1
|
Li S, Wang S, Zhang L, Ka Y, Zhou M, Wang Y, Tang Z, Zhang J, Wang W, Liu W. Research progress on pharmacokinetics, anti-inflammatory and immunomodulatory effects of kaempferol. Int Immunopharmacol 2025; 152:114387. [PMID: 40054326 DOI: 10.1016/j.intimp.2025.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Chronic inflammation (an abnormal state) and autoimmune disease (AD) can both cause multiple organ damage. AD is a heterogeneous group of diseases due to immune dysfunction. Chronic inflammation is closely related to AD and is an important part of AD. With the increasing prevalence of AD, researchers are constantly exploring new drugs with small side effects, considerable curative effects, and lower costs. Kaempferol, a flavonoid, possesses a range of biological functions, including antioxidant, anti-inflammatory, anti-neoplastic, and immunomodulatory capabilities. This compound is prevalent in a variety of plant sources, such as vegetables, fruits, and medicinal herbs traditionally used in Chinese medicine. A plethora of empirical evidence from animal-based research supports the assertion that this particular substance exhibits both anti-inflammatory and immunomodulatory effects, with the curative effect being significant and application prospects. This article mainly summarizes and discusses the pharmacokinetics, drug delivery system, and the mechanism of kaempferol on immune cells, cytokines, signaling pathways, and other aspects. This paper summarizes the existing kaempferol drug delivery system, analyzes the possibility and limitations of kaempferol as a new anti-inflammatory and immunomodulatory drug, and discusses how to apply it in clinical practice. Therefore, kaempferol can more effectively exert its anti-inflammatory and immune-modulating effects, thereby demonstrating therapeutic potential in clinical settings, while reducing patient burden.
Collapse
Affiliation(s)
- Suiran Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lei Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Meijiao Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Zhuo Tang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jiamin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Wu C, Song X, Zhang M, Yang L, Lu P, Ding Q, Liu M. Contradictory Role of Gadd45β in Liver Diseases. J Cell Mol Med 2024; 28:e70267. [PMID: 39653679 PMCID: PMC11628191 DOI: 10.1111/jcmm.70267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024] Open
Abstract
There are three homologous proteins (α, β and γ) in the growth arrest and DNA damage 45 (Gadd45) family. These proteins act as cellular responders to physiological and environmental stimuli. Gadd45β plays a significant role in the pathogenesis of liver diseases. Liver injury and growth stimulation increase expression of Gadd45β, which promotes cell survival, growth and proliferation in normal liver cells. By contrast, Gadd45β plays a role in promoting apoptosis and inhibiting tumour function in hepatocellular carcinoma (HCC). Currently, it is believed that Gadd45β benefits the liver through two different pathways: binding to MAPK kinase 6 (MKK6) to increase PCD induced by p38 (inhibiting tumours) or binding to constitutive androstane receptor (CAR) to jointly activate transcription of liver synthesis metabolism (promoting liver regeneration). This article aims to systematically review the role of Gadd45β in liver diseases, including its regulatory mechanism on expression and involvement in liver cell damage, inflammation, fibrosis and HCC. In conclusion, we explore the potential of targeting Gadd45β as a therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Chi Wu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaozhen Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Miaoxin Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Longjun Yang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qiang Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
4
|
Liu Y, Wang X, Jin C, Qiao J, Wang C, Jiang L, Yu S, Pan D, Zhao D, Wang S, Liu M. Total ginsenosides extend healthspan of aging Drosophila by suppressing imbalances in intestinal stem cells and microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155650. [PMID: 38669971 DOI: 10.1016/j.phymed.2024.155650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Disruption of stem cell and microbial homeostasis accelerates the aging process. Hence, maintaining these balances effectively delays aging and alleviates the symptoms of age-related diseases. Recent research indicates that targeting endoplasmic reticulum (ER) stress and immune deficiency (IMD) signalling may play a positive role in maintaining homeostasis in aging intestinal stem cells (ISC) and microbial equilibrium. Previous research has suggested that total ginsenosides (TG) derived from Panax ginseng C. A. Meyer may exhibit potential anti-aging properties by mitigating ER stress and mediating the IMD pathway. Nevertheless, it remains unclear whether TG improve ISC and microbial homeostasis by modulating ER stress and the IMD pathway to promote healthy aging. PURPOSE To elucidate whether TG promotes healthspan in Drosophila and its underlying molecular mechanisms, focusing on its role in regulating ER stress and the IMD pathway to maintain ISC and intestinal microbiota homeostasis. METHODS High performance liquid chromatography was performed to detect the main saponin monomer in TG. Survival rate, gut length, barrier function, and feeding/excretion behaviour assays were used to evaluate the effects of TG on the lifespan and gut health of Drosophila. At the stem cell level, "esg-luciferase" reporter system, esg-GFP/delta stem cell fluorescent labelling, and phospho-histone H3+ mitotic activity assays were employed to determine whether TG prevented natural aging or oxidative