1
|
Chen Q, Xu L, Lu C, Xue Y, Gong X, Shi Y, Wang C, Yu L. Prognostic significance of CDK1 expression in diffuse large B-Cell lymphoma. BMC Cancer 2025; 25:20. [PMID: 39773464 PMCID: PMC11705832 DOI: 10.1186/s12885-024-13388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adult, characterized by uncontrolled cell proliferation and strong aggressiveness. Previous studies have found that cyclin-dependent kinase 1(CDK1) are related to tumor growth and metastasis. However, the role of CDK1 in DLBCL is exclusive. This study investigated the clinical implications and expression of CDK1 in DLBCL. METHODS Gene expression data for healthy subjects were sourced from the Genotype-Tissue Expression repository. Clinical details and survival statistics of patients with DLBCL were obtained from the Gene Expression Omnibus archive (GSE10846). Patients were categorized based on CDK1 expression levels, and differences in clinical outcomes between the groups were examined. Univariate and multivariate Cox regression analyses were used to ascertain whether CDK1 expression independently predicted DLBCL prognosis. The protein expression of CDK1 was gauged by immunohistochemistry. Additionally, we investigated the effect of CDK1 inhibition on DLBCL cell growth and death using the Cell Counting Kit-8 and flow cytometry. RESULTS In the control group, CDK1 expression was predominantly observed in the hematopoietic and reproductive systems. CDK1 levels in patients with DLBCL were notably elevated compared with those in controls. Significant differences were noted in the lactate dehydrogenase ratio and overall survival based on CDK1 expression. Statistical analyses confirmed that CDK1 was an independent predictor of DLBCL outcomes. Elevated CDK1 protein levels were observed in a significant number of DLBCL samples, in contrast to normal lymph node samples from individuals without lymphoma. The inhibitor Ro-3306 curtails DLBCL cell growth and enhances cell death in vitro. CONCLUSIONS Elevated CDK1 levels are correlated with poor prognosis in patients with DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- CDC2 Protein Kinase/metabolism
- CDC2 Protein Kinase/genetics
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Adult
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
Collapse
Affiliation(s)
- Qiuni Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Lei Xu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chuanyang Lu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yujie Xue
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
| | - Xue Gong
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Ajonu CI, Grundy RI, Ball GR, Zafeiris D. Application of a high-throughput swarm-based deep neural network Algorithm reveals SPAG5 downregulation as a potential therapeutic target in adult AML. Funct Integr Genomics 2025; 25:8. [PMID: 39762615 PMCID: PMC11703901 DOI: 10.1007/s10142-024-01514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored. This study leverages a high-throughput swarm-based deep neural network (SDNN) and transcriptomic data-an approach that enhances predictive accuracy and robustness through collective intelligence-to augment, model, and enhance the understanding of the TP53 pathway in AML cohorts. Our integrative systems biology approach identified SPAG5 as a uniquely downregulated driver in adult AML, underscoring its potential as a novel therapeutic target. The interaction of SPAG5 with key hub genes such as MDM2 and CDK1 not only reinforces its role in tumour suppression through negative regulation but also highlights its potential in moderating the phenotypic and genomic alterations associated with AML progression. This study of the role and interaction dynamics of SPAG5 sets the stage for future research aimed at developing targeted and personalized treatment approaches for AML, utilizing the capabilities of genetic interventions.
Collapse
Affiliation(s)
- Chinyere I Ajonu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
- Intelligent OMICS Limited, Nottingham, United Kingdom.
| | | | - Graham R Ball
- Intelligent OMICS Limited, Nottingham, United Kingdom
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | | |
Collapse
|
3
|
Thomas ME, Qi W, Walsh MP, Ma J, Westover T, Abdelhamed S, Ezzell LJ, Rolle C, Xiong E, Rosikiewicz W, Xu B, Loughran AJ, Pruett-Miller SM, Janke LJ, Klco JM. Functional characterization of cooperating MGA mutations in RUNX1::RUNX1T1 acute myeloid leukemia. Leukemia 2024; 38:991-1002. [PMID: 38454121 PMCID: PMC11073986 DOI: 10.1038/s41375-024-02193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promoters of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.
Collapse
Affiliation(s)
- Melvin E Thomas
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Wenqing Qi
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Lauren J Ezzell
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chandra Rolle
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Emily Xiong
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allister J Loughran
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN, 38105, USA.
| |
Collapse
|
4
|
Zhang C, Ge L, Xie H, Liu X, Xun C, Chen Y, Chen H, Lu M, Chen P. Retinoic acid induced specific changes in the phosphoproteome of C17.2 neural stem cells. J Cell Mol Med 2024; 28:e18205. [PMID: 38506089 PMCID: PMC10951872 DOI: 10.1111/jcmm.18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/β-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.
