1
|
Zhu J, Lin Q, Zhu H, Xie S, Nie S. Toxicity mechanism analysis of cGAS-STING-TBK1 signaling pathway small molecule modulator based on network toxicology and molecular docking strategy: quinacrine acetate as an example. Front Chem 2025; 13:1584588. [PMID: 40331038 PMCID: PMC12052562 DOI: 10.3389/fchem.2025.1584588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Objective This study aims to investigate the toxicity characteristics and mechanisms of quinacrine acetate, a small molecule modulator of the cGAS-STING-TBK1 signaling pathway, and to establish and validate the application value of network toxicology analysis strategy. Methods ProTox and ADMETlab platforms were used to evaluate the toxic effects of quinacrine acetate on human tissues and organs. Potential targets associated with quinacrine acetate toxicity were identified through ChEMBL, STITCH, GeneCards, OMIM, and TD databases. GO and KEGG analyses were employed to elucidate related functions and molecular mechanisms. STRING and Cytoscape software were utilized to identify key hub genes, while molecular docking validation was performed using the CB-Dock2 database. Based on toxicity analysis results, COPD was selected as a disease model, and GEO database was used to analyze the expression characteristics, immune correlation, and drug target value of hub genes in COPD. Results ProTox and ADMETlab analyses revealed that quinacrine acetate exhibited significant toxicity to the respiratory system (toxicity level 4, risk coefficient 0.959). Through integrated multi-database analysis, 14 potential targets related to quinacrine acetate-induced respiratory system toxicity were identified. GO and KEGG pathway analyses indicated that quinacrine acetate-induced respiratory toxicity was primarily mediated through metabolic pathways. Network analysis via STRING and Cytoscape identified AKT1, PLA2G4A, and ALOX5 as three core targets. Molecular docking results confirmed strong binding affinity between quinacrine acetate and these core targets. In COPD patients, PLA2G4A and ALOX5 showed significantly upregulated expression, with hub gene ROC curve AUC value reaching 0.829, demonstrating good diagnostic value. Further immune correlation analysis revealed that ALOX5 and PLA2G4A were closely associated with various immune cell expressions and served as targets for multiple drugs including histamine, melittin, and formic acid. Conclusion This study demonstrates that quinacrine acetate may influence the progression and risk of respiratory system diseases by regulating metabolic pathways. The findings provide not only a theoretical foundation for understanding the molecular mechanisms of quinacrine acetate-induced respiratory toxicity but also new perspectives and methodological references for evaluating the toxic effects of small molecule compounds in respiratory diseases. Therefore, we demonstrates the practical application value of network toxicology as an efficient predictive tool for identifying potential toxicity targets and pathways, which can guide subsequent experimental validation and provide mechanistic insights that traditional toxicology approaches might miss.
Collapse
Affiliation(s)
- Jinchao Zhu
- School of Health Science and Engineering University of Shanghai for Science and Technology, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Zhu
- School of Health Science and Engineering University of Shanghai for Science and Technology, Shanghai, China
| | - Siqi Xie
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengdong Nie
- School of Health Science and Engineering University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Crestani M, Kakogiannos N, Iori S, Iannelli F, Dini T, Maderna C, Giannotta M, Pelicci G, Maiuri P, Monzo P, Gauthier NC. Biomimetic Approach of Brain Vasculature Rapidly Characterizes Inter- and Intra-Patient Migratory Diversity of Glioblastoma. SMALL METHODS 2024; 8:e2400210. [PMID: 38747088 PMCID: PMC11671864 DOI: 10.1002/smtd.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/04/2024] [Indexed: 12/28/2024]
Abstract
Glioblastomas exhibit remarkable heterogeneity at various levels, including motility modes and mechanoproperties that contribute to tumor resistance and recurrence. In a recent study using gridded micropatterns mimicking the brain vasculature, glioblastoma cell motility modes, mechanical properties, formin content, and substrate chemistry are linked. Now is presented, SP2G (SPheroid SPreading on Grids), an analytic platform designed to identify the migratory modes of patient-derived glioblastoma cells and rapidly pinpoint the most invasive sub-populations. Tumorspheres are imaged as they spread on gridded micropatterns and analyzed by this semi-automated, open-source, Fiji macro suite that characterizes migration modes accurately. SP2G can reveal intra-patient motility heterogeneity with molecular correlations to specific integrins and EMT markers. This system presents a versatile and potentially pan-cancer workflow to detect diverse invasive tumor sub-populations in patient-derived specimens and offers a valuable tool for therapeutic evaluations at the individual patient level.
