell growth and aggressiveness in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1368-1382. [PMID: 29932988 DOI: 10.1016/j.bbamcr.2018.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 12/18/2022]
Abstract
Breast Cancer (BC) is a highly heterogeneous disease whose most aggressive behavior is displayed by triple-negative breast cancer (TNBC), which lacks an efficient targeted therapy. Despite its controversial role, one of the proteins that having been linked with BC is Annexin A1 (AnxA1), which is a Ca+2 binding protein that acts modulating the immune system, cell membrane organization and vesicular trafficking. In this work we analyzed tissue microarrays of BC samples and observed a higher expression of AnxA1 in TNBCs and in lymph node metastasis. We also observed a positive correlation in primary tumors between expression levels of AnxA1 and its receptor, FPR1. Despite displaying a lesser strength, this correlation also exists in BC lymph node metastasis. In agreement, we have found that AnxA1 was highly expressed and secreted in the TNBC cell line MDA-MB-231 that also expressed high levels of FPR1. Furthermore, we demonstrated, by using the specific FPR1 inhibitor Cyclosporin H (CsH) and the immunosuppressive drug Cyclosporin A (CsA), the existence of an autocrine signaling of AnxA1 through the FPR1. Such signaling, elicited by AnxA1 upon its secretion, increased the aggressiveness and survival of MDA-MB-231 cells. In this manner, we demonstrated that CsA works very efficiently as an FPR1 inhibitor. Finally, by using CsA, we demonstrated that FPR1 inhibition decreased MDA-MB-231 tumor growth and metastasis formation in nude mice. These results indicate that FPR1 inhibition could be a potential intervention strategy to manage TNBCs displaying the characteristics of MDA-MB-231 cells. FPR1 inhibition can be efficiently achieved by CsA.
Collapse
|
18
|
Ram BM, Dolpady J, Kulkarni R, Usha R, Bhoria U, Poli UR, Islam M, Trehanpati N, Ramakrishna G. Human papillomavirus (HPV) oncoprotein E6 facilitates Calcineurin-Nuclear factor for activated T cells 2 (NFAT2) signaling to promote cellular proliferation in cervical cell carcinoma. Exp Cell Res 2018; 362:132-141. [DOI: 10.1016/j.yexcr.2017.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
|
19
|
Ishida R, Koyanagi-Aoi M, Oshima N, Kakeji Y, Aoi T. The Tissue-Reconstructing Ability of Colon CSCs Is Enhanced by FK506 and Suppressed by GSK3 Inhibition. Mol Cancer Res 2017; 15:1455-1466. [DOI: 10.1158/1541-7786.mcr-17-0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
|
20
|
Calcineurin Inhibitors Downregulate HNF-1β and May Affect the Outcome of HNF1B Patients After Renal Transplantation. Transplantation 2016; 100:1970-8. [DOI: 10.1097/tp.0000000000000993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
KRAS mutation leads to decreased expression of regulator of calcineurin 2, resulting in tumor proliferation in colorectal cancer. Oncogenesis 2016; 5:e253. [PMID: 27526107 PMCID: PMC5007825 DOI: 10.1038/oncsis.2016.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/07/2016] [Accepted: 05/30/2016] [Indexed: 12/22/2022] Open
Abstract
KRAS mutations occur in 30–40% of all cases of human colorectal cancer (CRC). However, to date, specific therapeutic agents against KRAS-mutated CRC have not been developed. We previously described the generation of mouse models of colon cancer with and without Kras mutations (CDX2P-G22Cre;Apcflox/flox; LSL-KrasG12D and CDX2P-G22Cre;Apcflox/flox mice, respectively). Here, the two mouse models were compared to identify candidate genes, which may represent novel therapeutic targets or predictive biomarkers. Differentially expressed genes in tumors from the two mouse models were identified using microarray analysis, and their expression was compared by quantitative reverse transcription–PCR (qRT–PCR) and immunohistochemical analyses in mouse tumors and surgical specimens of human CRC, with or without KRAS mutations, respectively. Furthermore, the functions of candidate genes were studied using human CRC cell lines. Microarray analysis of 34 000 transcripts resulted in the identification of 19 candidate genes. qRT–PCR analysis data showed that four of these candidate genes (Clps, Irx5, Bex1 and Rcan2) exhibited decreased expression in the Kras-mutated mouse model. The expression of the regulator of calcineurin 2 (RCAN2) was also observed to be lower in KRAS-mutated human CRC. Moreover, inhibitory function for cancer cell proliferation dependent on calcineurin was indicated with overexpression and short hairpin RNA knockdown of RCAN2 in human CRC cell lines. KRAS mutations in CRC lead to a decrease in RCAN2 expression, resulting in tumor proliferation due to derepression of calcineurin–nuclear factor of activated T cells (NFAT) signaling. Our findings suggest that calcineurin–NFAT signal may represent a novel molecular target for the treatment of KRAS-mutated CRC.
