1
|
Xu LB, Smith ER, Koutouratsas V, Chen ZS, Xu XX. The Persistent Power of the Taxane/Platin Chemotherapy. Cancers (Basel) 2025; 17:1208. [PMID: 40227809 PMCID: PMC11987835 DOI: 10.3390/cancers17071208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The cancer chemotherapy regimen of a taxane and platinum combination was developed more than forty years ago, yet remains the cornerstone of treatment for several major cancer types today. Although many new agents targeting cancer genes and pathways have been developed and evaluated, none have been sufficient to replace the long-established taxane/platinum combination. This leads us to ponder why, after four decades of colossal efforts, multiple discoveries, and tremendous advances in understanding gene mutations and biology, the development of conceptually superior targeted therapies has not yet achieved overwhelming success in replacing cytotoxic chemotherapy. The concept of targeted therapy is based on the idea that blocking the altered pathway(s) crucial for cancer development (and maintenance), the disturbance in cellular signaling, metabolism, and functions will make the targeted cancer cells unfit and trigger programmed cell death in cancer cells, but without the significant side effects that limit chemotherapy. We propose that the lack of anticipated triumphs of targeted therapy stems from the desensitization of programmed cell death pathways during neoplastic transformation and malignant progression of cancer cells. This renders the targeting drugs largely ineffective at killing cancer cells and mostly insufficient in clinical implements. Recent advances in understanding suggest that, in contrast to targeted therapies, taxanes and platinum agents kill cancer cells by physical rupturing nuclear membranes rather than triggering apoptosis, making their effect independent of the intrinsic cellular programmed cell death mechanism. This new recognition of the non-programmed cell death mechanism in the success of chemotherapeutic agents, such as taxanes and platinum, may inspire oncologists and cancer researchers to focus their efforts more productively on developing effective non-programmed cell death cancer therapies to replace or significantly improve the application of the current standard taxane/platinum regimens.
Collapse
Affiliation(s)
- Lucy B. Xu
- Department of Biology, University of Miami, Miami, FL 33136, USA;
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Vasili Koutouratsas
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (V.K.)
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (V.K.)
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Kirsch-Volders M, Mišík M, Fenech M. Tetraploidy in normal tissues and diseases: mechanisms and consequences. Chromosoma 2025; 134:3. [PMID: 40117022 PMCID: PMC11928420 DOI: 10.1007/s00412-025-00829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Tetraploidisation plays a crucial role in evolution, development, stress adaptation, and disease, but its beneficial or pathological effects in different tissues remain unclear. This study aims to compare physiological and unphysiological tetraploidy in eight steps: 1) mechanisms of diploidy-to-tetraploidy transition, 2) induction and elimination of unphysiological tetraploidy, 3) tetraploid cell characteristics, 4) stress-induced unphysiological tetraploidy, 5) comparison of physiological vs. unphysiological tetraploidy, 6) consequences of unphysiological stress-induced tetraploidy, 7) nutritional or pharmacological prevention strategies of tetraploidisation, and 8) knowledge gaps and future perspectives. Unphysiological tetraploidy is an adaptive stress response at a given threshold, often involving mitotic slippage. If tetraploid cells evade elimination through apoptosis or immune surveillance, they may re-enter the cell cycle, causing genetic instability, micronuclei formation, aneuploidy, modification of the epigenome and the development of diseases. The potential contributions of unphysiological tetraploidy to neurodegenerative, cardiovascular and diabetes related diseases are summarized in schematic figures and contrasted with its role in cancer development. The mechanisms responsible for the transition from physiological to unphysiological tetraploidy and the tolerance to tetraploidisation in unphysiological tetraploidy are not fully understood. Understanding these mechanisms is of critical importance to allow the development of targeted nutritional and pharmacological prevention strategies and therapies.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA, 5048, Australia
| |
Collapse
|
3
|
Al-Omar A, Asadi M, Mert U, Muftuoglu C, Karakus HS, Goksel T, Caner A. Effects of Vinorelbine on M2 Macrophages in Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:2252. [PMID: 40076874 PMCID: PMC11900078 DOI: 10.3390/ijms26052252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor-associated macrophages (TAMs) significantly influence tumor progression and patient responses to conventional chemotherapy. However, the interplay between anti-cancer drugs, immune responses in the tumor microenvironment, and their implications for cancer treatment remains poorly understood. This study investigates the effects of vinorelbine on M2 macrophages in lung cancer and its capacity to modulate TAMs toward an M1 phenotype. Peripheral blood mononuclear cells (PBMCs) were polarized into M2 macrophages, and subsequent phenotype alterations upon vinorelbine treatment were assessed. Additionally, we evaluated vinorelbine's impact on gene and protein expression associated with cancer progression and cell invasion in non-small-cell lung cancer (NSCLC) cells indirectly co-cultured with M2 macrophages. Notably, vinorelbine, particularly at low concentrations, reprogrammed M2 macrophages to exhibit M1-like characteristics. While M2 macrophages enhanced cancer cell invasion, vinorelbine significantly mitigated this effect. M2 macrophages led to the overexpression of numerous genes linked to tumor growth, angiogenesis, invasion, and immune suppression in NSCLC cells, increasing the BCL2/BAX ratio and promoting cellular resistance to apoptosis. The anti-tumor efficacy of vinorelbine appears to be partly attributed to the reprogramming of M2 macrophages to the M1 phenotype, suggesting that low-dose vinorelbine may optimize therapeutic outcomes while minimizing toxicity in cancer patients.
Collapse
Affiliation(s)
- Ahmed Al-Omar
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Milad Asadi
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Ufuk Mert
- Atatürk Health Care Vocational School, Ege University, Bornova 35100, Izmir, Turkey;
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
| | - Can Muftuoglu
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Haydar Soydaner Karakus
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Ayse Caner
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| |
Collapse
|
4
|
Xu XX, Smith ER. The Second Selectivity of Taxanes to Malignant Cells --- Nuclear Envelope Malleability. J Cancer 2025; 16:1051-1053. [PMID: 39895785 PMCID: PMC11786023 DOI: 10.7150/jca.104809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/09/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Xu AP, Xu LB, Smith ER, Fleishman JS, Chen ZS, Xu XX. Cancer nuclear envelope rupture and repair in taxane resistance. MEDICAL REVIEW (2021) 2024; 4:522-530. [PMID: 39664077 PMCID: PMC11629310 DOI: 10.1515/mr-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 12/13/2024]
Abstract
Taxanes, including paclitaxel, docetaxel, and cabazitaxel, are key agents in cancer treatment, often used as front-line chemotherapy drugs in combination with other agent(s) (commonly carboplatin) and as second-line treatments alone. Generally, taxanes are highly effective, but drug resistance unavoidably develops following repeated treatment. Taxanes work by binding to and stabilizing microtubules, leading to mitotic arrest, mitotic catastrophe, and micronucleation. The long-recognized mechanisms of drug resistance generally can be classified into three categories: drug efflux, microtubule polymerization, and apoptotic pathway. A recent new addition to this list is a mechanism related to the nuclear envelope, as cancer cells undergo micronucleation and nuclear membrane rupture when treated with taxanes. All these mechanisms may operate simultaneously as taxane resistance is multi-factorial. Here, we review the cell biology understanding of nuclear envelope breaking in production of micronucleation, and nuclear membrane rupture and repair, and propose that these processes are involved in taxane resistance.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S. Fleishman
- College of Pharmacy and Health Sciences, St. John’s University, Queens New York, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens New York, USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
7
|
Rao VK, Ashtam A, Panda D, Guchhait SK. Natural-Product-Inspired Discovery of Trimethoxyphenyl-1,2,4-triazolosulfonamides as Potent Tubulin Polymerization Inhibitors. ChemMedChem 2024; 19:e202300562. [PMID: 37975190 DOI: 10.1002/cmdc.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
An approach of natural product-inspired strategy and incorporation of an NP-privileged motif has been investigated for the discovery of new tubulin polymerization inhibitors. Two series, N-Arylsulfonyl-3-arylamino-5-amino-1,2,4-triazole derivatives, and their isomers were considered. The compounds were synthesized by construction of the N-aryl-1,2,4-triazole-3,5-diamine motif and sulfonylation. Although the chemo- and regioselectivity in sulfonylation were challenging due to multiple ring-tautomerizable-NH and exocyclic NH2 functionalities present in the molecular motifs, the developed synthetic method enabled the preparation of designed molecular skeletons with biologically important motifs. The approach also led to explore interesting molecular regio- and stereochemical aspects valuable for activity. The X-ray crystallography study indicated that the hydrogen bonding between the arylamine-NH and the arylsulfonyl-"O" unit and appropriate molecular-functionality topology allowed the cis-locking of two aryls, which is important for tubulin-binding and antiproliferative properties. All synthesized compounds majorly showed characteristic antiproliferative effects in breast cancer cells (MCF-7), and four compounds exhibited potent antiproliferative activity. One compound potently bound to tubulin at the colchicine site and inhibited tubulin polymerization in vitro. The compound significantly depolymerized microtubules in MCF-7 cells, arrested the cells at the G2/M phase, and induced cell death. This study represents the importance of the design strategy in medicinal chemistry and the molecular structural features relevant to anticancer anti-tubulin properties. The explored molecules have the potential for further development.