Collapse
Affiliation(s)
- Michele Crestani
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Present address:
Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyInstitute of Translational MedicineETH ZurichZurichCH‐8093Switzerland
| | - Nikolaos Kakogiannos
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Institute of ImmunologyBiomedical Sciences Research Centre “Alexander Fleming”34 Fleming StreetVari16672Greece
| | - Simone Iori
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Fabio Iannelli
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Department of Experimental OncologyIEOEuropean Institute of Oncology IRCCSMilan20139Italy
| | - Tania Dini
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Claudio Maderna
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Monica Giannotta
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Giuliana Pelicci
- Department of Experimental OncologyIEOEuropean Institute of Oncology IRCCSMilan20139Italy
- Department of Translational MedicinePiemonte Orientale University ‘‘Amedeo Avogadro’’Novara28100Italy
| | - Paolo Maiuri
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi diNapoli Federico IIVia S. Pansini 5Naples80131Italy
| | - Pascale Monzo
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Nils C. Gauthier
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| |
Collapse
|
3
|
Zhang B, Wang W, Song Y, Chen H, Lin X, Chen J, Chen Y, Huang J, Li D, Wu S. Exploring the Mechanism of Sempervirine Inhibiting Glioblastoma Invasion Based on Network Pharmacology and Bioinformatics. Pharmaceuticals (Basel) 2024; 17:1318. [PMID: 39458959 PMCID: PMC11510114 DOI: 10.3390/ph17101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Invasion is an important characteristic of the malignancy of glioblastoma (GBM) and a significant prognostic factor. Sempervirine (SPV), a yohimbine-type alkaloid, has been proven to inhibit GBM cells proliferation in previous research and found to have a potential effect in anti-invasion, but its mechanism of anti-invasion is still unknown. Methods: To explore its pharmacodynamics in inhibiting GBM cell invasion in this study, we combined network pharmacology and bioinformatics to comprehensive exploratory analysis of SPV and verified the mechanism in vitro. Results: Firstly, targets of SPV and invasion-related genes were collected from public databases. Moreover, GBM samples were obtained to analyze differentially expressed genes (DEGs) from The Cancer Genome Atlas (TCGA). Then, the relevant targets of SPV inhibiting GBM invasion (SIGI) were obtained through the intersection of the three gene sets. Further, GO and KEGG analysis showed that the targets of SIGI were heavily enriched in the AKT signaling pathway. Subsequently, based on the method of machine learning, a clinical prognostic model of the relevant targets of SIGI was constructed using GBM samples from TCGA and the Gene Expression Omnibus (GEO). A four-genes model (DUSP6, BMP2, MMP2, and MMP13) was successfully constructed, and Vina Scores of MMP2 and MMP13 in molecular docking were higher, which may be the main targets of SIGI. Then, the effect of SIGI was confirmed via functional experiments on invasion, migration, and adhesion assay, and the effect involved changes in the expressions of p-AKT, MMP2 and MMP13. Finally, combined with AKT activator (SC79) and inhibitor (MK2206), we further confirmed that SPV inhibits GBM invasion through AKT phosphorylation. Conclusions: This study provides valuable and an expected point of view into the regulation of AKT phosphorylation and inhibition of GBM invasion by SPV.
Collapse
Affiliation(s)
- Bingqiang Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Wenyi Wang
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Yu Song
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Huixian Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Xinxin Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Jingjing Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Ying Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Jinfang Huang
- Fuzhou First General Hospital, Fuzhou 350009, China;
| | - Desen Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (B.Z.); (Y.S.); (H.C.); (X.L.); (J.C.); (Y.C.)