Collapse
|
22
|
Shou J, You L, Yao J, Xie J, Jing J, Jing Z, Jiang L, Sui X, Pan H, Han W. Cyclosporine A sensitizes human non-small cell lung cancer cells to gefitinib through inhibition of STAT3. Cancer Lett 2016; 379:124-33. [DOI: 10.1016/j.canlet.2016.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/21/2023]
|
23
|
Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, Zhang C, Sheng C, Leng Q, Rudd CE, Wei B, Wang H. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med 2016; 7:754-69. [PMID: 25851535 PMCID: PMC4459816 DOI: 10.15252/emmm.201404578] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PD-1 negatively regulates CD8(+) cytotoxic T lymphocytes (CTL) cytotoxicity and anti-tumor immunity. However, it is not fully understood how PD-1 expression on CD8(+) CTL is regulated during anti-tumor immunotherapy. In this study, we have identified that the ADAP-SKAP55 signaling module reduced CD8(+) CTL cytotoxicity and enhanced PD-1 expression in a Fyn-, Ca(2+)-, and NFATc1-dependent manner. In DC vaccine-based tumor prevention and therapeutic models, knockout of SKAP55 or ADAP showed a heightened protection from tumor formation or metastases in mice and reduced PD-1 expression in CD8(+) effector cells. Interestingly, CTLA-4 levels and the percentages of tumor infiltrating CD4(+)Foxp3(+) Tregs remained unchanged. Furthermore, adoptive transfer of SKAP55-deficient or ADAP-deficient CD8(+) CTLs significantly blocked tumor growth and increased anti-tumor immunity. Pretreatment of wild-type CD8(+) CTLs with the NFATc1 inhibitor CsA could also downregulate PD-1 expression and enhance anti-tumor therapeutic efficacy. Together, we propose that targeting the unrecognized ADAP-SKAP55-NFATc1-PD-1 pathway might increase efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Chunyang Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Weiyun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Normal University, Shanghai, China
| | - Shaozhuo Jiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Xue
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chun Sheng
- Shanghai Normal University, Shanghai, China
| | - Qibin Leng
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | | | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Sica GS, Fiorani C, Stolfi C, Monteleone G, Candi E, Amelio I, Catani V, Sibio S, Divizia A, Tema G, Iaculli E, Gaspari AL. Peritoneal expression of Matrilysin helps identify early post-operative recurrence of colorectal cancer. Oncotarget 2015; 6:13402-13415. [PMID: 25596746 PMCID: PMC4537023 DOI: 10.18632/oncotarget.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Recurrence of colorectal cancer (CRC) following a potentially curative resection is a challenging clinical problem. Matrix metalloproteinase-7 (MMP-7) is over-expressed by CRC cells and supposed to play a major role in CRC cell diffusion and metastasis. MMP-7 RNA expression was assessed by real-time PCR using specific primers in peritoneal washing fluid obtained during surgical procedure. After surgery, patients underwent a regular follow up for assessing recurrence. transcripts for MMP-7 were detected in 31/57 samples (54%). Patients were followed-up (range 20-48 months) for recurrence prevention. Recurrence was diagnosed in 6 out of 55 patients (11%) and two patients eventually died because of this. Notably, all the six patients who had relapsed were positive for MMP-7. Sensitivity and specificity of the test were 100% and 49% respectively. Data from patients have also been corroborated by computational approaches. Public available coloncarcinoma datasets have been employed to confirm MMP7 clinical impact on the disease. Interestingly, MMP-7 expression appeared correlated to Tgfb-1, and correlation of the two factors represented a poor prognostic factor. This study proposes positivity of MMP-7 in peritoneal cavity as a novel biomarker for predicting disease recurrence in patients with CRC.