Collapse
Affiliation(s)
- Vajja Krishna Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Dulal Panda
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| |
Collapse
|
8
|
Piemonte KM, Webb BM, Bobbitt JR, Majmudar PR, Cuellar-Vite L, Bryson BL, Latina NC, Seachrist DD, Keri RA. Disruption of CDK7 signaling leads to catastrophic chromosomal instability coupled with a loss of condensin-mediated chromatin compaction. J Biol Chem 2023; 299:104834. [PMID: 37201585 PMCID: PMC10300262 DOI: 10.1016/j.jbc.2023.104834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
Chromatin organization is highly dynamic and modulates DNA replication, transcription, and chromosome segregation. Condensin is essential for chromosome assembly during mitosis and meiosis, as well as maintenance of chromosome structure during interphase. While it is well established that sustained condensin expression is necessary to ensure chromosome stability, the mechanisms that control its expression are not yet known. Herein, we report that disruption of cyclin-dependent kinase 7 (CDK7), the core catalytic subunit of CDK-activating kinase, leads to reduced transcription of several condensin subunits, including structural maintenance of chromosomes 2 (SMC2). Live and static microscopy revealed that inhibiting CDK7 signaling prolongs mitosis and induces chromatin bridge formation, DNA double-strand breaks, and abnormal nuclear features, all of which are indicative of mitotic catastrophe and chromosome instability. Affirming the importance of condensin regulation by CDK7, genetic suppression of the expression of SMC2, a core subunit of this complex, phenocopies CDK7 inhibition. Moreover, analysis of genome-wide chromatin conformation using Hi-C revealed that sustained activity of CDK7 is necessary to maintain chromatin sublooping, a function that is ascribed to condensin. Notably, the regulation of condensin subunit gene expression is independent of superenhancers. Together, these studies reveal a new role for CDK7 in sustaining chromatin configuration by ensuring the expression of condensin genes, including SMC2.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Bryan M Webb
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jessica R Bobbitt
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Bryson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas C Latina
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
9
|
Alneyadi A, Nizami ZN, Aburawi HE, Hisaindee S, Nawaz M, Attoub S, Ramadan G, Benhalilou N, Al Azzani M, Elmahi Y, Almeqbali A, Muhammad K, Eid AH, Vijayan R, Iratni R. Synthesis of New Chromene Derivatives Targeting Triple-Negative Breast Cancer Cells. Cancers (Basel) 2023; 15:2682. [PMID: 37345018 DOI: 10.3390/cancers15102682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
Breast cancer continues to be the leading cause of cancer-related deaths among women worldwide. The most aggressive type of breast cancer is triple-negative breast cancer (TNBC). Indeed, not only does TNBC not respond well to several chemotherapeutic agents, but it also frequently develops resistance to various anti-cancer drugs, including taxane mitotic inhibitors. This necessitates the search for newer, more efficacious drugs. In this study, we synthesized two novel chromene derivatives (C1 and C2) and tested their efficacy against a battery of luminal type A and TNBC cell lines. Our results show that C1 and C2 significantly and specifically inhibited TNBC cell viability but had no effect on the luminal A cell type. In addition, these novel compounds induced mitotic arrest, cell multinucleation leading to senescence, and apoptotic cell death through the activation of the extrinsic pathway. We also showed that the underlying mechanisms for these actions of C1 and C2 involved inhibition of microtubule polymerization and disruption of the F-actin cytoskeleton. Furthermore, both compounds significantly attenuated migration of TNBC cells and inhibited angiogenesis in vitro. Finally, we performed an in silico analysis, which revealed that these novel variants bind to the colchicine binding site in β-tubulin. Taken together, our data highlight the potential chemotherapeutic properties of two novel chromene compounds against TNBC.
Collapse
Affiliation(s)
- Aysha Alneyadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Hanan E Aburawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Soleiman Hisaindee
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Gaber Ramadan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nehla Benhalilou
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yassine Elmahi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Aysha Almeqbali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
10
|
Vorobjev IA, Bekbayev S, Temirgaliyev A, Tlegenova M, Barteneva NS. Imaging Flow Cytometry of Multi-Nuclearity. Methods Mol Biol 2023; 2635:87-101. [PMID: 37074658 DOI: 10.1007/978-1-0716-3020-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Multi-nuclearity is a common feature for cells in different cancers. Also, analysis of multi-nuclearity in cultured cells is widely used for evaluating the toxicity of different drugs. Multi-nuclear cells in cancer and under drug treatments form from aberrations in cell division and/or cytokinesis. These cells are a hallmark of cancer progression, and the abundance of multi-nucleated cells often correlates with poor prognosis.The use of standard bright field or fluorescent microscopy to analyze multi-nuclearity at the quantitative level is laborious and can suffer from user bias. Automated slide-scanning microscopy can eliminate scorer bias and improve data collection. However, this method has limitations, such as insufficient visibility of multiple nuclei in the cells attached to the substrate at low magnification.Since quantification of multi-nuclear cells using microscopic methods might be difficult, imaging flow cytometry (IFC) is a method of choice for this. We describe the experimental protocol for the preparation of the samples of multi-nucleated cells from the attached cultures and the algorithm for the analysis of these cells by IFC. Images of multi-nucleated cells obtained after mitotic arrest induced by taxol, as well as cells obtained after cytokinesis blockade by cytochalasin D treatment, can be acquired at a maximal resolution of IFC. We suggest two algorithms for the discrimination of single-nucleus and multi-nucleated cells. The advantages and disadvantages of IFC analysis of multi-nuclear cells in comparison with microscopy are discussed.
Collapse
Affiliation(s)
- Ivan A Vorobjev
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Sultan Bekbayev
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Adil Temirgaliyev
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Madina Tlegenova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Natasha S Barteneva
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Brigham Women's Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Smith ER, Huang M, Schlumbrecht MP, George SH, Xu XX. Rationale for combination of paclitaxel and CDK4/6 inhibitor in ovarian cancer therapy - non-mitotic mechanisms of paclitaxel. Front Oncol 2022; 12:907520. [PMID: 36185294 PMCID: PMC9520484 DOI: 10.3389/fonc.2022.907520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Taxanes and CDK4/6 inhibitors (CDK4/6i) are two families of successful anti-mitotic drugs used in the treatment of solid tumors. Paclitaxel, representing taxane compounds, has been used either alone or in combination with other agents (commonly carboplatin/cisplatin) in the treatment of many solid tumors including ovarian, breast, lung, prostate cancers, and Kaposi's sarcoma. Paclitaxel has been routinely prescribed in cancer treatment since the 1990s, and its prominent role is unlikely to be replaced in the foreseeable future. Paclitaxel and other taxanes work by binding to and stabilizing microtubules, causing mitotic arrest, aberrant mitosis, and cell death. CDK4/6i (palbociclib, ribociclib, abemaciclib) are relatively new cell cycle inhibitors that have been found to be effective in breast cancer treatment, and are currently being developed in other solid tumors. CDK4/6i blocks cell cycle progression at the G1 phase, resulting in cell death by mechanisms not yet fully elucidated. At first glance, paclitaxel and CDK4/6i are unlikely synergistic agents as both are cell cycle inhibitors that work at different phases of the cell cycle, and few clinical trials have yet considered adding CDK4/6i to existing paclitaxel chemotherapy. However, recent findings suggest the importance of a non-mitotic mechanism of paclitaxel in cancer cell death and pre-clinical data support rationale for a strategic paclitaxel and CDK4/6i combination. In mouse tumor model studies, drug sequencing resulted in differential efficacy, indicating complex biological interactions of the two drugs. This article reviews the rationales of combining paclitaxel with CDK4/6i as a potential therapeutic option in recurrent ovarian cancer.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Matthew P. Schlumbrecht
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sophia H.L. George
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Greil C, Engelhardt M, Wäsch R. The Role of the APC/C and Its Coactivators Cdh1 and Cdc20 in Cancer Development and Therapy. Front Genet 2022; 13:941565. [PMID: 35832196 PMCID: PMC9273091 DOI: 10.3389/fgene.2022.941565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
To sustain genomic stability by correct DNA replication and mitosis, cell cycle progression is tightly controlled by the cyclic activity of cyclin-dependent kinases, their binding to cyclins in the respective phase and the regulation of cyclin levels by ubiquitin-dependent proteolysis. The spindle assembly checkpoint plays an important role at the metaphase-anaphase transition to ensure a correct separation of sister chromatids before cytokinesis and to initiate mitotic exit, as an incorrect chromosome distribution may lead to genetically unstable cells and tumorigenesis. The ubiquitin ligase anaphase-promoting complex or cyclosome (APC/C) is essential for these processes by mediating the proteasomal destruction of cyclins and other important cell cycle regulators. To this end, it interacts with the two regulatory subunits Cdh1 and Cdc20. Both play a role in tumorigenesis with Cdh1 being a tumor suppressor and Cdc20 an oncogene. In this review, we summarize the current knowledge about the APC/C-regulators Cdh1 and Cdc20 in tumorigenesis and potential targeted therapeutic approaches.