| |
Collapse
|
4
|
Sixto-López Y, Marhuenda E, García-Vazquez JB, Fragoso-Vazquez MJ, Rosales-Hernández MC, Zacarías-Lara O, Méndez-Luna D, Gómez-Vidal JA, Cornu D, Norbert B, Correa-Basurto J. Targeting Several Biologically Reported Targets of Glioblastoma Multiforme by Assaying 2D and 3D Cultured Cells. Cell Mol Neurobiol 2022; 42:1909-1920. [PMID: 33740172 PMCID: PMC11421709 DOI: 10.1007/s10571-021-01072-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme (GBM) is account for 70% of all primary malignancies of the central nervous system. The median survival of human patients after treatment is around 15 months. There are several biological targets which have been reported that can be pursued using ligands with varied structures to treat this disease. In our group, we have developed several ligands that target a wide range of proteins involved in anticancer effects, such as histone deacetylase (HDACs), G protein-coupled estrogen receptor 1 (GPER), estrogen receptor-beta (ERβ) and NADPH oxidase (NOX), that were screened on bidimensional (2D) and tridimensional (3D) GBM stem cells like (GSC). Our results show that some HDAC inhibitors show antiproliferative properties at 21-32 µM. These results suggest that in this 3D culture, HDACs could be the most relevant targets that are modulated to induce the antiproliferative effects that require in the future further experimental studies.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México City, Mexico
| | - Emilie Marhuenda
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - Juan Benjamin García-Vazquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México City, Mexico.
| | - Manuel Jonathan Fragoso-Vazquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Prolongación de Carpio y Plan de Ayala S/N. Col. Casco de Santo Tomas, 11340, Ciudad de México, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Ciudad de México, Mexico
| | - Oscar Zacarías-Lara
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México City, Mexico
| | - David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México City, Mexico
| | - José Antonio Gómez-Vidal
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain
| | - David Cornu
- Institut Europeen des Membranes, IEM, UMR-5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Bakalara Norbert
- Institut des Neurosciences de Montpellier, INM, U-1051, Univ. Montpellier, CHU de Montpellier, ENSCM, INSERM, Montpellier, France
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México City, Mexico.
| |
Collapse
|
5
|
Echavidre W, Picco V, Faraggi M, Montemagno C. Integrin-αvβ3 as a Therapeutic Target in Glioblastoma: Back to the Future? Pharmaceutics 2022; 14:pharmaceutics14051053. [PMID: 35631639 PMCID: PMC9144720 DOI: 10.3390/pharmaceutics14051053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is associated with a dismal prognosis. Standard therapies including maximal surgical resection, radiotherapy, and temozolomide chemotherapy remain poorly efficient. Improving GBM treatment modalities is, therefore, a paramount challenge for researchers and clinicians. GBMs exhibit the hallmark feature of aggressive invasion into the surrounding tissue. Among cell surface receptors involved in this process, members of the integrin family are known to be key actors of GBM invasion. Upregulation of integrins was reported in both tumor and stromal cells, making them a suitable target for innovative therapies targeting integrins in GBM patients, as their impairment disrupts tumor cell proliferation and invasive capacities. Among them, integrin-αvβ3 expression correlates with high-grade GBM. Driven by a plethora of preclinical biological studies, antagonists of αvβ3 rapidly became attractive therapeutic candidates to impair GBM tumorigenesis. In this perspective, the advent of nuclear medicine is currently one of the greatest components of the theranostic concept in both preclinical and clinical research fields. In this review, we provided an overview of αvβ3 expression in GBM to emphasize the therapeutic agents developed. Advanced current and future developments in the theranostic field targeting αvβ3 are finally discussed.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Correspondence: ; Tel.: +377-97-77-44-15
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284, INSERM U1081, Université Cote d’Azur, 06200 Nice, France
| |
Collapse
|
6
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
7
|
Janabi AHD. Molecular Docking Analysis of Anti-Severe Acute Respiratory Syndrome-Coronavirus 2 Ligands against Spike Glycoprotein and the 3-Chymotrypsin-Like Protease. JOURNAL OF MEDICAL SIGNALS & SENSORS 2021; 11:31-36. [PMID: 34026588 PMCID: PMC8043116 DOI: 10.4103/jmss.jmss_25_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/26/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Background: The severe acute respiratory syndrome-like disease coronavirus disease 2019 (COVID-19) is a disastrous global pandemic with 16,288,490 infected cases and 649,884 deaths. Until now, no effective treatments are found. Methods: The virus uses the 3-chymotrypsin-like protease for inducing the activity of the viral polyproteins and the spike (S) glycoprotein for human cell entry through the human angiotensin-converting enzyme 2 receptor. Blocking the active binding sites of these molecules might be beneficial for decreasing the activity of the virus and suppressing the viral entry to the human cells. Here, docking methods were used to identify a group of ligands may perform the blocking operations. Results: The results revealed the strongest binding affinities, sorted high to low, for tadalafil (Cialis) (phosphodiesterase type 5 inhibitor, tirofiban (antiplatelet), paraxanthine (central nervous system stimulant), dexamethasone, gentian violet cation (triphenylmethane), salbutamol, and amlodipine (calcium channel blocker). Conclusion: These substances may provide vital help for further clinical investigation in fighting against the current global pandemic of the COVID-19.