Collapse
Affiliation(s)
- Cheng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouPR China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated HospitalHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Huali Xie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Xiaoqian Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Yan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Haiyan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| |
Collapse
|
5
|
Manoochehrabadi S, Talebi M, Pashaiefar H, Ghafouri-Fard S, Vaezi M, Omrani MD, Ahmadvand M. Upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in patients with primary non-M3 AML is associated with a worse prognosis. Blood Res 2024; 59:4. [PMID: 38485838 PMCID: PMC10903518 DOI: 10.1007/s44313-024-00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 03/18/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy with an unfavorable outcome. The present research aimed to identify novel biological targets for AML diagnosis and treatment. In this study, we performed an in-silico method to identify antisense RNAs (AS-RNAs) and their related co-expression genes. GSE68172 was selected from the AML database of the Gene Expression Omnibus and compared using the GEO2R tool to find DEGs. Antisense RNAs were selected from all the genes that had significant expression and a survival plot was drawn for them in the GEPIA database, FOXD2-AS1 was chosen for further investigation based on predetermined criteria (logFC ≥|1| and P < 0.05) and its noteworthy association between elevated expression level and a marked reduction in the overall survival (OS) in patients diagnosed with AML. The GEPIA database was utilized to investigate FOXD2-AS1-related co-expression and similar genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene ontology (GO) function analysis of the mentioned gene lists were performed using the DAVID database. The protein-protein interaction (PPI) network was then constructed using the STRING database. Hub genes were screened using Cytoscape software. Pearson correlation analysis was conducted using the GEPIA database to explore the relationship between FOXD2-AS1 and the hub genes. The transcription of the selected coding and non-coding genes, including FOXD2-AS1, CDC45, CDC20, CDK1, and CCNB1, was validated in 150 samples, including 100 primary AML non-M3 blood samples and 50 granulocyte colony stimulating factor (G-CSF)-mobilized healthy donors, using quantitative Real-Time PCR (qRT-PCR). qRT-PCR results displayed significant upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples compared to healthy blood samples (P = 0.0032, P = 0.0078, and P = 0.0117, respectively). The expression levels of CDC20 and CCNB1 were not statistically different between the two sets of samples (P = 0.8315 and P = 0.2788, respectively). We identified that AML patients with upregulation of FOXD2-AS1, CDK1, and CDC45 had shorter overall survival (OS) and Relapse-free survival (RFS) compared those with low expression of FOXD2-AS1, CDK1, and CDC45. Furthermore, the receiver operating characteristic (ROC) curve showed the potential biomarkers of lnc -FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples. This research proposed that the dysregulation of lnc-FOXD2-AS1, CDC45, and CDK1 can contribute to both disease state and diagnosis as well as treatment. The present study proposes the future evolution of the functional role of lnc-FOXD2-AS1, CDC45, and CDK1 in AML development.
Collapse
Affiliation(s)
- Saba Manoochehrabadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Klco J, Thomas M, Qi W, Walsh M, Ma J, Westover T, Abdelhamed S, Ezzell L, Rolle C, Xiong E, Rosikiewicz W, Xu B, Pruett-Miller S, Loughran A, Janke L. Functional Characterization of Cooperating MGA Mutations in RUNX1::RUNX1T1 Acute Myeloid Leukemia. RESEARCH SQUARE 2023:rs.3.rs-3315059. [PMID: 37790524 PMCID: PMC10543392 DOI: 10.21203/rs.3.rs-3315059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promotors of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1 T1 fusion oncoprotein to enhance leukemogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jing Ma
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | - Beisi Xu
- St Jude Children's Research Hospital
| | | | | | | |
Collapse
|
7
|
Fortis SP, Batsaki P, Stokidis S, Moschandreou D, Grouzi E, Baxevanis CN, Gritzapis AD, Goulielmaki M. A Blood-Based Immune Gene Signature with Prognostic Significance in Localized Prostate Cancer. Cancers (Basel) 2023; 15:3697. [PMID: 37509358 PMCID: PMC10377824 DOI: 10.3390/cancers15143697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common male cancers worldwide and one of the deadliest if unsuccessfully treated. Τhe need for reliable, easily accessible immune-related molecular biomarkers that could be combined with clinically defined criteria, including PSA and Gleason score, to accurately predict PCa patients' clinical outcomes is emerging. Herein, we describe for the first time a blood-identified immune-related gene signature comprising eight upregulated multi-functional genes associated with poor prognosis. Next-generation sequencing (NGS) analysis of PCa patients' peripheral blood samples revealed a more than