Collapse
Affiliation(s)
- Giuseppe S. Sica
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
- European Society Degenerative Disease (ESDD). www.esdd.it
| | - Cristina Fiorani
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Carmine Stolfi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giovanni Monteleone
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Simone Sibio
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Andrea Divizia
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giorgia Tema
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Edoardo Iaculli
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Achille L. Gaspari
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| |
Collapse
|
25
|
Chen J, Chen S, Wang J, Zhang M, Gong Z, Wei Y, Li L, Zhang Y, Zhao X, Jiang S, Yu L. Cyclophilin J is a novel peptidyl-prolyl isomerase and target for repressing the growth of hepatocellular carcinoma. PLoS One 2015; 10:e0127668. [PMID: 26020957 PMCID: PMC4447340 DOI: 10.1371/journal.pone.0127668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
Cyclophilin J (CYPJ) is a new member of the peptidyl-prolyl cis/trans-isomerase (PPIase) identified with upregulated expression in human glioma. However, the biological function of CYPJ remained unclear. We aimed to study the role of CYPJ in hepatocellular carcinoma (HCC) carcinogenesis and its therapeutic potential. We determined the expression of CYPJ in HCC/adjacent normal tissues using Western blot, Northern blot and semi-quantitative RT-PCR, analyzed the biochemical characteristics of CYPJ, and resolved the 3D-structure of CYPJ/Cyclosporin A (CsA) complex. We also studied the roles of CYPJ in cell cycle, cyclin D1 regulation, in vitro and in vivo tumor growth. We found that CYPJ expression was upregulated in over 60% HCC tissues. The PPIase activity of CYPJ could be inhibited by the widely used immunosuppressive drug CsA. CYPJ was found expressed in the whole cell of HCC with preferential location at the cell nucleus. CYPJ promoted the transition of cells from G1 phase to S phase in a PPIase-dependent manner by activating cyclin D1 promoter. CYPJ overexpression accelerated liver cell growth in vitro (cell growth assay, colony formation) and in vivo (xenograft tumor formation). Inhibition of CYPJ by its inhibitor CsA or CYPJ-specific RNAi diminished the growth of liver cancer cells in vitro and in vivo. In conclusion, CYPJ could facilitate HCC growth by promoting cell cycle transition from G1 to S phase through the upregulation of cyclin D1. Suppression of CYPJ could repress the growth of HCC, which makes CYPJ a potential target for the development of new strategies to treat this malignancy.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Shandong Research Center of Stem Cell Engineering, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
- * E-mail: (SJ); (JC)
| | - Shuai Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jiahui Wang
- Shandong Research Center of Stem Cell Engineering, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Mingjun Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Li Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xuemei Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Songmin Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- * E-mail: (SJ); (JC)
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
26
|
Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Ishiguro H, Miyamoto H. The role of NFATc1 in prostate cancer progression: cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion. Prostate 2015; 75:573-84. [PMID: 25631176 DOI: 10.1002/pros.22937] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The functional role of nuclear factor of activated T-cells (NFAT), a well-characterized regulator of the immune response, in prostate cancer progression remains largely unknown. We aim to investigate biological significance of NFATc1, a NFAT isoform shown to function as an oncogene in a sarcoma model, in human prostate cancer. METHODS We first determined the expression levels of NFAT in prostate cell lines and tissue specimens. We then assessed the effects of NFAT inhibition via NFATc1-small interfering RNA (siRNA) as well as immunosuppressants including cyclosporine A (CsA) and tacrolimus (FK506) on prostate cancer cell proliferation, apoptosis, migration, and invasion in vitro and in vivo. RESULTS Immunohistochemistry revealed that the expression levels of NFATc1 were significantly elevated in prostatic carcinomas, compared with non-neoplastic prostate or high-grade prostatic intraepithelial neoplasia tissues, and in high-grade (Gleason scores ≥7) tumors. NFATc1 positivity in carcinomas, as an independent prognosticator, also correlated with the risk of biochemical recurrence after radical prostatectomy. In prostate cancer cell lines, CsA and FK506 inhibited NFATc1 expression and its nuclear translocation, NFAT transcriptional activity, and the expression of c-myc, a downstream target of NFAT. NFAT silencing or treatment with these NFAT inhibitors resulted in decreases in cell viability/colony formation and cell migration/invasion, as well as increases in apoptosis, in androgen receptor (AR)-negative, AR-positive/androgen-sensitive, and AR-positive/castration-resistant lines. No significant additional inhibition in the growth of NFAT-siRNA cells by CsA and FK506 was seen, whereas these agents, especially FK506, further inhibited their invasion. In xenograft-bearing mice, CsA and FK506 significantly retarded tumor growth. CONCLUSIONS Our results suggest that NFATc1 plays an important role in prostate cancer outgrowth. Thus, NFATc1 inactivation, especially using CsA and FK506, has the potential of being a therapeutic approach for not only hormone-naïve but also castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | | | | | | | | | | | | |
Collapse
|
27
|
Chandler HL, Gervais KJ, Lutz EA, Curto EM, Matusow RB, Wilkie DA, Gemensky-Metzler AJ. Cyclosporine A prevents ex vivo PCO formation through induction of autophagy-mediated cell death. Exp Eye Res 2015; 134:63-72. [PMID: 25839646 DOI: 10.1016/j.exer.2015.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to determine the Cyclosporine A (CsA) dose and minimum drug delivery time needed to prevent posterior capsule opacification (PCO) in an ex vivo canine model and evaluate the mechanism of CsA-induced cell death. Canine lens epithelial cells (LEC) were treated with CsA and changes in cell migration, proliferation, and density were monitored over time. CsA-treated LEC underwent transmission electron microscopy (TEM), immunofluorescence, and immunoblotting in the presence or absence of autophagy inhibitors to evaluate the mechanism of cell death. Lens capsules were harvested from canine cadaver eyes for an ex vivo model of PCO. Lens capsules were treated with CsA for 1, 2, 3, 4, 5, 6, or 7 days, and subsequently maintained in culture for a total of 28 days in the absence of drug. CsA reduced LEC viability in a dose dependent manner. Morphologically, CsA-treated LEC were swollen, had intact nuclei, lacked peripheral chromatin condensation, and demonstrated prominent vacuolization; TEM revealed autophagosomes. LC3-II protein expression and acridine orange fluorescence increased in CsA-treated cells. A small non-significant induction of cleaved caspase-3 was observed in CsA-treated LEC. Lens capsules treated with 5, 6, or 7 days of 10 μg/mL CsA showed a significant decrease in ex vivo PCO formation; 6 days of drug delivery prevented PCO. This study finds that morphologic changes, formation of acidic vesicles, and increased expression of LC3-II supports the hypothesis that CsA mediates LEC death via autophagy; this is a novel finding in the lens. Induction of CsA-induced apoptosis was minimal. Six days of intracapsular CsA drug delivery prevented ex vivo PCO formation.