Collapse
Affiliation(s)
- Ali Hassan Daghir Janabi
- Department of Veterinary Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Diwaniyah City, Iraq
| |
Collapse
|
8
|
Inhibition of Radiation and Temozolomide-Induced Glioblastoma Invadopodia Activity Using Ion Channel Drugs. Cancers (Basel) 2020; 12:cancers12102888. [PMID: 33050088 PMCID: PMC7599723 DOI: 10.3390/cancers12102888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Glioblastoma accounts for approximately 40–50% of all primary brain cancers and is a highly aggressive cancer that rapidly disseminates within the surrounding normal brain. Dynamic actin-rich protrusions known as invadopodia facilitate this invasive process. Ion channels have also been linked to a pro-invasive phenotype and may contribute to facilitating invadopodia activity in cancer cells. The aim of our study was to screen ion channel-targeting drugs for their cytotoxic efficacy and potential anti-invadopodia properties in glioblastoma cells. We demonstrated that the targeting of ion channels in glioblastoma cells can lead to a reduction in invadopodia activity and protease secretion. Importantly, the candidate drugs exhibited a significant reduction in radiation and temozolomide-induced glioblastoma cell invadopodia activity. These findings support the proposed pro-invasive role of ion channels via invadopodia in glioblastoma, which may be ideal therapeutic targets for the treatment of glioblastoma patients. Abstract Glioblastoma (GBM) is the most prevalent and malignant type of primary brain cancer. The rapid invasion and dissemination of tumor cells into the surrounding normal brain is a major driver of tumor recurrence, and long-term survival of GBM patients is extremely rare. Actin-rich cell membrane protrusions known as invadopodia can facilitate the highly invasive properties of GBM cells. Ion channels have been proposed to contribute to a pro-invasive phenotype in cancer cells and may also be involved in the invadopodia activity of GBM cells. GBM cell cytotoxicity screening of several ion channel drugs identified three drugs with potent cell killing efficacy: flunarizine dihydrochloride, econazole nitrate, and quinine hydrochloride dihydrate. These drugs demonstrated a reduction in GBM cell invadopodia activity and matrix metalloproteinase-2 (MMP-2) secretion. Importantly, the treatment of GBM cells with these drugs led to a significant reduction in radiation/temozolomide-induced invadopodia activity. The dual cytotoxic and anti-invasive efficacy of these agents merits further research into targeting ion channels to reduce GBM malignancy, with a potential for future clinical translation in combination with the standard therapy.
Collapse
|
9
|
Mao L, Whitehead CA, Paradiso L, Kaye AH, Morokoff AP, Luwor RB, Stylli SS. Enhancement of invadopodia activity in glioma cells by sublethal doses of irradiation and temozolomide. J Neurosurg 2018; 129:598-610. [DOI: 10.3171/2017.5.jns17845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVEGlioblastoma is the most common primary central nervous system tumor in adults. These tumors are highly invasive and infiltrative and result in tumor recurrence as well as an extremely poor patient prognosis. The current standard of care involves surgery, radiotherapy, and chemotherapy. However, previous studies have suggested that glioblastoma cells that survive treatment are potentially more invasive. The goal of this study was to investigate whether this increased phenotype in surviving cells is facilitated by actin-rich, membrane-based structures known as invadopodia.METHODSA number of commercially available cell lines and glioblastoma cell lines obtained from patients were initially screened for the protein expression levels of invadopodia regulators. Gelatin-based zymography was also used to establish their secretory protease profile. The effects of radiation and temozolomide treatment on the glioblastoma cells were then investigated with cell viability, Western blotting, gelatin-based zymography, and invadopodia matrix degradation assays.RESULTSThe authors’ results show that the glioma cells used in this study express a number of invadopodia regulators, secrete MMP-2, and form functional matrix-degrading invadopodia. Cells that were treated with radiotherapy and temozolomide were observed to show an increase primarily in the activation of MMP-2. Importantly, this also resulted in a significant enhancement in the invadopodia-facilitated matrix-degrading ability of the cells, along with an increase in the percentage of cells with invadopodia after radiation and temozolomide treatment.CONCLUSIONSThe data from this study suggest that the increased invasive phenotype that has been previously observed in glioma cells posttreatment is mediated by invadopodia. The authors propose that if the formation or activity of these structures can be disrupted, they could potentially serve as a viable target for developing novel adjuvant therapeutic strategies that can be used in conjunction with the current treatment protocols in combatting the invasive phenotype of this deadly disease.