stress-associated ISC over-proliferation in Drosophila. Immunofluorescence staining was used to detect the effects of TG on ER stress during aging. Overexpression or interference of ER stress target genes and their related c-Jun N-terminal kinase (JNK) gene was manipulated using gene editing technology to verify the molecular mechanism by which TG maintains age-related ISC proliferation homeostasis. Molecular docking and isothermal titration calorimetry were used to verify the direct interactions between TG and ER stress target genes. In addition, at the intestinal flora level, 16S rDNA sequencing was used to analyse the effect of TG on the diversity and abundance of Drosophila intestinal flora and the possible functional pathways involved. RT-qPCR was performed to determine whether TG mediated the expression of target genes in the IMD pathway. A dominant bacterial species-specific mono-association analysis were performed to verify whether the effects of TG on IMD target genes and ISC proliferation depended on the direct control of the dominant bacterial species. RESULTS Our results suggest that administration of TG delays the decline in gut morphology and function in aging Drosophila. TG prevents age-associated ISC hyperproliferation by inhibiting ER stress IRE1-mediated JNK signaling. Furthermore, oral TG prevented aging-associated ISC and gut microbiota dysbiosis by remodelling the gut microbiota and inhibiting Acetobacter-mediated activation of IMD target genes. CONCLUSION TG promotes healthy aging by inhibiting the excessive proliferation of ISC and alleviating intestinal microbial imbalance, thereby providing new insights for the research and development of anti-aging TG products.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daian Pan
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
5
|
Lei YC, Chen XJ, Dai YT, Dai B, Wang JY, Li MH, Liu P, Liu H, Wang KK, Jiang L, Chen B. Combination of eriocalyxin B and homoharringtonine exerts synergistic anti-tumor effects against t(8;21) AML. Acta Pharmacol Sin 2024; 45:633-645. [PMID: 38017299 PMCID: PMC10834584 DOI: 10.1038/s41401-023-01196-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Understanding the molecular pathogenesis of acute myeloid leukemia (AML) with well-defined genomic abnormalities has facilitated the development of targeted therapeutics. Patients with t(8;21) AML frequently harbor a fusion gene RUNX1-RUNX1T1 and KIT mutations as "secondary hit", making the disease one of the ideal models for exploring targeted treatment options in AML. In this study we investigated the combination therapy of agents targeting RUNX1-RUNX1T1 and KIT in the treatment of t(8;21) AML with KIT mutations. We showed that the combination of eriocalyxin B (EriB) and homoharringtonine (HHT) exerted synergistic therapeutic effects by dual inhibition of RUNX1-RUNX1T1 and KIT proteins in Kasumi-1 and SKNO-1 cells in vitro. In Kasumi-1 cells, the combination of EriB and HHT could perturb the RUNX1-RUNX1T1-responsible transcriptional network by destabilizing RUNX1-RUNX1T1 transcription factor complex (AETFC), forcing RUNX1-RUNX1T1 leaving from the chromatin, triggering cell cycle arrest and apoptosis. Meanwhile, EriB combined with HHT activated JNK signaling, resulting in the eventual degradation of RUNX1-RUNX1T1 by caspase-3. In addition, HHT and EriB inhibited NF-κB pathway through blocking p65 nuclear translocation in two different manners, to synergistically interfere with the transcription of KIT. In mice co-expressing RUNX1-RUNX1T1 and KITN822K, co-administration of EriB and HHT significantly prolonged survival of the mice by targeting CD34+CD38- leukemic cells. The synergistic effects of the two drugs were also observed in bone marrow mononuclear cells (BMMCs) of t(8;21) AML patients. Collectively, this study reveals the synergistic mechanism of the combination regimen of EriB and HHT in t(8;21) AML, providing new insight into optimizing targeted treatment of AML.
Collapse
Affiliation(s)
- Yi-Chen Lei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Jie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao-Hui Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kan-Kan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Tang M, Wu ZE, Li F. Integrating network pharmacology and drug side-effect data to explore mechanism of liver injury-induced by tyrosine kinase inhibitors. Comput Biol Med 2024; 170:108040. [PMID: 38308871 DOI: 10.1016/j.compbiomed.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly efficient small-molecule anticancer drugs. Despite the specificity and efficacy of TKIs, they can produce off-target effects, leading to severe liver toxicity, and even some of them are labeled as black box hepatotoxicity. Thus, we focused on representative TKIs associated with severe hepatic adverse events, namely lapatinib, pazopanib, regorafenib, and sunitinib as objections of study, then integrated drug side-effect data from United State Food and Drug Administration (U.S. FDA) and network pharmacology to elucidate mechanism underlying TKI-induced liver injury. Based on network pharmacology, we constructed a specific comorbidity module of high risk of serious adverse effects and created drug-disease networks. Enrichment analysis of the networks revealed the depletion of all-trans-retinoic acid and the involvement of down-regulation of the HSP70 family-mediated endoplasmic reticulum (ER) stress as key factors in TKI-induced liver injury. These results were further verified by transcription data. Based on the target prediction results of drugs and reactive metabolites, we also shed light on the association between toxic metabolites and severe hepatic adverse reactions, and thinking HSPA8, HSPA1A, CYP1A1, CYP1A2 and CYP3A4 were potential therapeutic or preventive targets against TKI-induced liver injury. In conclusion, our research provides comprehensive insights into the mechanism underlying severe liver injury caused by TKIs, offering a better understanding of how to enhance patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Miaomiao Tang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhanxuan E Wu