three-fold upregulation of each of the eight genes as compared to samples originating from healthy donors. The construction of gene and protein interaction networks revealed different extents of the functional implications of these genes in the regulation of cell proliferation and immune responses. Analysis of the available data from The Cancer Genome Atlas (TCGA) regarding gene expression and survival of prostate adenocarcinoma (PRAD) and pan-cancer (PANCAN) patients revealed that intra-tumoral upregulation of this eight-gene signature (8-GS) was associated with poor 5-year progression-free intervals in PCa patients, even in those with high Gleason scores, and also with an unfavorable prognosis for cancer patients irrespective of the cancer type and even in the early stages. These observations suggest that further investigation of the 8-GS prospectively in randomized clinical trials, in which clinical benefit in terms of evaluating time to disease progression can be assessed, is warranted.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Dimitra Moschandreou
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| |
Collapse
|
8
|
Systematic Pan-Cancer Analysis Identifies CDK1 as an Immunological and Prognostic Biomarker. JOURNAL OF ONCOLOGY 2022; 2022:8115474. [PMID: 36090896 PMCID: PMC9452984 DOI: 10.1155/2022/8115474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinase 1 (CDK1) plays an important role in cancer development, progression, and the overall process of tumorigenesis. However, no pan-cancer analysis has been reported for CDK1, and the predictive role of CDK1 in immune checkpoint inhibitors (ICIs) therapy response remains unexplored. Thus, in this study, we first investigated the potential oncogenic role of CDK1 in 33 tumors by multidimensional bioinformatics analysis based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatic analysis and immunohistochemical experiments confirmed that CDK1 is significantly upregulated in most common cancers and is strongly associated with prognosis. Further analysis indicated that CDK1 may influence tumor immunity mainly by mediating the degree of tumor infiltration of immune-associated cells, and the effect of CDK1 on immunity is diverse across tumor types in tumor microenvironment. CDK1 was also positively correlated with tumor mutational burden (TMB) and microsatellite instability (MSI) in certain cancer types, linking its expression to the assessment of possible treatment response. The results of the pan-cancer analysis study showed that the CDK1 gene was positively associated with the expression of three classes of RNA methylation regulatory proteins, and affects RNA function through multiple mechanisms of action and plays an important role in the posttranscriptional regulation of the tumor microenvironment. These findings shed light on the role of the CDK1 gene in cancer progression and provide information to further study the CDK1 gene as a potential target for pan-cancer.
Collapse
|
9
|
Wang W, Tan H, Sun M, Han Y, Chen W, Qiu S, Zheng K, Wei G, Ni T. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration. Nucleic Acids Res 2021; 49:e54. [PMID: 33619563 PMCID: PMC8136772 DOI: 10.1093/nar/gkab089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.
Collapse
Affiliation(s)
- Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Mingwan Sun
- College of Life Science, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yiqing Han
- College of Agricultural, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China
| | - Shengnu Qiu
- Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, P.R. China
| |
Collapse
|
10
|
Yang Y, Dai Y, Yang X, Wu S, Wang Y. DNMT3A Mutation-Induced CDK1 Overexpression Promotes Leukemogenesis by Modulating the Interaction between EZH2 and DNMT3A. Biomolecules 2021; 11:biom11060781. [PMID: 34067359 PMCID: PMC8224654 DOI: 10.3390/biom11060781] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
DNMT3A mutations are frequently identified in acute myeloid leukemia (AML) and indicate poor prognosis. Previously, we found that the hotspot mutation DNMT3A R882H could upregulate CDK1 and induce AML in conditional knock-in mice. However, the mechanism by which CDK1 is involved in leukemogenesis of DNMT3A mutation-related AML, and whether CDK1 could be a therapeutic target, remains unclear. In this study, using fluorescence resonance energy transfer and immunoprecipitation analysis, we discovered that increased CDK1 could compete with EZH2 to bind to the PHD-like motif of DNMT3A, which may disturb the protein interaction between EZH2 and DNMT3A. Knockdown of CDK1 in OCI-AML3 cells with DNMT3A mutation markedly inhibited proliferation and induced apoptosis. CDK1 selective inhibitor CGP74514A (CGP) and the pan-CDK inhibitor flavopiridol (FLA) arrested OCI-AML3 cells in the G2/M phase, and induced cell apoptosis. CGP significantly increased CD163-positive cells. Moreover, the combined application of CDK1 inhibitor and traditional chemotherapy drugs synergistically inhibited proliferation and induced apoptosis of OCI-AML3 cells. In conclusion, this study highlights CDK1 overexpression as a pathogenic factor and a potential therapeutic target for DNMT3A mutation-related AML.