Collapse
Affiliation(s)
- Leon Mao
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Clarissa A. Whitehead
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Lucia Paradiso
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Andrew H. Kaye
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
- 2Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Andrew P. Morokoff
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
- 2Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rodney B. Luwor
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Stanley S. Stylli
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
- 2Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Laidlaw KME, Berhan S, Liu S, Silvestri G, Holyoake TL, Frank DA, Aggarwal B, Bonner MY, Perrotti D, Jørgensen HG, Arbiser JL. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia. Oncotarget 2018; 7:51651-51664. [PMID: 27438151 PMCID: PMC5239504 DOI: 10.18632/oncotarget.10541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/30/2016] [Indexed: 01/23/2023] Open
Abstract
The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation.
Collapse
Affiliation(s)
- Kamilla M E Laidlaw
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Samuel Berhan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Suhu Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Giovannino Silvestri
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tessa L Holyoake
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - David A Frank
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bharat Aggarwal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Atlanta Veterans Administration Hospital, Atlanta, GA 30322, USA
| | - Danilo Perrotti
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Heather G Jørgensen
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Atlanta Veterans Administration Hospital, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models. Int J Mol Sci 2018; 19:ijms19010147. [PMID: 29300332 PMCID: PMC5796096 DOI: 10.3390/ijms19010147] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/30/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used.
Collapse
|
12
|
Yazdani Y, Sharifi Rad MR, Taghipour M, Chenari N, Ghaderi A, Razmkhah M. Genistein Suppression of Matrix Metalloproteinase 2 (MMP-2) and Vascular Endothelial Growth Factor (VEGF) Expression in Mesenchymal Stem Cell Like Cells Isolated from High and Low Grade Gliomas. Asian Pac J Cancer Prev 2016; 17:5303-5307. [PMID: 28125877 PMCID: PMC5454674 DOI: 10.22034/apjcp.2016.17.12.5303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective: Brain tumors cause great mortality and morbidity worldwide, and success rates with surgical treatment remain very low. Several recent studies have focused on introduction of novel effective medical therapeutic approaches. Genistein is a member of the isoflavonoid family which has proved to exert anticancer effects. Here we assessed the effects of genistein on the expression of MMP-2 and VEGF in low and high grade gliomas in vitro. Materials and Methods: High and low grade glioma tumor tissue samples were obtained from a total of 16 patients, washed with PBS, cut into small pieces, digested with collagenase type I and cultured in DMEM containing 10% FBS. When cells reached passage 3, they were exposed to genistein and MMP-2 and VEGF gene transcripts were determined by quantitative real time PCR (qRT-PCR). Results: Expression of MMP-2 demonstrated 580-fold reduction in expression in low grade glioma cells post treatment with genistein compared to untreated cells (P value= 0.05). In cells derived from high grade lesions, expression of MMP-2 was 2-fold lower than in controls (P value> 0.05). Genistein caused a 4.7-fold reduction in VEGF transcript in high grade glioma cells (P value> 0.05) but no effects were evident in low grade glioma cells. Conclusion: Based on the data of the present study, low grade glioma cells appear much more sensitive to genistein and this isoflavone might offer an appropriate therapeutic intervention in these patients. Further investigation of this possibility is clearly warranted.