Collapse
|
13
|
Stoczynska-Fidelus E, Węgierska M, Kierasińska A, Ciunowicz D, Rieske P. Role of Senescence in Tumorigenesis and Anticancer Therapy. JOURNAL OF ONCOLOGY 2022; 2022:5969536. [PMID: 35342397 PMCID: PMC8956409 DOI: 10.1155/2022/5969536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Although the role of senescence in many physiological and pathological processes is becoming more identifiable, many aspects of senescence are still enigmatic. A special attention is paid to the role of this phenomenon in tumor development and therapy. This review mainly deals with a large spectrum of oncological issues, beginning with therapy-induced senescence and ending with oncogene-induced senescence. Moreover, the role of senescence in experimental approaches, such as primary cancer cell culture or reprogramming into stem cells, is also beginning to receive further consideration. Additional focus is made on senescence resulting from mitotic catastrophe processes triggered by events occurring during mitosis and jeopardizing chromosomal stability. It has to be also realized that based on recent findings, the basics of senescent cell property interpretation, such as irreversibility of proliferation blockade, can be undermined. It shows that the definition of senescence probably requires updating. Finally, the role of senescence is lately more understandable in the immune system, especially since senescence can diminish the effectiveness of the chimeric antigen receptor T-cell (CAR-T) therapy. In this review, we summarize the current knowledge regarding all these issues.
Collapse
Affiliation(s)
- Ewelina Stoczynska-Fidelus
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Damian Ciunowicz
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| |
Collapse
|
14
|
Kim S, Perera SK, Choi SI, Rebhun RB, Seo KW. G2/M arrest and mitotic slippage induced by fenbendazole in canine melanoma cells. Vet Med Sci 2022; 8:966-981. [PMID: 35020278 PMCID: PMC9122462 DOI: 10.1002/vms3.733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The use of fenbendazole (FBZ) in terminal cancer patients has recently increased, as anthelminthic drugs, such as FBZ and benzimidazole, exhibit anti‐tubulin effects in tumour cells. Objectives The present study evaluated the in vitro anti‐cancer effects of FBZ in five canine melanoma cell lines originating from the oral cavity (UCDK9M3, UCDK9M4, UCDK9M5, KMeC and LMeC). Methods Five canine melanoma cell lines were treated with FBZ and analysed with cell viability assay, cell cycle analysis, western blot assay and immunofluorescence staining to identify apoptotic effect, cell cycle arrest, microtubule disruption and mitotic slippage. Results Cell viability was reduced in all melanoma cell lines in a dose‐dependent manner after FBZ treatment. Through cell cycle analysis, G2/M arrest and mitotic slippage were identified, which showed a time‐dependent change. All treatment concentrations induced increased cleaved PARP signals in western blot analysis compared to the control groups. Immunofluorescence of cells treated for 24 h revealed defects in microtubule structure, multinucleation or macronucleation. With the exception of UCDK9M3, the melanoma cells showed mitotic slippage and post‐slippage death, indicative of mitotic catastrophe. Conclusions These results indicate that FBZ exhibits anti‐cancer effects in vitro against canine melanoma cells; however, further in vivo studies regarding the clinical applications of FBZ are required.
Collapse
Affiliation(s)
- Sehoon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Shashini Kanchanamala Perera
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Seo-In Choi
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Kyoung-Won Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Korea, Seoul
| |
Collapse
|
15
|
Zhu Y, Xie J, Shi J. Rac1/ROCK-driven membrane dynamics promote natural killer cell cytotoxicity via granzyme-induced necroptosis. BMC Biol 2021; 19:140. [PMID: 34325694 PMCID: PMC8323222 DOI: 10.1186/s12915-021-01068-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells play an important role in cancer immunosurveillance and therapy. However, the target selectivity of NK cell activity is still poorly understood. RESULTS Here, we used live-cell reporters to unravel differential epithelial cancer target killing by primary human NK cells. We found highly variable fractions of killing by distinct NK cell cytotoxic modes that were not determined by NK ligand expression. Rather, epithelial plasma membrane dynamics driven by ROCK-mediated blebs and/or Rac1-mediated lamellipodia promoted necrotic mode in preference to the apoptotic mode of killing. Inhibition of granzyme B and key necroptosis regulators RIP1, RIP3, and MLKL significantly attenuated the necrotic killing, revealing a novel NK cell cytotoxic pathway by granzyme-induced necroptosis that conferred target selectivity. CONCLUSIONS Our results not only elucidate a new NK cell effector mechanism but also suggest that tissue microenvironment and oncogenic signaling pathways that promote membrane dynamics, e.g., Rac1 and Rho/ROCK, could be exploited to enhance proinflammatory NK cell killing.
Collapse
Affiliation(s)
- Yanting Zhu
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun Xie
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
17
|
Targeting the actin/tropomyosin cytoskeleton in epithelial ovarian cancer reveals multiple mechanisms of synergy with anti-microtubule agents. Br J Cancer 2021; 125:265-276. [PMID: 33981016 PMCID: PMC8292367 DOI: 10.1038/s41416-021-01420-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Anti-microtubule agents are widely used to treat ovarian cancers, but the efficacy is often compromised by drug resistance. We investigated co-targeting the actin/tropomyosin cytoskeleton and microtubules to increase treatment efficacy in ovarian cancers and potentially overcome resistance. METHODS The presence of tropomyosin-3.1 (Tpm3.1) was examined in clinical specimens from ovarian cancer patients using immunohistochemistry. Combinatorial effects of an anti-Tpm3.1 compound, ATM-3507, with vinorelbine and paclitaxel were evaluated in ovarian cancer cells via MTS and apoptosis assays. The mechanisms of action were established using live- and fixed-cell imaging and protein analysis. RESULTS Tpm3.1 is overexpressed in 97% of tumour tissues (558 of 577) representing all histotypes of epithelial ovarian cancer. ATM-3507 displayed synergy with both anti-microtubule agents to reduce cell viability. Only vinorelbine synergised with ATM-3507 in causing apoptosis. ATM-3507 significantly prolonged vinorelbine-induced mitotic arrest with elevated activity of the spindle assembly checkpoint and mitotic cell death; however, ATM-3507 showed minor impact on paclitaxel-induced mitotic defects. Both combinations substantially increased post-mitotic G1 arrest with cyclin D1 and E1 downregulation and an increase of p21Cip and p27Kip. CONCLUSION Combined targeting of Tpm3.1/actin and microtubules is a promising treatment strategy for ovarian cancer that should be further tested in clinical settings.
Collapse
|
18
|
Multinucleation associated DNA damage blocks proliferation in p53-compromised cells. Commun Biol 2021; 4:451. [PMID: 33837239 PMCID: PMC8035210 DOI: 10.1038/s42003-021-01979-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear atypia is one of the hallmarks of cancers. Here, we perform single-cell tracking studies to determine the immediate and long-term impact of nuclear atypia. Tracking the fate of newborn cells exhibiting nuclear atypia shows that multinucleation, unlike other forms of nuclear atypia, blocks proliferation in p53-compromised cells. Because ~50% of cancers display compromised p53, we explored how multinucleation blocks proliferation. Multinucleation increases 53BP1-decorated nuclear bodies (DNA damage repair platforms), along with a heterogeneous reduction in transcription and protein accumulation across the multi-nucleated compartments. Multinucleation Associated DNA Damage associated with 53BP1-bodies remains unresolved for days, despite an intact NHEJ machinery that repairs laser-induced DNA damage within minutes. Persistent DNA damage, a DNA replication block, and reduced phospho-Rb, reveal a novel replication stress independent cell cycle arrest caused by mitotic lesions. These findings call for segregating protective and prohibitive nuclear atypia to inform therapeutic approaches aimed at limiting tumour heterogeneity. Hart et al. track newborn single cells by live microscopy after inducing a variety of nuclear atypia by CENP-E inhibitor treatment. They find that that multinucleation, unlike other forms of nuclear atypia, blocks proliferation independently of p53 and is associated with persistent 53BP1 DNA damage foci, thus providing insights into the consequences of multinucleation, often observed in disease states.