Collapse
|
11
|
Karlsson R, Larsson P, Miftakhova R, Syed Khaja AS, Sarwar M, Semenas J, Chen S, Hedblom A, Wang T, Ekström-Holka K, Simoulis A, Kumar A, Ødum N, Grundström T, Persson JL. Establishment of Prostate Tumor Growth and Metastasis Is Supported by Bone Marrow Cells and Is Mediated by PIP5K1α Lipid Kinase. Cancers (Basel) 2020; 12:cancers12092719. [PMID: 32971916 PMCID: PMC7564679 DOI: 10.3390/cancers12092719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metastatic castration-resistant PCa (mCRPC) is a clinically highly lethal disease; the mechanisms underlying the lethal disease remain poorly understood. Furthermore, no effective treatment for cancer metastasis exists. In this study, we have demonstrated that prostate cancer cells required bone marrow-derived cells for their growth, survival and metastasis to the host bone marrow. Our findings have provided new evidence suggesting that cancer cell-specific signals may mediate interactions between prostate cancer cells and bone marrow cells during progression of mCRPC. Therapeutic interventions using a selective inhibitor of lipid kinase PIP5K1α may not only inhibit the growth of primary tumors but may also target the lethal mCRPC within tumor-microenvironment. Abstract Cancer cells facilitate growth and metastasis by using multiple signals from the cancer-associated microenvironment. However, it remains poorly understood whether prostate cancer (PCa) cells may recruit and utilize bone marrow cells for their growth and survival. Furthermore, the regulatory mechanisms underlying interactions between PCa cells and bone marrow cells are obscure. In this study, we isolated bone marrow cells that mainly constituted populations that were positive for CD11b and Gr1 antigens from xenograft PC-3 tumor tissues from athymic nu/nu mice. We found that the tumor-infiltrated cells alone were unable to form tumor spheroids, even with increased amounts and time. By contrast, the tumor-infiltrated cells together with PCa cells formed large numbers of tumor spheroids compared with PCa cells alone. We further utilized xenograft athymic nu/nu mice bearing bone metastatic lesions. We demonstrated that PCa cells were unable to survive and give rise to colony-forming units (CFUs) in media that were used for hematopoietic cell colony-formation unit (CFU) assays. By contrast, PC-3M cells survived when bone marrow cells were present and gave rise to CFUs. Our results showed that PCa cells required bone marrow cells to support their growth and survival and establish bone metastasis in the host environment. We showed that PCa cells that were treated with either siRNA for PIP5K1α or its specific inhibitor, ISA-2011B, were unable to survive and produce tumor spheroids, together with bone marrow cells. Given that the elevated expression of PIP5K1α was specific for PCa cells and was associated with the induced expression of VEGF receptor 2 in PCa cells, our findings suggest that cancer cells may utilize PIP5K1α-mediated receptor signaling to recruit growth factors and ligands from the bone marrow-derived cells. Taken together, our study suggests a new mechanism that enables PCa cells to gain proliferative and invasive advantages within their associated host microenvironment. Therapeutic interventions using PIP5K1α inhibitors may not only inhibit tumor invasion and metastasis but also enhance the host immune system.
Collapse
Affiliation(s)
- Richard Karlsson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Per Larsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
- Department of Immunology and Microbiology, University of Copenhagen, DK2200 Copenhagen, Denmark;
| | - Regina Miftakhova
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
- Department of Genetics, Kazan Federal University, Kazan 420010, Russia
| | - Azharuddin Sajid Syed Khaja
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Martuza Sarwar
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
| | - Julius Semenas
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Sa Chen
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Andreas Hedblom
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Tianyan Wang
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | | | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology, Skåne University Hospital, 205 02 Malmö, Sweden;
| | - Anjani Kumar
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, DK2200 Copenhagen, Denmark;
| | - Thomas Grundström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
| | - Jenny L. Persson
- Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Clinical Research Centre, 205 02 Malmö, Sweden; (R.K.); (M.S.); (J.S.); (A.H.)
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; (P.L.); (R.M.); (A.S.S.K.); (S.C.); (T.W.); (A.K.); (T.G.)