Collapse
Affiliation(s)
- Yasaman Yazdani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | | | |
Collapse
|
13
|
Wang G, Wang JJ, Du L, Fei L, To SST. Inhibitory Kinetics and Mechanism of Flavonoids Extracted from Cotinus coggygria Scop. Against Glioblastoma Cancer. Nutr Cancer 2016; 68:1357-1368. [PMID: 27673410 DOI: 10.1080/01635581.2016.1225105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This proposal seeks to study the potential therapeutic modality of chemoprevention and anticancer effects and mechanisms of the flavonoids from Cotinus coggygria Scop. on glioblastoma cancer. In the current study, the total flavonoids (TFs) isolated from Cotinus coggygria Scop. var. cinerea Engl. (Cotinus coggygria Scop.) and the major flavonoids of Cotinus coggygria Scop. (CCFs) were identified, and the inhibitory kinetics of TF and CCF on glioblastoma cell lines were calculated. We also investigated whether TF or CCF regulated the apoptotic mechanism in cellular models of glio-blastoma cells. Finally, we evaluated whether treatment with TF or CCF suppressed tumor growth and inhibited migration in orthotopic mouse models of glioblastoma in vivo. In this study, the CCFs were identified as rutin, myricetin, and fisetin. TF and CCF remarkably inhibited cell proliferation and downregulated the PI3K/Akt and ERK signaling pathway in glioblastoma cell lines. Furthermore, the mitochondrial caspase-dependent cascade was regulated by TF and myricetin. In addition, TF and myricetin exhibited significant antitumor effects on glioblastoma in vivo. Taken together, these results suggest that phytochemical and biological data provide evidence for the active components in Cotinus coggygria, and that the TFs are responsible for the anticancer effects on glioblastoma cell growth via induction of apoptosis. In addition, the representative compound myricetin could provide a clinically relevant therapeutic opportunity. Therefore, our data strongly suggest that myricetin-deprived CCF can serve as a potent chemopreventive herbal medicine.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China.,b Hubei University of Medicine , Shiyan , Hubei , China
| | - Li Du
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Li Fei
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Shing-Shun Tony To
- c Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong
| |
Collapse
|
14
|
Brown AS, Kong SW, Kohane IS, Patel CJ. ksRepo: a generalized platform for computational drug repositioning. BMC Bioinformatics 2016; 17:78. [PMID: 26860211 PMCID: PMC4746802 DOI: 10.1186/s12859-016-0931-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/29/2016] [Indexed: 01/22/2023] Open
Abstract
Background Repositioning approved drug and small molecules in novel therapeutic areas is of key interest to the pharmaceutical industry. A number of promising computational techniques have been developed to aid in repositioning, however, the majority of available methodologies require highly specific data inputs that preclude the use of many datasets and databases. There is a clear unmet need for a generalized methodology that enables the integration of multiple types of both gene expression data and database schema. Results ksRepo eliminates the need for a single microarray platform as input and allows for the use of a variety of drug and chemical exposure databases. We tested ksRepo’s performance on a set of five prostate cancer datasets using the Comparative Toxicogenomics Database (CTD) as our database of gene-compound interactions. ksRepo successfully predicted significance for five frontline prostate cancer therapies, representing a significant enrichment from over 7000 CTD compounds, and achieved specificity similar to other repositioning methods. Conclusions We present ksRepo, which enables investigators to use any data inputs for computational drug repositioning. ksRepo is implemented in a series of four functions in the R statistical environment under a BSD3 license. Source code is freely available at http://github.com/adam-sam-brown/ksRepo. A vignette is provided to aid users in performing ksRepo analysis.
Collapse
Affiliation(s)
- Adam S Brown
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Sek Won Kong
- Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Xiong W, Yin A, Mao X, Zhang W, Huang H, Zhang X. Resveratrol suppresses human glioblastoma cell migration and invasion via activation of RhoA/ROCK signaling pathway. Oncol Lett 2015; 11:484-490. [PMID: 26870238 DOI: 10.3892/ol.2015.3888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 09/17/2015] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have demonstrated that resveratrol has a potential use in cancer prevention and treatment. However, the effects of resveratrol on cancer cell motility and invasiveness remain unclear. The current study aimed to examine the effects of resveratrol on cell migration and invasion in human glioblastoma cells, and to explore the underlying molecular mechanisms. In wound-healing and Matrigel transwell assays, resveratrol was found to significantly inhibit the migration and invasion of U87MG, T98G and U251 glioblastoma cells in vitro. Results from western blot analysis and gelatin zymography revealed that resveratrol also suppressed the expression and activity of matrix metalloproteinase 2 (MMP-2; P<0.05), an important mediator of cell migration and invasion. Furthermore, using a pull-down assay, increased activation of RhoA was observed in glioblastoma cells treated with resveratrol vs. controls (P<0.05). Notably, inhibition of the RhoA/Rho-associated kinase (ROCK) pathway by C3 transferase or Y-27362 was found to attenuate the resveratrol-induced reductions in cell migration and invasion (P<0.05), and also partially rescued the decreased expression and activity of MMP-2 induced by resveratrol (P<0.05). Taken together, the results suggest that resveratrol may inhibit glioblastoma cell motility and invasiveness via activating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China; Trauma Centre, The 196th Hospital of PLA, Zhanjiang, Guangdong 524000, P.R. China
| | - Anan Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huiyong Huang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
16
|
VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish. Proc Natl Acad Sci U S A 2015; 112:E5944-53. [PMID: 26483474 DOI: 10.1073/pnas.1510245112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling.