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Kim R, Kin T, Beck WT. Impact of Complex Apoptotic Signaling Pathways on Cancer Cell Sensitivity to Therapy. Cancers (Basel) 2024; 16:984. [PMID: 38473345 DOI: 10.3390/cancers16050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types. The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the c-Jun/activator protein 1 (AP-1)/p53 signaling pathway leading to apoptotic death is altered. Cancer cells treated with anticancer drugs undergo c-Jun/AP-1-mediated apoptotic death and are involved in c-Jun N-terminal kinase activation and growth arrest- and DNA damage-inducible gene 153 (Gadd153)/CCAAT/enhancer-binding protein homologous protein pathway induction, regardless of the p53 genotype. Gadd153 induction is associated with mitochondrial membrane permeabilization after anticancer drug treatment and involves a coupled endoplasmic reticulum stress response. The induction of apoptosis by anticancer drugs is mediated by the intrinsic pathway (cytochrome c, Cyt c) and subsequent activation of the caspase cascade via proapoptotic genes (e.g., Bax and Bcl-xS) and their interactions. Anticancer drug-induced apoptosis involves caspase-dependent and caspase-independent pathways and occurs via intrinsic and extrinsic pathways. The targeting of antiapoptotic genes such as Bcl-2 enhances anticancer drug efficacy. The modulation of apoptotic signaling by Bcl-xS transduction increases the sensitivity of multidrug resistance-related protein-overexpressing epidermoid carcinoma cells to anticancer drugs. The significance of autophagy in cancer therapy remains to be elucidated. In this review, we summarize current knowledge of cancer cell death-related signaling pathways and their alterations during anticancer drug treatment and discuss potential strategies to enhance treatment efficacy.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
| | - Takanori Kin
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - William T Beck
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
TNFα-Induced Oxidative Stress and Mitochondrial Dysfunction Alter Hypothalamic Neurogenesis and Promote Appetite Versus Satiety Neuropeptide Expression in Mice. Brain Sci 2022; 12:brainsci12070900. [PMID: 35884707 PMCID: PMC9316209 DOI: 10.3390/brainsci12070900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal obesity results in programmed offspring hyperphagia and obesity. The increased offspring food intake is due in part to the preferential differentiation of hypothalamic neuroprogenitor cells (NPCs) to orexigenic (AgRP) vs. anorexigenic (POMC) neurons. The altered neurogenesis may involve hypothalamic bHLH (basic helix–loop–helix) neuroregulatory factors (Hes1, Mash1, and Ngn3). Whilst the underlying mechanism remains unclear, it is known that mitochondrial function is critical for neurogenesis and is impacted by proinflammatory cytokines such as TNFα. Obesity is associated with the activation of inflammation and oxidative stress pathways. In obese pregnancies, increased levels of TNFα are seen in maternal and cord blood, indicating increased fetal exposure. As TNFα influences neurogenesis and mitochondrial function, we tested the effects of TNFα and reactive oxidative species (ROS) hydrogen peroxide (H2O2) on hypothalamic NPC cultures from newborn mice. TNFα treatment impaired NPC mitochondrial function, increased ROS production and NPC proliferation, and decreased the protein expression of proneurogenic Mash1/Ngn3. Consistent with this, AgRP protein expression was increased and POMC was decreased. Notably, treatment with H2O2 produced similar effects as TNFα and also reduced the protein expression of antioxidant SIRT1. The inhibition of STAT3/NFκB prevented the effects of TNFα, suggesting that TNFα mediates its effects on NPCs via mitochondrial-induced oxidative stress that involves both signaling pathways.
Collapse
|
9
|
Wu A, Zhu Y, Han B, Peng J, Deng X, Chen W, Du J, Ou Y, Peng X, Yu X. Delphinidin induces cell cycle arrest and apoptosis in HER-2 positive breast cancer cell lines by regulating the NF-κB and MAPK signaling pathways. Oncol Lett 2021; 22:832. [PMID: 34712357 PMCID: PMC8548810 DOI: 10.3892/ol.2021.13093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Delphinidin is an anthocyanidin monomer, commonly found in vegetables and fruits, and has demonstrated antitumor effects in the HER-2-positive MDA-MB-453 breast cancer cell line, with low cytotoxicity on normal breast cells. However, the direct functional mechanisms underlying the effect of delphinidin on HER-2-positive breast cancer cells has not been fully characterized. In the present study, it was found that delphinidin could induce G2/M phase cell cycle arrest by inhibiting the protein expression level of cyclin B1 and Cdk1 in HER-2-positive breast cancer cell lines. In addition, delphinidin promoted the mitochondrial apoptosis pathway by inhibiting the ERK and NF-κB signaling pathway and activating the JNK signaling pathway. Therefore, delphinidin markedly suppressed the viability of the HER-2-positive breast cancer cell lines by modulating the cell cycle and inducing apoptosis. Overall, the findings from the present study demonstrated that delphinidin treatment could induce the mitochondrial apoptosis pathway in human HER-2-positive breast cancer cell lines, providing an experimental basis for the prevention and treatment of HER-2-positive breast cancer by flavonoids.