- Department of Biomedical Sciences, Malmö University, 205 02 Malmö, Sweden
- Correspondence: ; Tel.: +46-706-391-199
| |
Collapse
|
12
|
Liping X, Jia L, Qi C, Liang Y, Dongen L, Jianshuai J. Cell Cycle Genes Are Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6206157. [PMID: 32596342 PMCID: PMC7298261 DOI: 10.1155/2020/6206157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The cell cycle pathway genes are comprised of 113 members which are critical to the maintenance of cell cycle and survival of tumor cells. This study was performed to investigate the diagnostic and prognostic values of cell cycle gene expression in hepatocellular carcinoma (HCC) patients. METHODS Clinical features and cell cycle pathway gene expression data were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Differentially expressed genes (DEGs) were determined by the student t-test between HCC and noncancerous samples. Kaplan-Meier survival, univariate, and multivariate survival analyses and validation analysis were performed to characterize the associations between cell cycle gene expression and patients' overall survival and recurrence-free survival. RESULTS 47 and 5 genes were significantly upregulated and downregulated genes in HCC samples, respectively. The high expression of BUB3, CDK1, and CHEK1 was associated with increased mortality (adjusted P value = 0.04, odds ratio (OR): 1.89 (95% confidence interval (CI): 1.04-3.46); adjusted P value = 0.02, OR: 2.06 (95% CI:1.15-3.75); and adjusted P value = 0.04, OR: 1.84 (%95 CI: 1.03-3.32), respectively). The expression of PTTG2 and RAD21 was significantly associated with cancer recurrence (adjusted P value = 0.01, OR: 2.17 (95% CI: 1.24-3.86); adjusted P value = 0.03, OR: 1.88[95% CI:1.08-3.28], respectively), while the low expression of MAD1L1 was associated with cancer recurrence (adjusted P value = 0.03, OR: 0.53 (%95 CI: 0.3-0.93)). CONCLUSIONS The present study demonstrated that BUB3, CDK1, and CHEK1 may serve as a prognostic biomarker for HCC patients. PTTG2, RAD21, and MAD1L1 expression is a major factor affecting the recurrence of HCC patients.
Collapse
Affiliation(s)
- Xu Liping
- Department of Hepatobiliary Pancreatic Surgery, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Li Jia
- Department of Breast and Thyroid, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Qi
- Department of Hepatobiliary Pancreatic Surgery, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Yang Liang
- Department of Hepatobiliary Pancreatic Surgery, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Li Dongen
- Department of Hepatobiliary Pancreatic Surgery, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Jiang Jianshuai
- Department of Hepatobiliary Pancreatic Surgery, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
13
|
Abdelaziz AM, Diab S, Islam S, Basnet SKC, Noll B, Li P, Mekonnen LB, Lu J, Albrecht H, Milne RW, Gerber C, Yu M, Wang S. Discovery of N-Phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine Derivatives as Potent Mnk2 Inhibitors: Design, Synthesis, SAR Analysis, and Evaluation of in vitro Anti-leukaemic Activity. Med Chem 2019; 15:602-623. [PMID: 30569866 DOI: 10.2174/1573406415666181219111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer. METHODS A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined. RESULTS These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability. CONCLUSION This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jingfeng Lu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Cobus Gerber
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
14
|
Chowdhury KD, Sarkar A, Chatterjee S, Patra D, Sengupta D, Banerjee S, Chakraborty P, Sadhukhan GC. Cathepsin B mediated scramblase activation triggers cytotoxicity and cell cycle arrest by andrographolide to overcome cellular resistance in cisplatin resistant human hepatocellular carcinoma HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:120-132. [PMID: 30889542 DOI: 10.1016/j.etap.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/24/2018] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Andrographolide regimen in single or in combination with anticancer drugs is a promising new strategy to reverse chemoresistance in heaptocellular carcinoma. Apoptosis inducing factor (AIF) may regulate a complementary, cooperative or redundant pathway, along with caspase cascades. Despite these findings, mechanisms underlying caspase-dependent and-independent signaling pathways in andrographolide -induced apoptosis in cisplatin-resistant human hepatocellular carcinoma cell line (HepG2CR) remain unclear. Andrographolide treatment effectively reduced NF-κβ nuclear localization by modulating protein kinase A- protein phosphatase 2 A- Iκβ kinase (PKA/PP2 A/IKK) axis that in turn maintains initiator caspase8 activity. Lysosomal distribution of tBid stimulates cytosolic cathepsin B resulting accumulation of truncated-AIF with induction in scramblase mediated phosphatidylserine exposure in HepG2CR cells. Andrographolide treatment thereby switch on subG1 phase arrest by modulating cellular check points (cyclin A, B, cyclin dependent kinase-1) cueing to the apoptosis event. Collectively, this study suggested antineoplastic potential of andrographolide through PKA/PP2 A/IKK pathway in HepG2CR cells.
Collapse
Affiliation(s)
- Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata, 700 009, India
| | - Avik Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University, India
| | - Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata, 700006, India
| | - Debajyoti Patra
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata, 700006, India
| | | | - Soumi Banerjee
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata, 700 009, India
| | - Pratip Chakraborty
- Department of Infertility, Institute of Reproductive Medicine, HB-36/A/3, Salt Lake, Sector-III, Kolkata, 700106, India
| | | |
Collapse
|
15
|
Ren Y, Ay A, Kahveci T. Shortest path counting in probabilistic biological networks. BMC Bioinformatics 2018; 19:465. [PMID: 30514202 PMCID: PMC6278053 DOI: 10.1186/s12859-018-2480-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biological regulatory networks, representing the interactions between genes and their products, control almost every biological activity in the cell. Shortest path search is critical to apprehend the structure of these networks, and to detect their key components. Counting the number of shortest paths between pairs of genes in biological networks is a polynomial time problem. The fact that biological interactions are uncertain events however drastically complicates the problem, as it makes the topology of a given network uncertain. RESULTS In this paper, we develop a novel method to count the number of shortest paths between two nodes in probabilistic networks. Unlike earlier approaches, which uses the shortest path counting methods that are specifically designed for deterministic networks, our method builds a new mathematical model to express and compute the number of shortest paths. We prove the correctness of this model. CONCLUSIONS We compare our novel method to three existing shortest path counting methods on synthetic and real gene regulatory networks. Our experiments demonstrate that our method is scalable, and it outperforms the existing methods in accuracy. Application of our shortest path counting method to detect communities in probabilistic networks shows that our method successfully finds communities in probabilistic networks. Moreover, our experiments on cell cycle pathway among different cancer types exhibit that our method helps in uncovering key functional characteristics of biological networks.