Collapse
|
19
|
Smith ER, Xu XX. Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. JOURNAL OF CANCER BIOLOGY 2021; 2:86-93. [PMID: 35048083 PMCID: PMC8765745 DOI: 10.46439/cancerbiology.2.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Discovered in a large-scale screening of natural plant chemicals, Taxol/paclitaxel and the taxane family of compounds are surprisingly successful anti-cancer drugs, used in treatment of the majority of solid tumors, and especially suitable for metastatic and recurrent cancer. Paclitaxel is often used in combination with platinum agents and is administrated in a dose dense regimen to treat recurrent cancer. The enthusiasm and clinical development were prompted by the discovery that Taxol binds beta-tubulins specifically found within microtubules and stabilizes the filaments, and consequently inhibits mitosis. However, questions on how paclitaxel suppresses cancer persist, as other specific mitotic inhibitors are impressive in pre-clinical studies but fail to achieve significant clinical activity. Thus, additional mechanisms, such as promoting mitotic catastrophe and impacting non-mitotic targets, have been proposed and studied. A good understanding of how paclitaxel, and additional new microtubule stabilizing agents, kill cancer cells will advance the clinical application of these common chemotherapeutic agents. A recent study provides a potential non-mitotic mechanism of paclitaxel action, that paclitaxel-induced rigid microtubules act to break malleable cancer nuclei into multiple micronuclei. Previous studies have established that cancer cells have a less sturdy, more pliable nuclear envelope due to the loss or reduction of lamin A/C proteins. Such changes in nuclear structure provide a selectivity for paclitaxel to break the nuclear membrane and kill cancer cells over non-neoplastic cells that have a sturdier nuclear envelope. The formation of multiple micronuclei appears to be an important aspect of paclitaxel in the killing of cancer cells, either by a mitotic or non-mitotic mechanism. Additionally, by binding to microtubule, paclitaxel is readily sequestered and concentrated within cells. This unique pharmacokinetic property allows the impact of paclitaxel on cells to persist for several days, even though the circulating drug level is much reduced following drug administration/infusion. The retention of paclitaxel within cells likely is another factor contributing to the efficacy of the drugs. Overall, the new understanding of Taxol/paclitaxel killing mechanism-rigid microtubule-induced multiple micronucleation-will likely provide new strategies to overcome drug resistance and for rational drug combination.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
20
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
21
|
Roberts MS, Sahni JM, Schrock MS, Piemonte KM, Weber-Bonk KL, Seachrist DD, Avril S, Anstine LJ, Singh S, Sizemore ST, Varadan V, Summers MK, Keri RA. LIN9 and NEK2 Are Core Regulators of Mitotic Fidelity That Can Be Therapeutically Targeted to Overcome Taxane Resistance. Cancer Res 2020; 80:1693-1706. [PMID: 32054769 PMCID: PMC7165041 DOI: 10.1158/0008-5472.can-19-3466] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
A significant therapeutic challenge for patients with cancer is resistance to chemotherapies such as taxanes. Overexpression of LIN9, a transcriptional regulator of cell-cycle progression, occurs in 65% of patients with triple-negative breast cancer (TNBC), a disease commonly treated with these drugs. Here, we report that LIN9 is further elevated with acquisition of taxane resistance. Inhibiting LIN9 genetically or by suppressing its expression with a global BET inhibitor restored taxane sensitivity by inducing mitotic progression errors and apoptosis. While sustained LIN9 is necessary to maintain taxane resistance, there are no inhibitors that directly repress its function. Hence, we sought to discover a druggable downstream transcriptional target of LIN9. Using a computational approach, we identified NIMA-related kinase 2 (NEK2), a regulator of centrosome separation that is also elevated in taxane-resistant cells. High expression of NEK2 was predictive of low survival rates in patients who had residual disease following treatment with taxanes plus an anthracycline, suggesting a role for this kinase in modulating taxane sensitivity. Like LIN9, genetic or pharmacologic blockade of NEK2 activity in the presence of paclitaxel synergistically induced mitotic abnormalities in nearly 100% of cells and completely restored sensitivity to paclitaxel, in vitro. In addition, suppressing NEK2 activity with two distinct small molecules potentiated taxane response in multiple in vivo models of TNBC, including a patient-derived xenograft, without inducing toxicity. These data demonstrate that the LIN9/NEK2 pathway is a therapeutically targetable mediator of taxane resistance that can be leveraged to improve response to this core chemotherapy. SIGNIFICANCE: Resistance to chemotherapy is a major hurdle for treating patients with cancer. Combining NEK2 inhibitors with taxanes may be a viable approach for improving patient outcomes by enhancing mitotic defects induced by taxanes alone.
Collapse
Affiliation(s)
- Melyssa S Roberts
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Jennifer M Sahni
- Department of Pathology, School of Medicine, New York University, New York, New York
| | - Morgan S Schrock
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Katrina M Piemonte
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | | | - Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Lindsey J Anstine
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Steven T Sizemore
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
22
|
Matuszyk J, Klopotowska D. miR‐125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy. J Cell Physiol 2020; 235:6335-6344. [DOI: 10.1002/jcp.29610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences 12 R. Weigla Street 53‐114 Wroclaw Poland
| | - Dagmara Klopotowska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences 12 R. Weigla Street 53‐114 Wroclaw Poland
| |
Collapse
|
23
|
Elmaci İ, Bilir A, Ozpinar A, Altinoz MA. Gemcitabine, vinorelbine and cyclooxygenase inhibitors in the treatment of glioblastoma. Ultrastructural analyses in C6 glioma in vitro. Tissue Cell 2019; 59:18-32. [PMID: 31383285 DOI: 10.1016/j.tice.2019.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To define ultrastructural features accompanying to antitumor effects of gemcitabine, vinorelbine and cyclooxygenase inhibitors in C6 glioma cells in vitro. Vinorelbine is a semisynthetic vinca alkaloid and recent studies showed its antitumor activity in pediatric optic and pontine gliomas. Vinorelbine infusion induces a severe tumor site-pain in systemic cancers, but it is unknown whether algesia and inflammation contribute to its antitumor effects. Gemcitabine is a nucleoside-chemotherapeutic which was recently shown to act as a radiosensitizer in high-grade glioma. Some studies showed synergism of anti-inflammatory cyclooxygenase-inhibitors with microtubule inhibitors and gemcitabine. DMSO is a solvent and blocks both cylooxygenase and ribonucleotide reductase, another target of gemcitabine. Rofecoxib is withdrawn from the market, yet we used it for investigational purposes, since it blocks cylooxygenase-2 1000-times more potently than cylooxygenase -1 and is also a selective inhibitor of crinophagy. METHODS Plating efficacy, 3D-spheroid S-phase analysis with BrdU labelling and transmission electron microscopical analyses were performed. RESULTS Vinorelbine induced frequent mitotic slippage/apoptosis and autophagy. Despite both DMSO and rofecoxib induced autophagy alone and in synergy, they reduced mitotic catastrophe and autophagy triggered by vinorelbine, which was also reflected by reduced inhibition of spheroid S-phase. Gemcitabine induced karyolysis and margination of coarse chromatin towards the nuclear membrane, abundant autophagy, gutta adipis formation and decrease in mitochondria, which were enhanced by DMSO and rofecoxib. CONCLUSIONS Detailed ultrastructural analysis of the effects of chemotherapeutic drugs may provide a broader insight about their actions and pave to develop better strategies in treatment of glioblastoma.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Istanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Aydin University, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey; Department of Psychiatry, Maastricht University, Holland.
| |
Collapse
|
24
|
Zeng X, Xu WK, Lok TM, Ma HT, Poon RYC. Imbalance of the spindle-assembly checkpoint promotes spindle poison-mediated cytotoxicity with distinct kinetics. Cell Death Dis 2019; 10:314. [PMID: 30952840 PMCID: PMC6450912 DOI: 10.1038/s41419-019-1539-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/24/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
Disrupting microtubule dynamics with spindle poisons activates the spindle-assembly checkpoint (SAC) and induces mitotic cell death. However, mitotic exit can occur prematurely without proper chromosomal segregation or cytokinesis by a process termed mitotic slippage. It remains controversial whether mitotic slippage increases the cytotoxicity of spindle poisons or the converse. Altering the SAC induces either mitotic cell death or mitotic slippage. While knockout of MAD2-binding protein p31comet strengthened the SAC and promoted mitotic cell death, knockout of TRIP13 had the opposite effect of triggering mitotic slippage. We demonstrated that mitotic slippage prevented mitotic cell death caused by spindle poisons, but reduced subsequent long-term survival. Weakening of the SAC also reduced cell survival in response to spindle perturbation insufficient for triggering mitotic slippage, of which mitotic exit was characterized by displaced chromosomes during metaphase. In either mitotic slippage or mitotic exit with missegregated chromosomes, cell death occurred only after one cell cycle following mitotic exit and increased progressively during subsequent cell cycles. Consistent with these results, transient inhibition of the SAC using an MPS1 inhibitor acted synergistically with spindle perturbation in inducing chromosome missegregation and cytotoxicity. The specific temporal patterns of cell death after mitotic exit with weakened SAC may reconcile the contradictory results from many previous studies.