Collapse
Affiliation(s)
- Ailin Wu
- Basic Medical School, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China.,Ministry of Science and Technology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610051, P.R. China
| | - Yanfeng Zhu
- Graduate School, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jiayuan Peng
- Basic Medical School, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiaomin Deng
- Basic Medical School, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei Chen
- Basic Medical School, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jingchang Du
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yu Ou
- Division of Planning and Finance, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiaoli Peng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiaoping Yu
- Graduate School, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
10
|
Wang Q, Wu W, Gao Z, Li K, Peng S, Fan H, Xie Z, Guo Z, Huang H. GADD45B Is a Potential Diagnostic and Therapeutic Target Gene in Chemotherapy-Resistant Prostate Cancer. Front Cell Dev Biol 2021; 9:716501. [PMID: 34490266 PMCID: PMC8417000 DOI: 10.3389/fcell.2021.716501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 01/26/2023] Open
Abstract
Background Chemoresistance is the major cause of death in advanced prostate cancer (PCa), especially in metastatic PCa (mPCa). However, the molecular mechanisms underlying the chemoresistance of PCa remain unclear. Understanding the reason behind the drug resistance would be helpful in developing new treatment approaches. Methods The Cancer Genome Atlas, Gene Expression Omnibus datasets, and clinical samples were used to examine the correlation between growth arrest and DNA damage-inducible 45 beta (GADD45B) with clinical characteristics and prognosis. Lentiviral transfection was used to construct GADD45B overexpression cell lines. Hypoxic incubator, low serum medium, or docetaxel was used to build environmental stress model or chemotherapy cell model. The MTS assay and colony formation assay were used to test cell viability. Apoptosis and cell cycle were detected by flow cytometry. The RNA and protein levels of related biomarkers were tested by Western blotting and quantitative polymerase chain reaction. Bioinformatics analysis after RNA sequencing was performed to identify the possible mechanism of how GADD45B regulates chemotherapy resistance. Results GADD45B was related to distant metastasis but not to Gleason score, prostate-specific antigen level, T stage, or lymph node metastasis and indicated a good prognosis. The level of GADD45B increased significantly in PCa cells that faced environmental stress. It was found that a high level of GADD45B significantly enhanced the chemosensitivity. Furthermore, high GADD45B promoted cell apoptosis via mitogen-activated protein kinase (MAPK) pathway. Conclusion GADD45B promoted chemosensitivity of prostate cancer through MAPK pathway. GADD45B could serve as a diagnostic biomarker and therapeutic target for mPCa or chemotherapy-resistant patients.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanhua Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze Gao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyang Fan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Zhenghui Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
11
|
Benomyl induced oxidative stress related DNA damage and apoptosis in H9c2 cardiomyoblast cells. Toxicol In Vitro 2021; 75:105180. [PMID: 33930522 DOI: 10.1016/j.tiv.2021.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Benomyl, benzimidazole group pesticide, has been prohibited in Europe and USA since 2003 due to its toxic effects and it has been still determined as food and environmental contaminant. In the present study, the toxic effect mechanisms of benomyl were evaluated in rat cardiomyoblast (H9c2) cells. Cytotoxicity was determined by MTT and NRU assay and, oxidative stress potential was evaluated by reactive oxygen species (ROS) production and glutathione levels. DNA damage was assessed by alkaline comet assay. Relative expressions of apoptosis related genes were evaluated; furthermore, NF-κB and JNK protein levels were determined. At 4 μM concentration (at which cell viability was >70%), benomyl increased 2-fold of ROS production level and 2-fold of apoptosis as well as DNA damage. Benomyl down-regulated miR21, TNF-α and Akt1 ≥ 48.75 and ≥ 97.90; respectively. PTEN, JNK and NF-κB expressions were upregulated. The dramatic changes in JNK and NF-κB expression levels were not observed in protein levels. These findings showed the oxidative stress related DNA damage and apoptosis in cardiomyoblast cells exposed to benomyl. However, further mechanistic and in vivo studies are needed to understand the cardiotoxic effects of benomyl and benzimidazol fungucides.
Collapse
|
12
|
Nifuroxazide attenuates experimentally-induced hepatic encephalopathy and the associated hyperammonemia and cJNK/caspase-8/TRAIL activation in rats. Life Sci 2020; 252:117610. [DOI: 10.1016/j.lfs.2020.117610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022]
|
13
|
ER Stress Responses: An Emerging Modulator for Innate Immunity. Cells 2020; 9:cells9030695. [PMID: 32178254 PMCID: PMC7140669 DOI: 10.3390/cells9030695] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is a critical organelle, storing the majority of calcium and governing protein translation. Thus, it is crucial to keep the homeostasis in all ER components and machineries. The ER stress sensor pathways, including IRE1/sXBP1, PERK/EIf2 and ATF6, orchestrate the major regulatory circuits to ensure ER homeostasis. The embryonic or postnatal lethality that occurs upon genetic depletion of these sensors reveals the essential role of the ER stress pathway in cell biology. In contrast, the impairment or excessive activation of ER stress has been reported to cause or aggravate several diseases such as atherosclerosis, diabetes, NAFDL/NASH, obesity and cancer. Being part of innate immunity, myeloid cells are the first immune cells entering the inflammation site. Upon entry into a metabolically stressed disease environment, activation of ER stress occurs within the myeloid compartment, leading to the modulation of their phenotype and functions. In this review, we discuss causes and consequences of ER stress activation in the myeloid compartment with a special focus on the crosstalk between ER, innate signaling and metabolic environments.