Collapse
|
17
|
Effect and Mechanism of Total Flavonoids Extracted from Cotinus coggygria against Glioblastoma Cancer In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:856349. [PMID: 26557705 PMCID: PMC4628721 DOI: 10.1155/2015/856349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022]
Abstract
Flavonoids, a major constituent of Cotinus coggygria (CC), have been reported to possess diverse biological activities, including antigenotoxic and hepatoprotective effects; however, few studies have investigated the biological activity of the total flavonoids of Cotinus coggygria, especially in terms of its cytotoxicity in cancer cells. In the present study, the Cotinus coggygria flavonoids (CCF) were extracted from Cotinus coggygria and characterized by HPLC. These results indicated that CCF extracts could inhibit cell proliferation, with IC50 values of 128.49 µg/mL (U87), 107.62 µg/mL (U251), and 93.57 µg/mL (DBTRG-05MG). The current investigation also revealed that CCF induced apoptosis in highly malignant glioblastoma cells, a process that apparently involved the inhibition of Akt coupled with ERK protein expression. This finding suggests that the PI3K/Akt-ERK signaling pathway is regulated by CCF and leads to the inhibition of the glioblastoma cancer cells. Furthermore, a significant antitumor effect of CCF was observed in xenograft animal models of glioblastoma multiforme in vivo. Taken together, these data suggest that CCF is the active component in the Cotinus coggygria plant that offers potential therapeutic modality in the abrogation of cancer cell proliferation, including the induction of apoptosis.
Collapse
|
18
|
Sinha S, Boysen J, Nelson M, Secreto C, Warner SL, Bearss DJ, Lesnick C, Shanafelt TD, Kay NE, Ghosh AK. Targeted Axl Inhibition Primes Chronic Lymphocytic Leukemia B Cells to Apoptosis and Shows Synergistic/Additive Effects in Combination with BTK Inhibitors. Clin Cancer Res 2015; 21:2115-26. [PMID: 25673699 PMCID: PMC4479154 DOI: 10.1158/1078-0432.ccr-14-1892] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/04/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE B-cell chronic lymphocytic leukemia (CLL) is an incurable disease despite aggressive therapeutic approaches. We previously found that Axl receptor tyrosine kinase (RTK) plays a critical role in CLL B-cell survival. Here, we explored the possibility of using a high-affinity Axl inhibitor as a single agent or in combination with Bruton's tyrosine kinase (BTK) inhibitors for future clinical trial to treat patients with CLL. EXPERIMENTAL DESIGN Expression/activation status of other members of the TAM (e.g., Tyro3, Axl, and MER) family of RTKs in CLL B cells was evaluated. Cells were treated with a high-affinity orally bioavailable Axl inhibitor TP-0903 with or without the presence of CLL bone marrow stromal cells (BMSCs). Inhibitory effects of TP-0903 on the Axl signaling pathway were also evaluated in CLL B cells. Finally, cells were exposed to TP-0903 in combination with BTK inhibitors to determine any synergistic/additive effects of the combination. RESULTS CLL B cells overexpress Tyro3, but not MER. Of interest, Tyro3 remains as constitutively phosphorylated and forms a complex with Axl in CLL B cells. TP-0903 induces massive apoptosis in CLL B cells with LD50 values of nanomolar ranges. Importantly, CLL BMSCs could not protect the leukemic B cells from TP-0903-induced apoptosis. A marked reduction of the antiapoptotic proteins Mcl-1, Bcl-2, and XIAP and upregulation of the proapoptotic protein BIM in CLL B cells was detected as a result of Axl inhibition. Finally, combination of TP-0903 with BTK inhibitors augments CLL B-cell apoptosis. CONCLUSIONS Administration of TP-0903 either as a single agent or in combination with BTK inhibitors may be effective in treating patients with CLL.