Collapse
Affiliation(s)
- Xiaofang Zeng
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wendy Kaichun Xu
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Tsun Ming Lok
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
25
|
Lynch AM, Eastmond D, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M, Tweats D. Targets and mechanisms of chemically induced aneuploidy. Part 1 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403025. [PMID: 31699346 DOI: 10.1016/j.mrgentox.2019.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.
Collapse
Affiliation(s)
| | | | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | | | |
Collapse
|
26
|
Bao WR, Li ZP, Zhang QW, Li LF, Liu HB, Ma DL, Leung CH, Lu AP, Bian ZX, Han QB. Astragalus Polysaccharide RAP Selectively Attenuates Paclitaxel-Induced Cytotoxicity Toward RAW 264.7 Cells by Reversing Cell Cycle Arrest and Apoptosis. Front Pharmacol 2019; 9:1580. [PMID: 30804792 PMCID: PMC6378367 DOI: 10.3389/fphar.2018.01580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose: The purpose of this study was to determine if an Astragalus polysaccharide (RAP) can protect immune cells from the toxic side effects of paclitaxel (Taxol), a powerful anti-tumor drug whose equally powerful side effects limit its clinical use. Methods: We hypothesized that RAP can reduce the toxic effects induced by Taxol. To test this hypothesis, we conducted a series of studies in vivo and in vitro. First, we confirmed RAP's effects in vivo utilizing BALB/c mice inoculated with 4T1 mouse breast cancer cells as the tumor model. Mice were treated with RAP and/or Taxol, and the differences in the life spans were recorded. Second, a co-culture cell model was used to study the protective effect of RAP on cells vis-a-vis Taxol. The cell cycle and apoptosis of RAW 264.7 cells that were treated with RAP with/without Taxol were checked by flow cytometry and Hoechst staining. Proteins involved in the cell cycle and apoptosis were also tested by Western blot to reveal the probable mechanism. Results: RAP prolonged the life span of tumor-bearing mice treated with Taxol. The in vitro experiments showed that Taxol suppressed the proliferation of RAW 264.7 cells while RAP protected the RAW 264.7 cells from Taxol-induced suppression. The protection is selective because RAP had no effect on 4T1 cells. Furthermore, Taxol clearly led to cell cycle arrest mainly at the G2/M phase and generated cytotoxicity against RAW 264.7 cells, while RAP blocked cell cycle arrest and protected cells from apoptosis. Taxol up-regulated the protein levels of P-H2A, PARP, Chk1, p53, and p21 and down-regulated Bcl-Xl and Mcl-1, and RAP reversed the expression of all these proteins. Conclusion: These results suggested that RAP can protect immune cells from Taxol-induced toxicity, by changing the cell cycle and apoptosis.
Collapse
Affiliation(s)
- Wan-Rong Bao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhi-Peng Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Quan-Wei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hong-Bing Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
27
|
Lipid accumulation facilitates mitotic slippage-induced adaptation to anti-mitotic drug treatment. Cell Death Discov 2018; 4:109. [PMID: 30510774 PMCID: PMC6258763 DOI: 10.1038/s41420-018-0127-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant lipid accumulation is a hallmark of cancer known to contribute to its aggressiveness and malignancy. Emerging studies have demonstrated context-dependent changes in lipid metabolism during chemotherapy. However, there is little known regarding the mechanisms linking lipid metabolism to chemotherapy-induced cell fates. Here, we describe lipid accumulation in cells following antimitotic drug treatment. Cells arrested in mitosis, as well as cells that escaped mitotic arrest and underwent mitotic slippage, showed elevated cytoplasmic lipid droplets. Interestingly, we found that TOFA, a lipid biosynthesis inhibitor that targets acetyl-CoA carboxylase (ACC) and blocks lipid accumulation, promoted early slippage, reduced cellular stress and enhanced survival of antimitotic-treated cells. Our work previously revealed that cells that survive after mitotic slippage can become senescent and confer pro-tumourigenic effects through paracrine signalling. Modulating lipid biosynthesis in cells post slippage by TOFA amplified their inflammatory secretion profiles and accelerated the development of tumourigenic behaviour, particularly cell migration and invasion, in a paracrine-dependent manner. In contrast to TOFA, inhibition of lipid accumulation by C75, a drug targeting fatty acid synthase (FASN), significantly reduced the production of pro-tumourigenic factors and associated phenotypic effects. This suggests that discrete lipid biosynthesis pathways could contribute differentially to the regulation of pro-tumourigenic inflammation. The divergent effects of TOFA and C75 may be attributed to the opposing regulation of Malonyl-CoA, an intermediate in fatty acid synthesis that serves as a mediator of fatty acid oxidation. Taken together, our data reveal a previously unappreciated role for lipid accumulation in the cellular adaptation to antimitotic drug treatment. Targeting lipid biosynthesis in cells post slippage may reprogramme its secretory profile such that it not only negates tumour-promoting effects, but may also promote anti-tumour inflammation for clearance of post-slippage senescent cells.
Collapse
|
28
|
Liu X, Li Y, Zhang X, Liu XY, Peng A, Chen Y, Meng L, Chen H, Zhang Y, Miao X, Zheng L, Huang K. Inhibition of kinesin family member 20B sensitizes hepatocellular carcinoma cell to microtubule-targeting agents by blocking cytokinesis. Cancer Sci 2018; 109:3450-3460. [PMID: 30191636 PMCID: PMC6215872 DOI: 10.1111/cas.13794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Kinesin family member 20B (KIF20B, also known as MPHOSPH1) is a kinesin protein that plays a critical role in cytokinesis. Previously, we and others have demonstrated the oncogenic role of KIF20B in several cancers; however, the exact mechanisms underlying its tumorigenic effects remain unclear. Herein, we showed overexpression of KIF20B in human hepatocellular carcinoma (HCC) and reported a negative correlation between KIF20B level and prognosis of patients. Mechanistically, reducing KIF20B blockades mitotic exit of HCC cells at telophase in a spindle assembly checkpoint independent way. Importantly, reducing KIF20B acts synergistically with three microtubule-associated agents (MTA) to p53- or p14ARF-dependently suppress p53-wt or p53-null HCC cells. In addition to taxol, reducing KIF20B also enhanced the toxicity of two chemotherapeutic drugs, hydroxycamptothecin and mitomycin C. In conclusion, we found a novel mechanism in that blocking cytokinesis by KIF20B inhibition increases the efficacy of MTA; our results thus suggested a dual-mitotic suppression approach against HCC by combining MTA with KIF20B inhibition, which simultaneously blocks mitosis at both metaphase and telophase.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.,Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yuan Liu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Anlin Peng
- The Third Hospital of Wuhan, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Lijing Meng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.,Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China
| |
Collapse
|
29
|
Is blastomere multinucleation a safeguard against embryo aneuploidy? Back to the future. Reprod Biomed Online 2018; 37:506-507. [PMID: 30262194 DOI: 10.1016/j.rbmo.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
|
30
|
Altinoz MA, Ozpinar A, Alturfan EE, Elmaci I. Vinorelbine's anti-tumor actions may depend on the mitotic apoptosis, autophagy and inflammation: hypotheses with implications for chemo-immunotherapy of advanced cancers and pediatric gliomas. J Chemother 2018; 30:203-212. [PMID: 30025492 DOI: 10.1080/1120009x.2018.1487149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Vinorelbine is a very potent chemotherapeutic agent which is used to treat a number of cancers including breast and non-small cell lung tumors. Vinorelbine mainly acts via blocking microtubules and induces a specific type of cell death called 'mitotic catastrophe/apoptosis' subsequent to mitotic slippage, which is the failure of cells to stay in a mitotic arrested state and replicating their DNA without cytokinesis. Glial tumor cells are especially sensitive to mitotic slippage. In recent years, vinorelbine demonstrated potency in pediatric optic and pontine gliomas. In this manuscript, we propose that vinorelbine's anti-tumor actions involve mitotic apoptosis, autophagy and inflammation. Intravenous infusion of vinorelbine induces a peculiar severe pain in the tumor site and patients with highly vascularized, oedematous and necrotic tumors are particularly vulnerable to this pain. Severe pain is a sign of robust inflammation and anti-inflammatory agents are used in treatment of this side effect. However, no one has questioned whether inflammation contributes to anti-tumor effects of vinorelbine, despite the existing data that vinorelbine induces Toll-Like Receptor-4 (TLR4), cytokines and cell death in endothelial cells especially under hypoxia. Robust inflammation may contribute to tumor necrosis such as seen during immunotherapy with lipopolysaccharides (LPS). Evidence also emerges that enhanced cyclooxygenase activity may increase cancer cell death in certain contexts. There are data indicating that non-steroidal anti-inflammatory drugs (NSAIDs) could block anti-tumor efficacy of taxanes, which also work mainly via anti-microtubule actions. Further, combining vinorelbine with immunostimulant cytokines provided encouraging results in far advanced melanoma and renal cell carcinoma, which are highly antigenic tumors. Vinorelbine also showed potential in treatment of inflammatory breast cancer. Finally, pontine gliomas - where partial activity of vinorelbine is shown by some studies - are also tumors which partially respond to immune stimulation. Animal experiments shall be conducted whether TLR4-activating molecules or immune-checkpoint inhibitors could augment anti-tumor actions of vinorelbine. Noteworthy, TLR4-activation seems as the most promising way of cancer immunotherapy, as a high percentage of molecules which demonstrated clinical benefits in cancer treatment are activators of TLR4, including BCG vaccine, monophosphoryl lipid A and picibanil (OKT-432). The provided data would be meaningful for the oncological practice.