Collapse
Affiliation(s)
- Heather L Chandler
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA; The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| | - Kristen J Gervais
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - Elizabeth A Lutz
- The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| | - Elizabeth M Curto
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - Rachel B Matusow
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - David A Wilkie
- The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| | - Anne J Gemensky-Metzler
- The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Miyamoto Y, Netto GJ, Ishiguro H, Miyamoto H. Cyclosporine A and tacrolimus inhibit bladder cancer growth through down-regulation of NFATc1. Oncotarget 2015; 6:1582-93. [PMID: 25638160 PMCID: PMC4359316 DOI: 10.18632/oncotarget.2750] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/15/2014] [Indexed: 11/27/2022] Open
Abstract
The functional role of nuclear factor of activated T-cells (NFAT), a key regulator of the immune response, in bladder cancer progression remains uncertain. In this study, we assessed biological significance of NFAT in human bladder cancer. Immunohistochemistry detected nuclear/cytoplasmic NFATc1 signals in 14 (21.5%)/34 (52.3%), respectively, of 65 muscle-invasive bladder carcinomas and showed that patients with nuclear NFATc1-positive tumor had a significantly higher risk of disease progression (P = 0.006). In bladder cancer cell lines, cyclosporine A (CsA) and tacrolimus (FK506), immunosuppressant drugs/non-selective NFAT inhibitors, attenuated NFATc1 expression and its nuclear translocation, NFAT transcriptional activity, and the expression of cyclooxygenase-2 and c-myc, downstream targets of NFATc1. NFAT inhibition via NFATc1-small interfering RNA (siRNA) or treatment with these NFAT inhibitors resulted in decreases in cell viability/colony formation, cell migration/invasion, and the expression/activity of MMP-2 and MMP-9, as well as an increase in apoptosis, in the parental/control lines. No significant additional inhibition in the viability and invasion of NFATc1-siRNA cells was seen. In xenograft-bearing mice, CsA and FK506 significantly retarded tumor growth. These results suggest that NFATc1 plays an important role in bladder cancer outgrowth. Thus, NFATc1 inactivation, especially using CsA and FK506, has the potential of being a therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yurina Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George J. Netto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hitoshi Ishiguro
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
29
|
Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr Neurovasc Res 2014; 11:177-86. [PMID: 24712647 DOI: 10.2174/1567202611666140408104831] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
On a global basis, at least 15 million individuals suffer some form of a stroke every year. Of these individuals, approximately 800,000 of these cerebrovascular events occur in the United States (US) alone. The incidence of stroke in the US has declined from the third leading cause of death to the fourth, a result that can be attributed to multiple factors that include improved vascular disease management, reduced tobacco use, and more rapid time to treatment in patients that are clinically appropriate to receive recombinant tissue plasminogen activator. However, treatment strategies for the majority of stroke patients are extremely limited and represent a critical void for care. A number of new therapeutic considerations for stroke are under consideration, but it is the mammalian target of rapamycin (mTOR) that is receiving intense focus as a potential new target for cerebrovascular disease. As part of the phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt) cascade, mTOR is an essential component of mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) to govern cell death involving apoptosis, autophagy, and necroptosis, cellular metabolism, and gene transcription. Vital for the consideration of new therapeutic strategies for stroke is the ability to understand how the intricate and complex pathways of mTOR signaling sometimes lead to disparate clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
30
|
Abstract