Collapse
Affiliation(s)
- Yuanfang Ren
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, 13346, NY, USA
| | - Tamer Kahveci
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
16
|
Mathew SP, Thakur K, Kumar S, Yende AS, Singh SK, Dash AK, Tyagi RK. A Comprehensive Analysis and Prediction of Sub-Cellular Localization of Human Nuclear Receptors. NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.11131/2018/101324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Novikova SE, Tikhonova OV, Kurbatov LK, Farafonova TE, Vakhrushev IV, Zgoda VG. Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:202-208. [PMID: 29028392 DOI: 10.1177/1469066717719848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Targeted mass spectrometry represents a powerful tool for investigation of biological processes. The convenient approach of selected reaction monitoring using stable isotope-labeled peptide standard (SIS) is widely applied for protein quantification. Along with this method, high-resolution parallel reaction monitoring has been increasingly used for protein targeted analysis. Here we applied two targeted approaches (selected reaction monitoring with SIS and label-free parallel reaction monitoring) to investigate expression of 11 proteins during all-trans retinoic acid-induced differentiation of HL-60 cells. In our experiments, we have determined the proteins expression ratio at 3, 24, 48, and 96 h after all-trans retinoic acid treatment in comparison with 0 h, respectively. Expression profiles of four proteins (VAV1, PRAM1, LYN, and CEBPB) were highly correlated ( r > 0.75) and FGR expression was detected on proteome level starting from 24 h by both techniques. For prominent differences (fold change ≥ 2) label-free parallel reaction monitoring is not inferior to selected reaction monitoring with isotopically labeled peptide standards. Differentially expressed proteins, that have been determined in our study, can be considered as potential drug targets for acute myeloid leukemia (AML) treatment.
Collapse
|
18
|
Abstract
INTRODUCTION AML therapy remains very challenging despite our increased understanding of its molecular heterogeneity. Outcomes with chemotherapy and targeted therapy remain poor. Targeting cell cycle regulators might complement chemotherapy and targeted therapy and help in improving outcomes. Areas covered: Here we cover the pre-clinical and clinical data for both for cyclin dependent kinase (CDK) and cell-cycle checkpoint inhibitors. While CDK inhibition can inhibit proliferation, checkpoint inhibitors can facilitate cell cycle progression in presence of DNA damage and can induce mitotic catastrophe. Expert opinion: Though the preclinical data for cell cycle inhibitors in AML is compelling, the clinical translation so far has proven to be challenging. This is a reflection of the complexity of both, AML and cell cycle regulators. However, early introduction of cell-cycle active agents in combination with chemotherapy or targeted agents, identifying right sequence of use and identifying right biomarkers might pave the way into successful clinical translation.
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
19
|
Hackl H, Astanina K, Wieser R. Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol 2017; 10:51. [PMID: 28219393 PMCID: PMC5322789 DOI: 10.1186/s13045-017-0416-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The majority of individuals with acute myeloid leukemia (AML) respond to initial chemotherapy and achieve a complete remission, yet only a minority experience long-term survival because a large proportion of patients eventually relapse with therapy-resistant disease. Relapse therefore represents a central problem in the treatment of AML. Despite this, and in contrast to the extensive knowledge about the molecular events underlying the process of leukemogenesis, information about the mechanisms leading to therapy resistance and relapse is still limited. PURPOSE AND CONTENT OF REVIEW Recently, a number of studies have aimed to fill this gap and provided valuable information about the clonal composition and evolution of leukemic cell populations during the course of disease, and about genetic, epigenetic, and gene expression changes associated with relapse. In this review, these studies are summarized and discussed, and the data reported in them are compiled in order to provide a resource for the identification of molecular aberrations recurrently acquired at, and thus potentially contributing to, disease recurrence and the associated therapy resistance. This survey indeed uncovered genetic aberrations with known associations with therapy resistance that were newly gained at relapse in a subset of patients. Furthermore, the expression of a number of protein coding and microRNA genes was reported to change between diagnosis and relapse in a statistically significant manner. CONCLUSIONS Together, these findings foster the expectation that future studies on larger and more homogeneous patient cohorts will uncover pathways that are robustly associated with relapse, thus representing potential targets for rationally designed therapies that may improve the treatment of patients with relapsed AML, or even facilitate the prevention of relapse in the first place.