Collapse
|
14
|
Wang X, Li C, Wang Y, Li L, Han Z, Wang G. UFL1 Alleviates LPS-Induced Apoptosis by Regulating the NF-κB Signaling Pathway in Bovine Ovarian Granulosa Cells. Biomolecules 2020; 10:biom10020260. [PMID: 32050508 PMCID: PMC7072671 DOI: 10.3390/biom10020260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) is an E3 ligase of ubiquitin fold modifier 1 (UFM1), which can act together with its target protein to inhibit the apoptosis of cells. Lipopolysaccharides (LPS) can affect the ovarian health of female animals by affecting the apoptosis of ovarian granulosa cells. The physiological function of UFL1 on the apoptosis of bovine (ovarian) granulosa cells (bGCs) remains unclear; therefore, we focused on the modulating effect of UFL1 on the regulation of LPS-induced apoptosis in ovarian granulosa cells. Our study found that UFL1 was expressed in both the nucleus and cytoplasm of bGCs. The results here demonstrated that LPS caused a significant increase in the apoptosis level of bGCs in cows, and also dramatically increased the expression of UFL1. Furthermore, we found that UFL1 depletion caused a significant increase in apoptosis (increased the expression of BAX/BCL-2 and the activity of caspase-3). Conversely, the overexpression of UFL1 relieved the LPS-induced apoptosis. In order to assess whether the inhibition of bGCs apoptosis involved in the nuclear factor-κB (NF-κB) signaling pathway resulted from UFL1, we detected the expression of NF-κB p-p65. LPS treatment resulted in a significant upregulation in the protein concentration of NF-κB p-p65, and knockdown of UFL1 further increased the phosphorylation of NF-κB p65, while UFL1 overexpression significantly inhibited the expression of NF-κB p-p65. Collectively, UFL1 could suppress LPS-induced apoptosis in cow ovarian granulosa cells, likely via the NF-κB pathway. These results identify a novel role of UFL1 in the modulation of bGC apoptosis, which may be a potential signaling target to improve the reproductive health of dairy cows.
Collapse
Affiliation(s)
| | | | | | - Lian Li
- Correspondence: ; Tel.: +86-25-84395045; Fax: +86-25-84395314
| | | | | |
Collapse
|
15
|
Javaid N, Choi S. Toll-like Receptors from the Perspective of Cancer Treatment. Cancers (Basel) 2020; 12:E297. [PMID: 32012718 PMCID: PMC7072551 DOI: 10.3390/cancers12020297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.
Collapse
Affiliation(s)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
16
|
Li Y, Jiang W, Niu Q, Sun Y, Meng C, Tan L, Song C, Qiu X, Liao Y, Ding C. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death Dis 2019; 10:891. [PMID: 31767828 PMCID: PMC6877643 DOI: 10.1038/s41419-019-2128-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Newcastle disease virus (NDV) causes severe infectious disease in poultry and selectively kills tumor cells, by inducing apoptosis and cytokines secretion. In this report, we study the mechanisms underlying NDV-induced apoptosis by investigating the unfolded protein response (UPR). We found that NDV infection activated all three branches of the UPR signaling (PERK-eIF2α, ATF6, and IRE1α) and triggered apoptosis, in avian cells (DF-1 and CEF) and in various human cancer cell types (HeLa, Cal27, HN13, A549, H1299, Huh7, and HepG2). Interestingly, the suppression of either apoptosis or UPR led to impaired NDV proliferation. Meanwhile, the inhibition of UPR by 4-PBA protected cells from NDV-induced apoptosis. Further study revealed that activation of PERK-eIF2α induced the expression of transcription factor CHOP, which subsequently promoted apoptosis by downregulating BCL-2/MCL-1, promoting JNK signaling and suppressing AKT signaling. In parallel, IRE1α mediated the splicing of XBP1 mRNA and resulted in the translation and nuclear translocation of XBP1s, thereby promoting the transcription of ER chaperones and components of ER-associated degradation (ERAD). Furthermore, IRE1α promoted apoptosis and cytokines secretion via the activation of JNK signaling. Knock down and overexpression studies showed that CHOP, IRE1α, XBP1, and JNK supported efficient virus proliferation. Our study demonstrates that the induction of eIF2α-CHOP-BCL-2/JNK and IRE1α-XBP1/JNK signaling cascades promote apoptosis and cytokines secretion, and these signaling cascades support NDV proliferation.
Collapse
Affiliation(s)
- Yanrong Li
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Weiyu Jiang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Qiaona Niu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China.
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, P. R. China.