Collapse
Affiliation(s)
- Meric A Altinoz
- a Department of Neurosurgery , Neuroacademy Group, Memorial Hospital , Istanbul , Turkey
| | - Aysel Ozpinar
- b Department of Medical Biochemistry , Acibadem University , Istanbul , Turkey
| | | | - Ilhan Elmaci
- a Department of Neurosurgery , Neuroacademy Group, Memorial Hospital , Istanbul , Turkey
| |
Collapse
|
31
|
Mitchison TJ, Pineda J, Shi J, Florian S. Is inflammatory micronucleation the key to a successful anti-mitotic cancer drug? Open Biol 2018; 7:rsob.170182. [PMID: 29142107 PMCID: PMC5717346 DOI: 10.1098/rsob.170182] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Paclitaxel is a successful anti-cancer drug that kills cancer cells in two-dimensional culture through perturbation of mitosis, but whether it causes tumour regression by anti-mitotic actions is controversial. Drug candidates that specifically target mitosis, including inhibitors of kinesin-5, AurkA, AurkB and Plk1, disappointed in the clinic. Current explanations for this discrepancy include pharmacokinetic differences and hypothetical interphase actions of paclitaxel. Here, we discuss post-mitotic micronucleation as a special activity of taxanes that might explain their higher activity in solid tumours. We review data showing that cells which exit mitosis in paclitaxel are highly micronucleated and suffer post-mitotic DNA damage, and that these effects are much stronger for paclitaxel than kinesin-5 inhibitors. We propose that post-mitotic micronucleation promotes inflammatory signalling via cGAS–STING and other pathways. In tumours, this signalling may recruit cytotoxic leucocytes, damage blood vessels and prime T-cell responses, leading to whole-tumour regression. We discuss experiments that are needed to test the micronucleation hypothesis, and its implications for novel anti-mitotic targets and enhancement of taxane-based therapies.
Collapse
Affiliation(s)
- T J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - J Pineda
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - J Shi
- Hong Kong Baptist University, Kowloon, HK, Hong Kong
| | - S Florian
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Liu X, Li Y, Meng L, Liu XY, Peng A, Chen Y, Liu C, Chen H, Sun S, Miao X, Zhang Y, Zheng L, Huang K. Reducing protein regulator of cytokinesis 1 as a prospective therapy for hepatocellular carcinoma. Cell Death Dis 2018; 9:534. [PMID: 29748662 PMCID: PMC5945625 DOI: 10.1038/s41419-018-0555-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022]
Abstract
Proteins that bind to microtubule are important for cell cycle, and some of these proteins show oncogenic characteristics with mechanisms not fully understood. Herein we demonstrate overexpression of protein regulator of cytokinesis 1 (PRC1), a microtubule-associated regulator of mitosis, in human hepatocellular carcinoma (HCC). Moreover, upregulated PRC1 is associated with lower survival rates of HCC patients. Mechanistically, reducing PRC1 blocks mitotic exit of HCC cells at telophase in a spindle assembly checkpoint independent manner, and acts synergistically with microtubule-associated agents (MTAs) to suppress p53-wt or p53-null HCC cells in a p53- or p14ARF-dependent manner; while overexpressing PRC1 increases the resistance of HCC to taxol. A combined treatment of taxol/shPRC1 results in 90% suppression of tumor growth in subcutaneous HCC xenograft models. In orthotopic xenograft mice, reducing PRC1 significantly alleviates HCC development and hepatic injury. Together, our results suggest a dual-mitotic suppression approach against HCC by combining MTAs with cytokinesis inhibition, which blocks mitosis at both metaphase and telophase.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China.,Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, 430074, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Lijing Meng
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Xin-Yuan Liu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Anlin Peng
- The Third Hospital of Wuhan, Wuhan, 430060, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Chengyu Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China.,Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, 430074, China
| | - Hong Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Sheng Sun
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Xiaoping Miao
- Tongji School of Public Health, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Yu Zhang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, 430074, China.
| |
Collapse
|
33
|
Olson OC, Kim H, Quail DF, Foley EA, Joyce JA. Tumor-Associated Macrophages Suppress the Cytotoxic Activity of Antimitotic Agents. Cell Rep 2017; 19:101-113. [PMID: 28380350 PMCID: PMC5614506 DOI: 10.1016/j.celrep.2017.03.038] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 01/12/2023] Open
Abstract
Antimitotic agents, including Taxol, disrupt microtubule dynamics and cause a protracted mitotic arrest and subsequent cell death. Despite the broad utility of these drugs in breast cancer and other tumor types, clinical response remains variable. Tumor-associated macrophages (TAMs) suppress the duration of Taxol-induced mitotic arrest in breast cancer cells and promote earlier mitotic slippage. This correlates with a decrease in the phosphorylated form of histone H2AX (γH2AX), decreased p53 activation, and reduced cancer cell death in interphase. TAMs promote cancer cell viability following mitotic slippage in a manner sensitive to MAPK/ERK kinase (MEK) inhibition. Acute depletion of major histocompatibility complex class II low (MHCIIlo) TAMs increased Taxol-induced DNA damage and apoptosis in cancer cells, leading to greater efficacy in intervention trials. MEK inhibition blocked the protective capacity of TAMs and phenocopied the effects of TAM depletion on Taxol treatment. TAMs suppress the cytotoxic effects of Taxol, in part through cell non-autonomous modulation of mitotic arrest in cancer cells, and targeting TAM-cancer cell interactions potentiates Taxol efficacy.
Collapse
Affiliation(s)
- Oakley C Olson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyunjung Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniela F Quail
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland; Department of Oncology, University of Lausanne, 1066 Lausanne, Switzerland.
| |
Collapse
|
34
|
Shi J, Mitchison TJ. Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic. Endocr Relat Cancer 2017; 24:T83-T96. [PMID: 28249963 PMCID: PMC5557680 DOI: 10.1530/erc-17-0003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
Anti-mitotic cancer drugs include classic microtubule-targeting drugs, such as taxanes and vinca alkaloids, and the newer spindle-targeting drugs, such as inhibitors of the motor protein; Kinesin-5 (aka KSP, Eg5, KIF11); and Aurora-A, Aurora-B and Polo-like kinases. Microtubule-targeting drugs are among the first line of chemotherapies for a wide spectrum of cancers, but patient responses vary greatly. We still lack understanding of how these drugs achieve a favorable therapeutic index, and why individual patient responses vary. Spindle-targeting drugs have so far shown disappointing results in the clinic, but it is possible that certain patients could benefit if we understand their mechanism of action better. Pre-clinical data from both cell culture and mouse tumor models showed that the cell death response is the most variable point of the drug action. Hence, in this review we focus on current mechanistic understanding of the cell death response to anti-mitotics. We first draw on extensive results from cell culture studies, and then cross-examine them with the more limited data from animal tumor models and the clinic. We end by discussing how cell type variation in cell death response might be harnessed to improve anti-mitotic chemotherapy by better patient stratification, new drug combinations and identification of novel targets for drug development.