Collapse
Affiliation(s)
- Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Ksenia Astanina
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - Rotraud Wieser
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| |
Collapse
|
20
|
Tvedt TH, Nepstad I, Bruserud Ø. Antileukemic effects of midostaurin in acute myeloid leukemia - the possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin Investig Drugs 2016; 26:343-355. [PMID: 28001095 DOI: 10.1080/13543784.2017.1275564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Midostaurin is a multikinase inhibitor that inhibits receptor tyrosine kinases (Flt3, CD117/c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor 2) as well as non-receptor tyrosine kinases (Frg, Src, Syk, Protein kinase C). Combination of midostaurin with conventional intensive chemotherapy followed by one year maintenance monotherapy was recently reported to improve the survival of acute myeloid leukemia (AML) patients with Flt3 mutations. Areas covered: Relevant publications were identified through literature searches in the PubMed database. We searched for (i) original articles describing the results from clinical studies; (ii) published articles describing the importance of midostaurin-inhibited kinases for leukemogenesis and chemosensitivity. Expert opinion: Midostaurin monotherapy is well tolerated, combined with conventional chemotherapy gastrointestinal toxicity increases significantly. Midostaurin alters anthracycline pharmacokinetics. Furthermore, its antileukemic effects may not only be mediated through Flt3 inhibition alone; the inhibition of other kinases may also be important for the overall antileukemic effect. Midostaurin may then have direct effects on the leukemic cells but also indirect antileukemic effects through inhibition of the AML-supporting effects of neighboring stromal cells in the bone marrow microenvironment. Midostaurin may thus be used in combination with intensive chemotherapy, as maintenance treatment or as disease-stabilizing treatment for elderly unfit patients.
Collapse
Affiliation(s)
- Tor Henrik Tvedt
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Ina Nepstad
- b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway.,b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| |
Collapse
|
21
|
Tang H, Fan X, Xing J, Liu Z, Jiang B, Dou Y, Gorospe M, Wang W. NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging (Albany NY) 2016; 7:1143-58. [PMID: 26687548 PMCID: PMC4712338 DOI: 10.18632/aging.100860] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A rise in the levels of the cyclin-dependent kinase (CDK) inhibitor p27KIP1 is important for the growth arrest of senescent cells, but the mechanisms responsible for this increase are poorly understood. Here, we show that the tRNA methyltransferase NSun2 represses the expression of p27 in replicative senescence. NSun2 methylated the 5′-untranslated region (UTR) of p27 mRNA at cytosine C64 in vitro and in cells, thereby repressing the translation of p27. During replicative senescence, increased p27 protein levels were accompanied by decreased NSun2 protein levels. Knockdown of NSun2 in human diploid fibroblasts (HDFs) elevated p27 levels and reduced the expression of CDK1 (encoded by CDK1 mRNA, a previously reported target of NSun2), which in turn further repressed cell proliferation and accelerated replicative senescence, while overexpression of NSun2 exerted the opposite effect. Ectopic overexpression of the p27 5′UTR fragment rescued the effect of NSun2 overexpression in lowering p27, increasing CDK1, promoting cell proliferation, and delaying replicative senescence. Our findings indicate that NSun2-mediated mRNA methylation regulates p27 and CDK1 levels during replicative senescence.
Collapse
Affiliation(s)
- Hao Tang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiuqin Fan
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junyue Xing
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhenyun Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Jiang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yali Dou
- Department of Pathology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
22
|
Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons. Sci Rep 2015; 5:18180. [PMID: 26658992 PMCID: PMC4674757 DOI: 10.1038/srep18180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection.
Collapse
|
23
|
The expression of CDK1 is associated with proliferation and can be a prognostic factor in epithelial ovarian cancer. Tumour Biol 2015; 36:4939-48. [PMID: 25910705 DOI: 10.1007/s13277-015-3141-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Overexpression of cyclin-dependent kinase 1 (CDK1) has been noted to correlation with several human cancers. However, the effects of CDK1 on ovarian cancer development remain unclear. The aim of this study was to examine the effect of CDK1 and related mechanism in the proliferation and resistance to chemotherapeutic drugs of epithelial ovarian cancer (EOC). Immunohistochemical analysis was performed in 119 human ovarian cancer samples, and the data were correlated with clinicopathologic features. Furthermore, Western blot analysis was performed for CDK1 in EOC samples and cell lines to evaluate their protein levels and molecular interaction. Kaplan-Meier survival analysis showed that strong expression of CDK1 exhibited a significant correlation with poor prognosis in human EOC (P = 0.02). Meanwhile, we found that knockdown CDK1 by shCDK1 promoted the apoptosis rate and increased the sensitivity to chemotherapy drugs. Thus, CDK1 might serve as a prognostic marker, and it might be of great value for experimental therapies in EOC.