Collapse
Affiliation(s)
- Sutapa Sinha
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Justin Boysen
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Michael Nelson
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Charla Secreto
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | | | | | - Connie Lesnick
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Tait D. Shanafelt
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Asish K. Ghosh
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905,Correspondence: Asish K. Ghosh, Ph.D., Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905; Phone: 507-293-0058; Fax: 507-266-9277;
| |
Collapse
|
19
|
Pal K, Pletnev AA, Dutta SK, Wang E, Zhao R, Baral A, Yadav VK, Aggarwal S, Krishnaswamy S, Alkharfy KM, Chowdhury S, Spaller MR, Mukhopadhyay D. Inhibition of endoglin-GIPC interaction inhibits pancreatic cancer cell growth. Mol Cancer Ther 2014; 13:2264-75. [PMID: 25125675 PMCID: PMC4229952 DOI: 10.1158/1535-7163.mct-14-0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endoglin, a 180-kDa disulfide-linked homodimeric transmembrane receptor protein mostly expressed in tumor-associated endothelial cells, is an endogenous binding partner of GAIP-interacting protein, C terminus (GIPC). Endoglin functions as a coreceptor of TβRII that binds TGFβ and is important for vascular development, and consequently has become a compelling target for antiangiogenic therapies. A few recent studies in gastrointestinal stromal tumor (GIST), breast cancer, and ovarian cancer, however, suggest that endoglin is upregulated in tumor cells and is associated with poor prognosis. These findings indicate a broader role of endoglin in tumor biology, beyond angiogenic effects. The goal of our current study is to evaluate the effects of targeting endoglin in pancreatic cancer both in vitro and in vivo. We analyzed the antiproliferative effect of both RNAi-based and peptide ligand-based inhibition of endoglin in pancreatic cancer cell lines, the latter yielding a GIPC PDZ domain-targeting lipopeptide with notable antiproliferative activity. We further demonstrated that endoglin inhibition induced a differentiation phenotype in the pancreatic cancer cells and sensitized them against conventional chemotherapeutic drug gemcitabine. Most importantly, we have demonstrated the antitumor effect of both RNAi-based and competitive inhibitor-based blocking of endoglin in pancreatic cancer xenograft models in vivo. To our knowledge, this is the first report exploring the effect of targeting endoglin in pancreatic cancer cells.
Collapse
Affiliation(s)
- Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Alexandre A Pletnev
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Ruizhi Zhao
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | - Vinod Kumar Yadav
- G.N.R. Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | - Suruchi Aggarwal
- G.N.R. Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | | | - Khalid M Alkharfy
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota. Department of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shantanu Chowdhury
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India. G.N.R. Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | - Mark R Spaller
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, New Hampshire
| | | |
Collapse
|
20
|
Abstract
SIGNIFICANCE There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. RECENT ADVANCES NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. CRITICAL ISSUES The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. FUTURE DIRECTIONS Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications.
Collapse
Affiliation(s)
- Zeynab Nayernia
- 1 Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals, Centre Médical Universitaire , Geneva, Switzerland
| | | | | |
Collapse
|
21
|
Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma. PLoS One 2014; 9:e86642. [PMID: 24489757 PMCID: PMC3906081 DOI: 10.1371/journal.pone.0086642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2) is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6 ± 0.27 (n = 13, p = 0.0032). The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression.
Collapse
|
22
|
Maley AM, Arbiser JL. Gentian violet: a 19th century drug re-emerges in the 21st century. Exp Dermatol 2013; 22:775-80. [PMID: 24118276 PMCID: PMC4396813 DOI: 10.1111/exd.12257] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 12/18/2022]
Abstract
Gentian violet (GV) has a long and varied history as a medicinal agent. Historically used as an antibacterial and antifungal, recent reports have shown its utility as an antitypranosomal, antiviral and anti-angiogenic agent. The objective of this article is to summarize evidence regarding the efficacy and safety of GV use in dermatology. Recent discoveries have found novel targets of GV, namely NADPH oxidase in mammalian cells and thioredoxin reductase 2 in bacterial, fungal and parasitic cells. These discoveries have expanded the use of GV in the 21st century. Given that GV is well tolerated, effective and inexpensive, its use in dermatology is predicted to increase.
Collapse
Affiliation(s)
- Alexander M Maley
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta Veterans Administration Hospital, Atlanta, GA, USA
| | | |
Collapse
|