| |
Collapse
|
17
|
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018; 29:1447-1487. [PMID: 29350049 PMCID: PMC6199630 DOI: 10.1089/ars.2017.7267] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. CRITICAL ISSUES Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e., abscopal effects). FUTURE DIRECTIONS Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS INAC SyMMES UMR 5819, Grenoble, France
| |
Collapse
|
18
|
Zeng GZ, Wang Z, Zhao LM, Fan JT, Tan NH. NF-κB and JNK mediated apoptosis and G 0/G 1 arrest of HeLa cells induced by rubiarbonol G, an arborinane-type triterpenoid from Rubia yunnanensis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:220-227. [PMID: 29097252 DOI: 10.1016/j.jep.2017.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/08/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rubia yunnanensis is a medicinal plant mainly grown in Yunnan province in Southwest China, and its root named "Xiaohongshen" has been used as a herb in Yunnan for the treatment of cancers. Three major types of chemical components, Rubiaceae-type cyclopeptides, quinones, and triterpenoids, were identified from R. yunnanensis, in which some of compounds including rubiarbonol G (RG), a unique arboriane-type triterpenoid, showed cytotoxicity on cancer cells. But the cytotoxic mechanism of RG has not been reported. AIM OF THE STUDY To investigate the cytotoxic mechanism of RG on cancer cells. MATERIALS AND METHODS RG was evaluated its cytotoxicity on 7 cancer cell lines by the SRB assay, and detected the effect on apoptosis and cell cycle arrest by Annexin V-FITC/PI apoptosis assay and DNA contents analysis. The expression and activity of apoptosis and cell cycle related proteins were also investigated by western blot and caspase activity assay. Furthermore, the effect of RG on NF-κB signaling was also tested by luciferase assay, western blot, and immunofluorescence staining. RESULTS RG showed potent cytotoxicity on 7 human cancer cell lines, whose activity was attributed to apoptosis induction and G0/G1 arrest in HeLa cells. Results from the mechanism study showed that RG promoted the activation of ERK1/2 and JNK pathway in MAPK family, which in turn increased the expression of p53, thereby triggering the G0/G1 arrest through p53/p21/cyclin D1 signaling. Moreover, RG-mediated JNK activation down-regulated the expression of the anti-apoptotic protein Bcl-2, which caused the release of cytochrome c to the cytosol and activated the cleavage of caspase cascade and poly(ADP-ribose) polymerase, thereby inducing apoptosis in HeLa cells. In addition, RG was also found to inhibit the activation of NF-κB signaling by down-regulating the expression and attenuating the translocation to nucleus of NF-κB p65, by which the down-stream p53, cyclin D1, Bcl-2, and caspases were regulated, thereby triggering apoptosis and G0/G1 arrest in HeLa cells. CONCLUSION These results indicated that RG induces mitochondria-mediated apoptosis and G0/G1 cell cycle arrest by activation of JNK signaling as well as inactivation of NF-κB pathway in HeLa cells, which suggests that RG is one of the key active ingredients accounting for the anti-tumor effect of R. yunnanensis.
Collapse
Affiliation(s)
- Guang-Zhi Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650500, PR China
| | - Zhe Wang
- School of Traditional Chinese Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Li-Mei Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Jun-Ting Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ning-Hua Tan
- School of Traditional Chinese Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
19
|
Wang X, Dong F, Wang F, Yan S, Chen X, Tozawa H, Ushijima T, Kapron CM, Wada Y, Liu J. Low dose cadmium upregulates the expression of von Willebrand factor in endothelial cells. Toxicol Lett 2018; 290:46-54. [PMID: 29571895 DOI: 10.1016/j.toxlet.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) is a persistent and widespread environmental pollutant of continuing worldwide concern. Previous studies have suggested that Cd exposure increases the risk of cardiovascular diseases, such as atherosclerosis and hypertension. However, the underlying mechanisms are poorly understood. In this study, we observed that low dose Cd treatment induced von Willebrand factor (vWF) expression in vascular endothelial cells in mouse lung and kidney tissues. In vitro analysis showed that 1 μM Cd specifically upregulated vWF mRNA and protein expression in human umbilical vein endothelial cells (HUVECs), indicating that Cd targets vascular endothelial cells even at relatively low concentrations. Further study demonstrated that nuclear factor kappa B (NF-κB) and GATA3, two established transcription regulators of the vWF gene, were not altered in the presence of Cd. However, ETS-related gene (ERG) was significantly induced by 1 μM Cd. When ERG was knocked down by siRNA, Cd induced upregulation of vWF was totally blocked. Chromatin immunoprecipitation (ChIP) assay showed that Cd increases the binding of ERG on the -56 ETS motif on the human vWF promoter. These results indicated that ERG mediated the increased expression of vWF by Cd. Since vWF is a key regulator for vascular homeostasis, our findings may provide a novel mechanism for understanding low dose Cd induced development of vascular diseases.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Fufang Wang
- Department of Geriatrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, China; Key laboratory of Cardiovascular Proteomics of Shandong Province, 107 Wenhua Xi Road, Jinan, Shandong, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014 China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Hideto Tozawa
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Toshiyuki Ushijima
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, Ontario, K9L 0G2, Canada
| | - Youichiro Wada
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
20
|
Spolarics Z, Peña G, Qin Y, Donnelly RJ, Livingston DH. Inherent X-Linked Genetic Variability and Cellular Mosaicism Unique to Females Contribute to Sex-Related Differences in the Innate Immune Response. Front Immunol 2017; 8:1455. [PMID: 29180997 PMCID: PMC5694032 DOI: 10.3389/fimmu.2017.01455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Females have a longer lifespan and better general health than males. Considerable number of studies also demonstrated that, after trauma and sepsis, females present better outcomes as compared to males indicating sex-related differences in the innate immune response. The current notion is that differences in the immuno-modulatory effects of sex hormones are the underlying causative mechanism. However, the field remains controversial and the exclusive role of sex hormones has been challenged. Here, we propose that polymorphic X-linked immune competent genes, which are abundant in the population are important players in sex-based immuno-modulation and play a key role in causing sex-related outcome differences following trauma or sepsis. We describe the differences in X chromosome (ChrX) regulation between males and females and its consequences in the context of common X-linked polymorphisms at the individual as well as population level. We also discuss the potential pathophysiological and immune-modulatory aspects of ChrX cellular mosaicism, which is unique to females and how this may contribute to sex-biased immune-modulation. The potential confounding effects of ChrX skewing of cell progenitors at the bone marrow is also presented together with aspects of acute trauma-induced de novo ChrX skewing at the periphery. In support of the hypothesis, novel observations indicating ChrX skewing in a female trauma cohort as well as case studies depicting the temporal relationship between trauma-induced cellular skewing and the clinical course are also described. Finally, we list and discuss a selected set of polymorphic X-linked genes, which are frequent in the population and have key regulatory or metabolic functions in the innate immune response and, therefore, are primary candidates for mediating sex-biased immune responses. We conclude that sex-related differences in a variety of disease processes including the innate inflammatory response to injury and infection may be related to the abundance of X-linked polymorphic immune-competent genes, differences in ChrX regulation, and inheritance patterns between the sexes and the presence of X-linked cellular mosaicism, which is unique to females.