Collapse
|
24
|
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3:16. [PMID: 25914884 PMCID: PMC4390903 DOI: 10.3389/fcell.2015.00016] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.
Collapse
Affiliation(s)
- Eiman Aleem
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA ; Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Robert J Arceci
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA
| |
Collapse
|
25
|
Hu XT, Zuckerman KS. Role of cell cycle regulatory molecules in retinoic acid- and vitamin D3-induced differentiation of acute myeloid leukaemia cells. Cell Prolif 2014; 47:200-10. [PMID: 24646031 PMCID: PMC6496847 DOI: 10.1111/cpr.12100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
The important role of cell cycle regulatory molecules in all trans-retinoic acid (ATRA)- and vitamin D3-induced growth inhibition and differentiation induction has been intensively studied in both acute myeloid leukaemia primary cells and a variety of leukaemia cell lines. Cyclin-dependent kinases (CDK)-activating kinase has been demonstrated to interact with retinoic acid receptor (RAR)α in acute promyelocytic leukaemia cells, and inhibition of CDK-activating kinase by ATRA causes hypophosphorylation of PML-RARα, leading to myeloid differentiation. In many cases, downregulation of CDK activity by ATRA and vitamin D3 is a result of elevated p21- and p27-bound CDKs. Activation of p21 is regulated at the transcriptional level, whereas elevated p27 results from both (indirectly) transcriptional activation and post-translational modifications. CDK inhibitors (CKIs) of the INK family, such as p15, p16 and p18, are mainly involved in inhibition of cell proliferation, whereas CIP/KIP members, such as p21, regulate both growth arrest and induction of differentiation. ATRA and vitamin D3 can also downregulate expression of G1 CDKs, especially CDK2 and CDK6. Inhibition of cyclin E expression has only been observed in ATRA- but not in vitamin D3-treated leukaemic cells. In vitro, not only dephosphorylation of pRb but also elevation of total pRb is required for ATRA and vitamin D3 to suppress growth and trigger their differentiation. Finally, sharp reduction in c-Myc has been observed in several leukaemia cell lines treated with ATRA, which may regulate expression of CDKs and CKIs.
Collapse
Affiliation(s)
- X. T. Hu
- Department of BiologyCollege of Arts & SciencesBarry UniversityMiami ShoresFL33161USA
| | - K. S. Zuckerman
- Department of Malignant HematologyH. Lee Moffitt Cancer Center and Research InstituteTampaFL33612USA
- Departments of Oncologic Sciences and Internal MedicineUniversity of South FloridaTampaFL33612USA
| |
Collapse
|
26
|
Persson JL. miRNA in mycosis fungoides and skin inflammation. APMIS 2013; 121:1017-9. [DOI: 10.1111/apm.12186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Jenny Liao Persson
- Division of Experimental Cancer Research; Department of Laboratory Medicine; Lund University; Clinical Research Center; Malmö Sweden
| |
Collapse
|
27
|
Gudas LJ. Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol 2013; 24:701-5. [PMID: 23973942 DOI: 10.1016/j.semcdb.2013.08.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/24/2013] [Accepted: 08/10/2013] [Indexed: 12/20/2022]
Abstract
Vitamin A (all-trans retinol) and its active metabolites, collectively called retinoids, exert potent effects on stem cell differentiation and thus, the formation of the entire organism, in part via the modulation of the epigenome. All-trans retinoic acid (RA), through binding to the retinoic acid receptors (RARs), alters interactions of the RARs with various protein components of the transcription complex at numerous genes in stem cells, and some of these protein components of the transcription complex then either place or remove epigenetic marks on histones or on DNA, altering chromatin structure and leading to an exit from the self-renewing, pluripotent stem cell state. Different epigenetic mechanisms, i.e. first, primarily H3K27me3 marks and then DNA methylation, may be employed by embryonic stem cells and other stem cells for control of early vs. late stages of cell differentiation. Creating these stable epigenetic changes requires the actions of many molecules, including tet1, polycomb protein complexes (PRCs), miRNAs, DNA methyltransferases (DNMTs), and telomerase reverse transcriptase. A more complete understanding of retinoid-dependent stem cell differentiation should reward us with new insights into the failure to maintain a differentiated state that is an essential part of neoplastic cell transformation and cancer.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
28
|
Affiliation(s)
- Niels Ødum
- Department of International Health, Immunology and Microbiology; Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|