Collapse
Affiliation(s)
- Jue Shi
- Department of Physics and Department of BiologyCenter for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
| | - Timothy J Mitchison
- Department of Systems BiologyHarvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Cheng B, Crasta K. Consequences of mitotic slippage for antimicrotubule drug therapy. Endocr Relat Cancer 2017; 24:T97-T106. [PMID: 28684541 DOI: 10.1530/erc-17-0147] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Abstract
Antimicrotubule agents are commonly utilised as front-line therapies against several malignancies, either by themselves or as combination therapies. Cell-based studies have pinpointed the anti-proliferative basis of action to be a consequence of perturbation of microtubule dynamics leading to sustained activation of the spindle assembly checkpoint, prolonged mitotic arrest and mitotic cell death. However, depending on the biological context and cell type, cells may take an alternative route besides mitotic cell death via a process known as mitotic slippage. Here, mitotically arrested cells 'slip' to the next interphase without undergoing proper chromosome segregation and cytokinesis. These post-slippage cells in turn have two main cell fates, either cell death or a G1 arrest ensuing in senescence. In this review, we take a look at the factors determining mitotic cell death vs mitotic slippage, post-slippage cell fates and accompanying features, and their consequences for antimicrotubule drug treatment outcomes.
Collapse
Affiliation(s)
- Bing Cheng
- Lee Kong Chian School of MedicineNanyang Technological University, Singapore, Singapore
| | - Karen Crasta
- Lee Kong Chian School of MedicineNanyang Technological University, Singapore, Singapore
- School of Biological SciencesNanyang Technological University, Singapore, Singapore
- A*STAR Institute of Molecular and Cell BiologySingapore, Singapore
- Department of MedicineImperial College London, London, UK
| |
Collapse
|
36
|
Cellular effects of the microtubule-targeting agent peloruside A in hypoxia-conditioned colorectal carcinoma cells. Biochim Biophys Acta Gen Subj 2017; 1861:1833-1843. [DOI: 10.1016/j.bbagen.2017.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/27/2022]
|
37
|
Kueh HY, Zhu Y, Shi J. A simplified Bcl-2 network model reveals quantitative determinants of cell-to-cell variation in sensitivity to anti-mitotic chemotherapeutics. Sci Rep 2016; 6:36585. [PMID: 27811996 PMCID: PMC5095668 DOI: 10.1038/srep36585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/17/2016] [Indexed: 11/09/2022] Open
Abstract
Anti-mitotic drugs constitute a major class of cytotoxic chemotherapeutics used in the clinic, killing cancer cells by inducing prolonged mitotic arrest that activates intrinsic apoptosis. Anti-mitotics-induced apoptosis is known to involve degradation of anti-apoptotic Bcl-2 proteins during mitotic arrest; however, it remains unclear how this mechanism accounts for significant heterogeneity observed in the cell death responses both within and between cancer cell types. To unravel quantitative determinants underlying variability in anti-mitotic drug response, we constructed a single-cell dynamical Bcl-2 network model describing cell death control during mitotic arrest, and constrained the model using experimental data from four representative cancer cell lines. The modeling analysis revealed that, given a variable, slowly accumulating pro-apoptotic signal arising from anti-apoptotic protein degradation, generation of a switch-like apoptotic response requires formation of pro-apoptotic Bak complexes with hundreds of subunits, suggesting a crucial role for high-order cooperativity. Moreover, we found that cell-type variation in susceptibility to drug-induced mitotic death arises primarily from differential expression of the anti-apoptotic proteins Bcl-xL and Mcl-1 relative to Bak. The dependence of anti-mitotic drug response on Bcl-xL and Mcl-1 that we derived from the modeling analysis provides a quantitative measure to predict sensitivity of distinct cancer cells to anti-mitotic drug treatment.
Collapse
Affiliation(s)
- Hao Yuan Kueh
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.,Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yanting Zhu
- Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China.,Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China.,Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
38
|
Yasuhira S, Shibazaki M, Nishiya M, Maesawa C. Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Cell Cycle 2016; 15:3268-3277. [PMID: 27764550 DOI: 10.1080/15384101.2016.1242537] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spindle poisons elicit various cellular responses following metaphase arrest, but how they relate to long-term clonogenicity has remained unclear. We prepared several HeLa lines in which the canonical apoptosis pathway was attenuated, and compared their acute responses to paclitaxel, as well as long-term fate, with the parental line. Three-nanomolar paclitaxel induced brief metaphase arrest (<5 h) often followed by aberrant mitosis, and about 90% of the cells of each line had lost their clonogenicity after 48 h of the treatment. A combination of the same concentration of paclitaxel with the kinesin-5 inhibitor, S-trityl-L-cysteine (STLC), at 1 µM led to much longer arrest (∼20 h) and predominance of subsequent line-specific responses: mitochondrial outer membrane permeabilization (MOMP) in the apoptosis-prone line, or mitotic slippage without obvious MOMP in the apoptosis-reluctant lines. In spite of this, combination with STLC did not lead to a marked difference in clonogenicity between the apoptosis-prone and -reluctant lines, and intriguingly resulted in slightly better clonogenicity than that of cells treated with 3 nM paclitaxel alone. This indicates that changes in the short-term response within 3 possible scenarios - acute MOMP, mitotic slippage or aberrant mitosis - has only a weak impact on clonogenicity. Our results suggest that once cells have committed to slippage or aberrant mitosis they eventually undergo proliferative death irrespective of canonical apoptosis or p53 function. Consistent with this, cells with irregular DNA contents originating from mitotic slippage or aberrant mitosis were mostly eliminated from the population within several rounds of division after the drug treatment.
Collapse
Affiliation(s)
- Shinji Yasuhira
- a Department of Tumor Biology , Institute of Biomedical Sciences, Iwate Medical University , Yahaba-cho, Shiwa-gun , Iwate , Japan
| | - Masahiko Shibazaki
- a Department of Tumor Biology , Institute of Biomedical Sciences, Iwate Medical University , Yahaba-cho, Shiwa-gun , Iwate , Japan
| | - Masao Nishiya
- a Department of Tumor Biology , Institute of Biomedical Sciences, Iwate Medical University , Yahaba-cho, Shiwa-gun , Iwate , Japan
| | - Chihaya Maesawa
- a Department of Tumor Biology , Institute of Biomedical Sciences, Iwate Medical University , Yahaba-cho, Shiwa-gun , Iwate , Japan
| |
Collapse
|
39
|
He Y, Yan D, Zheng D, Hu Z, Li H, Li J. Cell Division Cycle 6 Promotes Mitotic Slippage and Contributes to Drug Resistance in Paclitaxel-Treated Cancer Cells. PLoS One 2016; 11:e0162633. [PMID: 27611665 PMCID: PMC5017606 DOI: 10.1371/journal.pone.0162633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel (PTX) is an antimitotic drug that possesses potent anticancer activity, but its therapeutic potential in the clinic has been hindered by drug resistance. Here, we report a mechanism by which cancer cells can exit from the PTX-induced mitotic arrest, i.e. mitotic slippage, and avoid subsequent death resulting in drug resistance. In cells experiencing mitotic slippage, Cdc6 protein level was significantly upregulated, Cdk1 activity was inhibited, and Cohesin/Rad21 was cleaved as a result. Cdc6 depletion by RNAi or Norcantharidin inhibited PTX-induced Cdc6 up-regulation, maintained Cdk1 activity, and repressed Cohesin/Rad21 cleavage. In all, this resulted in reduced mitotic slippage and reversal of PTX resistance. Moreover, in synchronized cells, the role of Cdc6 in mitotic exit under PTX pressure was also confirmed. This study indicates that Cdc6 may promote mitotic slippage by inactivation of Cdk1. Targeting of Cdc6 may serve as a promising strategy for enhancing the anticancer activity of PTX.
Collapse
Affiliation(s)
- Yue He
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Daoyu Yan
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (HL)
| | - Jinlong Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (HL)
| |
Collapse
|
40
|
Buliaková B, Mesárošová M, Bábelová A, Šelc M, Némethová V, Šebová L, Rázga F, Ursínyová M, Chalupa I, Gábelová A. Surface-modified magnetite nanoparticles act as aneugen-like spindle poison. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:69-80. [PMID: 27593490 DOI: 10.1016/j.nano.2016.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Iron oxide nanoparticles are one of the most promising types of nanoparticles for biomedical applications, primarily in the context of nanomedicine-based diagnostics and therapy; hence, great attention should be paid to their bio-safety. Here, we investigate the ability of surface-modified magnetite nanoparticles (MNPs) to produce chromosome damage in human alveolar A549 cells. Compared to control cells, all the applied MNPs increased the level of micronuclei moderately but did not cause structural chromosomal aberrations in exposed cells. A rise in endoreplication, polyploid and multinuclear cells along with disruption of tubulin filaments, downregulation of Aurora protein kinases and p53 protein activation indicated the capacity of these MNPs to impair the chromosomal passenger complex and/or centrosome maturation. We suppose that surface-modified MNPs may act as aneugen-like spindle poisons via interference with tubulin polymerization. Further studies on experimental animals revealing mechanisms of therapeutic-aimed MNPs are required to confirm their suitability as potential anti-cancer drugs.