A significant portion of the world's population suffers from sporadic Alzheimer's disease (AD) with available present therapies limited to symptomatic care that does not alter disease progression. Over the next decade, advancing age of the global population will dramatically increase the incidence of AD and severely impact health care resources, necessitating novel, safe, and efficacious strategies for AD. The mammalian target of rapamycin (mTOR) and its protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) offer exciting and unique avenues of intervention for AD through the oversight of programmed cell death pathways of apoptosis, autophagy, and necroptosis. mTOR modulates multi-faceted signal transduction pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), hamartin (tuberous sclerosis 1)/ tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex, proline-rich Akt substrate 40 kDa (PRAS40), and p70 ribosomal S6 kinase (p70S6K) and can interface with the neuroprotective pathways of growth factors, sirtuins, wingless, forkhead transcription factors, and glycogen synthase kinase-3β. With the ability of mTOR to broadly impact cellular function, clinical strategies for AD that implement mTOR must achieve parallel objectives of protecting neuronal, vascular, and immune cell survival in conjunction with preserving networks that determine memory and cognitive function.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling , Newark, New Jersey 07101 , USA
| |
Collapse
|
31
|
Vargas T, Moreno-Rubio J, Herranz J, Cejas P, Molina S, González-Vallinas M, Ramos R, Burgos E, Aguayo C, Custodio AB, Reglero G, Feliu J, Ramírez de Molina A. Genes associated with metabolic syndrome predict disease-free survival in stage II colorectal cancer patients. A novel link between metabolic dysregulation and colorectal cancer. Mol Oncol 2014; 8:1469-81. [PMID: 25001263 PMCID: PMC5528602 DOI: 10.1016/j.molonc.2014.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/08/2014] [Accepted: 05/27/2014] [Indexed: 01/30/2023] Open
Abstract
Studies have recently suggested that metabolic syndrome and its components increase the risk of colorectal cancer. Both diseases are increasing in most countries, and the genetic association between them has not been fully elucidated. The objective of this study was to assess the association between genetic risk factors of metabolic syndrome or related conditions (obesity, hyperlipidaemia, diabetes mellitus type 2) and clinical outcome in stage II colorectal cancer patients. Expression levels of several genes related to metabolic syndrome and associated alterations were analysed by real-time qPCR in two equivalent but independent sets of stage II colorectal cancer patients. Using logistic regression models and cross-validation analysis with all tumour samples, we developed a metabolic syndrome-related gene expression profile to predict clinical outcome in stage II colorectal cancer patients. The results showed that a gene expression profile constituted by genes previously related to metabolic syndrome was significantly associated with clinical outcome of stage II colorectal cancer patients. This metabolic profile was able to identify patients with a low risk and high risk of relapse. Its predictive value was validated using an independent set of stage II colorectal cancer patients. The identification of a set of genes related to metabolic syndrome that predict survival in intermediate-stage colorectal cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy and avoid the toxic and unnecessary chemotherapy in patients classified as low risk. Our results also confirm the linkage between metabolic disorder and colorectal cancer and suggest the potential for cancer prevention and/or treatment by targeting these genes.
Collapse
Affiliation(s)
| | - Juan Moreno-Rubio
- Translational Oncology Laboratory, La Paz University Hospital (IdiPAZ), Madrid, Spain; Medical Oncology, Infanta Sofía University Hospital, Madrid, Spain
| | | | - Paloma Cejas
- Translational Oncology Laboratory, La Paz University Hospital (IdiPAZ), Madrid, Spain
| | | | | | - Ricardo Ramos
- Genomic Service, Scientific Park of Madrid, Madrid, Spain
| | - Emilio Burgos
- Pathology Department, La Paz University Hospital (IdiPAZ), Madrid, Spain
| | - Cristina Aguayo
- Medical Oncology, La Paz University Hospital (IdiPAZ), Madrid, Spain
| | - Ana B Custodio
- Medical Oncology, La Paz University Hospital (IdiPAZ), Madrid, Spain
| | - Guillermo Reglero
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain; Food Research Institute (CIAL) CEI UAM+CSIC, Madrid, Spain
| | - Jaime Feliu
- Medical Oncology, La Paz University Hospital (IdiPAZ), Madrid, Spain
| | | |
Collapse
|