Collapse
Affiliation(s)
- Barbora Buliaková
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Monika Mesárošová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Andrea Bábelová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Michal Šelc
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | | | - Lívia Šebová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Filip Rázga
- Polymer Institute, SAS, Bratislava, Slovakia
| | | | - Ivan Chalupa
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia
| | - Alena Gábelová
- Department of Genetics, Cancer Research Institute, BMC SAS, Bratislava, Slovakia.
| |
Collapse
|
41
|
Epothilones Suppress Neointimal Thickening in the Rat Carotid Balloon-Injury Model by Inducing Vascular Smooth Muscle Cell Apoptosis through p53-Dependent Signaling Pathway. PLoS One 2016; 11:e0155859. [PMID: 27218463 PMCID: PMC4878802 DOI: 10.1371/journal.pone.0155859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/05/2016] [Indexed: 01/29/2023] Open
Abstract
Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs.
Collapse
|
42
|
Nakayama Y, Inoue T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules 2016; 21:molecules21050663. [PMID: 27213315 PMCID: PMC6274067 DOI: 10.3390/molecules21050663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Toshiaki Inoue
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
43
|
Flores ML, Castilla C, Gasca J, Medina R, Pérez-Valderrama B, Romero F, Japón MA, Sáez C. Loss of PKCδ Induces Prostate Cancer Resistance to Paclitaxel through Activation of Wnt/β-Catenin Pathway and Mcl-1 Accumulation. Mol Cancer Ther 2016; 15:1713-25. [PMID: 27196755 DOI: 10.1158/1535-7163.mct-15-0951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/05/2016] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the leading cause of cancer-related death among men in developed countries. Although castration therapy is initially effective, prostate cancers progress to hormone-refractory disease and in this case taxane-based chemotherapy is widely used. Castration-resistant prostate cancer cells often develop resistance to chemotherapy agents and the search for new therapeutic strategies is necessary. In this article, we demonstrate that PKCδ silencing favors mitotic arrest after paclitaxel treatment in PC3 and LNCaP cells; however, this is associated with resistance to paclitaxel-induced apoptosis. In prostate cancer cells, PKCδ seems to exert a proapoptotic role, acting as a negative regulator of the canonical Wnt/β-catenin pathway. PKCδ silencing induces activation of Wnt/β-catenin pathway and the expression of its target genes, including Aurora kinase A, which is involved in activation of Akt and both factors play a key role in GSK3β inactivation and consequently in the stabilization of β-catenin and antiapoptotic protein Mcl-1. We also show that combined treatments with paclitaxel and Wnt/β-catenin or Akt inhibitors improve the apoptotic response to paclitaxel, even in the absence of PKCδ. Finally, we observe that high Gleason score prostate tumors lose PKCδ expression and this correlates with higher activation of β-catenin, inactivation of GSK3β, and higher levels of Aurora kinase A and Mcl-1 proteins. These findings suggest that targeting Wnt/β-catenin or Akt pathways may increase the efficacy of taxane chemotherapy in advanced human prostate cancers that have lost PKCδ expression. Mol Cancer Ther; 15(7); 1713-25. ©2016 AACR.
Collapse
Affiliation(s)
- M Luz Flores
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Carolina Castilla
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Jessica Gasca
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Rafael Medina
- Department of Urology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - Francisco Romero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Miguel A Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain. Department of Pathology, Hospital Universitario Virgen del Rocío, Seville, Spain.
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain. Department of Pathology, Hospital Universitario Virgen del Rocío, Seville, Spain.
| |
Collapse
|
44
|
Sloss O, Topham C, Diez M, Taylor S. Mcl-1 dynamics influence mitotic slippage and death in mitosis. Oncotarget 2016; 7:5176-92. [PMID: 26769847 PMCID: PMC4868679 DOI: 10.18632/oncotarget.6894] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.
Collapse
Affiliation(s)
- Olivia Sloss
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Caroline Topham
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
- Present Address: School of Environment & Life Sciences, Cockcroft Building, University of Salford, Salford M5 4WT, United Kingdom
| | - Maria Diez
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
- Present Address: School of Medicine, University of Nottingham, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Stephen Taylor
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
45
|
Wen H, Cui Q, Meng H, Lai F, Wang S, Zhang X, Chen X, Cui H, Yin D. A high-resolution method to assess cell multinucleation with cytoplasm-localized fluorescent probes. Analyst 2016; 141:4010-3. [DOI: 10.1039/c6an00613b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell multinucleation is closely related to chromosomal instability.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Qinghua Cui
- College of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan
- China
| | - Hui Meng
- College of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan
- China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Shufang Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Xiang Zhang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Huaqing Cui
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| |
Collapse
|
46
|
Zynda ER, Matveev V, Makhanov M, Chenchik A, Kandel ES. Protein kinase A type II-α regulatory subunit regulates the response of prostate cancer cells to taxane treatment. Cell Cycle 2015; 13:3292-301. [PMID: 25485509 DOI: 10.4161/15384101.2014.949501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the last decade taxane-based therapy has emerged as a standard of care for hormone-refractory prostate cancer. Nevertheless, a significant fraction of tumors show no appreciable response to the treatment, while the others develop resistance and recur. Despite years of intense research, the mechanisms of taxane resistance in prostate cancer and other malignancies are poorly understood and remain a topic of intense investigation. We have used improved mutagenesis via random insertion of a strong promoter to search for events, which enable survival of prostate cancer cells after Taxol exposure. High-throughput mapping of the integration sites pointed to the PRKAR2A gene, which codes for a type II-α regulatory subunit of protein kinase A, as a candidate modulator of drug response. Both full-length and N-terminally truncated forms of the PRKAR2A gene product markedly increased survival of prostate cancer cells lines treated with Taxol and Taxotere. Suppression of protein kinase A enzymatic activity is the likely mechanism of action of the overexpressed proteins. Accordingly, protein kinase A inhibitor PKI (6-22) amide reduced toxicity of Taxol to prostate cancer cells. Our findings support the role of protein kinase A and its constituent proteins in cell response to chemotherapy.
Collapse
Affiliation(s)
- Evan R Zynda
- a Department of Cell Stress Biology ; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | | | | | |
Collapse
|
47
|
Dikovskaya D, Cole JJ, Mason SM, Nixon C, Karim SA, McGarry L, Clark W, Hewitt RN, Sammons MA, Zhu J, Athineos D, Leach JDG, Marchesi F, van Tuyn J, Tait SW, Brock C, Morton JP, Wu H, Berger SL, Blyth K, Adams PD. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest. Cell Rep 2015; 12:1483-96. [PMID: 26299965 PMCID: PMC4562906 DOI: 10.1016/j.celrep.2015.07.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022] Open
Abstract
Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.
Collapse
Affiliation(s)
- Dina Dikovskaya
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK.
| | - John J Cole
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Susan M Mason
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Colin Nixon
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Saadia A Karim
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Lynn McGarry
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - William Clark
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Rachael N Hewitt
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Morgan A Sammons
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jiajun Zhu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | - Joshua D G Leach
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - John van Tuyn
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Stephen W Tait
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Claire Brock
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | | | - Hong Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Karen Blyth
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Peter D Adams
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK.
| |
Collapse
|
48
|
Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells. Oncoscience 2015; 2:585-95. [PMID: 26244166 PMCID: PMC4506362 DOI: 10.18632/oncoscience.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022] Open
Abstract
Peloruside A is a novel antimitotic drug originally isolated from the marine sponge Mycale hentschieli. Previous studies showed that peloruside A stabilizes microtubules by binding to a site on tubulin distinct from paclitaxel, another microtubule stabilizing drug. Peloruside A blocks mitosis, but little is known about the effects on other cellular activities. Here we report that peloruside A is the most potent microtubule inhibitor yet tested for its ability to block endothelial cell migration. Quantitative analysis indicated that it inhibits microtubule dynamics and endothelial cell migration at 1/200(th) of the concentration needed to inhibit cell division (the cytotoxic concentration), indicating that it could potentially have a large margin of safety when used to specifically target angiogenesis. By comparison, paclitaxel, a well-known cancer therapeutic drug, suppresses cell migration at 1/13(th) of its cytotoxic concentration; and vinblastine suppresses cell migration at just slightly below its cytotoxic antimitotic concentration. Thus, different microtubule targeted drugs have varying relative potencies for inhibition of cell migration versus cell division. The results suggest that peloruside A may be an especially useful agent for anti-angiogenesis therapy and point to the likelihood that other antimitotic drugs might be found with an even larger potential margin of safety.
Collapse
|