Collapse
Affiliation(s)
- Zoltan Spolarics
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Geber Peña
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Yong Qin
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Robert J Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - David H Livingston
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
21
|
Li W, Wang Z, Chen Y, Wang K, Lu T, Ying F, Fan M, Li Z, Wu J. Melatonin treatment induces apoptosis through regulating the nuclear factor-κB and mitogen-activated protein kinase signaling pathways in human gastric cancer SGC7901 cells. Oncol Lett 2017; 13:2737-2744. [PMID: 28454460 DOI: 10.3892/ol.2017.5785] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Melatonin, which is synthesized by the pineal gland and released into the blood, exhibits antitumor properties. However, the mechanisms underlying these effects, particularly in stomach cancer, remain unknown. In the present study, the effect of melatonin on the nuclear factor (NF)-κB signaling pathway and the mitogen-activated protein kinase signaling pathway, involving p38 and c-Jun-N-terminal kinase (JNK), were investigated in SGC7901 gastric cancer cells. In addition, the effect of melatonin on the survival, migration and apoptosis of these cells was investigated in vitro in order to evaluate the use of melatonin for the treatment of gastric cancer. The results of the present study revealed that melatonin decreased the viability and migration of SGC7901 cells. Furthermore, melatonin induced apoptosis. Melatonin was identified to elevate the expression levels of phosphorylated (p)-p38 and p-JNK protein, and decrease the expression level of nucleic p-p65. These results suggest that the protein levels of p65, p38 and JNK are associated with the survival of SGC7901 cells following treatment with melatonin. The optimal concentration of melatonin was demonstrated to be 2 mM, which significantly induced apoptosis following a 24 h treatment period. These findings suggest that conflicting growth signals in cells may inhibit the efficacy of melatonin in the treatment of gastric cancer. Therefore, adjunct therapy would be required to improve the efficacy of melatonin in the treatment of cancer.
Collapse
Affiliation(s)
- Weimin Li
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China.,Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhonglue Wang
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yina Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaijing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ting Lu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Gastroenterology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Fei Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Gastroenterology, Xianju People's Hospital, Taizhou, Zhejiang 317300, P.R. China
| | - Mengdi Fan
- Department of Endocrinology, Zhejiang University International Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhiyin Li
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jiansheng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
22
|
Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem 2016; 422:135-150. [DOI: 10.1007/s11010-016-2813-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
|
23
|
Zhang H, Li L, Wang Y, Dong F, Chen X, Liu F, Xu D, Yi F, Kapron CM, Liu J. NF-κB signaling maintains the survival of cadmium-exposed human renal glomerular endothelial cells. Int J Mol Med 2016; 38:417-22. [PMID: 27315281 PMCID: PMC4934931 DOI: 10.3892/ijmm.2016.2640] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023] Open
Abstract
The kidney is one of the primary organs targeted by cadmium (Cd), a widely distributed environmental pollutant. The glomerular endothelium is the major component of the glomerular filtration barrier. However, the effects of Cd on glomerular endothelial cells remain largely unknown. For this purpose, we aimed to determine the effects of low dose Cd on the survival of human renal glomerular endothelial cells (HRGECs). Cultured HRGECs were exposed to 4 µM cadmium chloride (CdCl2) and examined at different time-points. We found that Cd activates the nuclear factor-κB (NF-κB) pathway without inducing the apoptosis of HRGECs. Pre-treating the cells with pyrrolidine dithiocarbamate (PDTC), a potent NF-κB inhibitor, prior to Cd exposure triggered extensive cell death (73.5%). In addition, Cd activates the c-Jun N-terminal kinase (JNK) pathway, and inhibition of the NF-κB pathway significantly elevates Cd-induced JNK phosphorylation in HRGECs (p<0.01). The combination treatment of PDTC and SP600125, a JNK pathway inhibitor, increased the survival of Cd-stimulated HRGECs compared with those cells treated with PDTC alone (p<0.05). Taken together, these findings demonstrate that the NF-κB pathway plays an essential role in maintaining the survival of Cd-exposed HRGECs.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Cardiovascular Medicine, Xintai City People's Hospital, Xintai Hospital Affiliated to Taishan Medical University, Xintai, Shandong 271200, P.R. China
| | - Liqun Li
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yifan Wang
- Weifang Medical College, Weifang, Shandong 261031, P.R. China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
24
|
Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8:162-182. [PMID: 26839640 PMCID: PMC4724579 DOI: 10.4254/wjh.v8.i3.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma (HCC) is a highly prevalent cancer worldwide and its inflammatory background was established long ago. Recent studies have shown that innate immunity is closely related to the HCC carcinogenesis. An effective innate immunity response relies on the toll-like receptors (TLR) found in several different liver cells which, through different ligands and many signaling pathways can elicit, not only a pro-inflammatory but also an oncogenic or anti-oncogenic response. Our aim was to study the role of TLRs in the liver oncogenesis and as a consequence their value as potential therapeutic targets. We performed a systematic review of PubMed searching for original articles studying the relationship between HCC and TLRs until March 2015. TLR2 appears to be a fundamental stress-sensor as its absence reveals an augmented tendency to accumulate DNA-damages and to cell survival. However, pathways are still not fully understood as TLR2 up-regulation was also associated to enhanced tumorigenesis. TLR3 has a well-known protective role influencing crucial processes like angiogenesis, cell growth or proliferation. TLR4 works as an interesting epithelial-mesenchymal transition’s inducer and a promoter of cell survival probably inducing HCC carcinogenesis even though an anti-cancer role has already been observed. TLR9’s influence on carcinogenesis is also controversial and despite a potential anti-cancer capacity, a pro-tumorigenic role is more likely. Genetic polymorphisms in some TLRs have been found and its influence on the risk of HCC has been reported. As therapeutic targets, TLRs are already in use and have a great potential. In conclusion, TLRs have been shown to be an interesting influence on the HCC’s microenvironment, with TLR3 clearly determining an anti-tumour influence. TLR4 and TLR9 are considered to have a positive relationship with tumour development even though, in each of them anti-tumorigenic signals have been described. TLR2 presents a more ambiguous role, possibly depending on the stage of the inflammation-HCC axis.
Collapse
|
25
|
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Res 2016; 76:1367-80. [PMID: 26759232 DOI: 10.1158/0008-5472.can-15-1591] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
Risks of tumor recurrence after surgical resection have been known for decades, but the mechanisms underlying treatment failures remain poorly understood. Neutrophils, first-line responders after surgical stress, may play an important role in linking inflammation to cancer progression. In response to stress, neutrophils can expel their protein-studded chromatin to form local snares known as neutrophil extracellular traps (NET). In this study, we asked whether, as a result of its ability to ensnare moving cells, NET formation might promote metastasis after surgical stress. Consistent with this hypothesis, in a cohort of patients undergoing attempted curative liver resection for metastatic colorectal cancer, we observed that increased postoperative NET formation was associated with a >4-fold reduction in disease-free survival. In like manner, in a murine model of surgical stress employing liver ischemia-reperfusion, we observed an increase in NET formation that correlated with an accelerated development and progression of metastatic disease. These effects were abrogated by inhibiting NET formation in mice through either local treatment with DNAse or inhibition of the enzyme peptidylarginine deaminase, which is essential for NET formation. In growing metastatic tumors, we found that intratumoral hypoxia accentuated NET formation. Mechanistic investigations in vitro indicated that mouse neutrophil-derived NET triggered HMGB1 release and activated TLR9-dependent pathways in cancer cells to promote their adhesion, proliferation, migration, and invasion. Taken together, our findings implicate NET in the development of liver metastases after surgical stress, suggesting that their elimination may reduce risks of tumor relapse.
Collapse
Affiliation(s)
- Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hamza O Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ahmed B Al-Khafaji
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexis P Chidi
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kerri Mowen
- Department of Pharmacology and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California
| | - Yanming Wang
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
26
|
Eijo G, Gottardo MF, Jaita G, Magri ML, Moreno Ayala M, Zárate S, Candolfi M, Pisera D, Seilicovich A. Lack of Oestrogenic Inhibition of the Nuclear Factor-κB Pathway in Somatolactotroph Tumour Cells. J Neuroendocrinol 2015; 27:692-701. [PMID: 26052658 DOI: 10.1111/jne.12296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/29/2015] [Accepted: 06/01/2015] [Indexed: 01/06/2023]
Abstract
Activation of nuclear factor (NF)-κB promotes cell proliferation and inhibits apoptosis. We have previously shown that oestrogens sensitise normal anterior pituitary cells to the apoptotic effect of tumour necrosis factor (TNF)-α by inhibiting NF-κB nuclear translocation. In the present study, we examined whether oestrogens also modulate the NF-κB signalling pathway and apoptosis in GH3 cells, a rat somatolactotroph tumour cell line. As determined by Western blotting, 17β-oestradiol (E2 ) (10(-9) m) increased the nuclear concentration of NF-κB/p105, p65 and p50 in GH3 cells. However, E2 did not modify the expression of Bcl-xL, a NF-κB target gene. TNF-α induced apoptosis of GH3 cells incubated in either the presence or absence of E2 . Inhibition of the NF-kB pathway using BAY 11-7082 (BAY) (5 μm) decreased the viability of GH3 cells and increased the percentage of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive GH3 cells. BAY also increased TNF-α-induced apoptosis of GH3 cells, an effect that was further increased by an inhibitor of the c-Jun N-terminal protein kinase pathway, SP600125 (10 μm). We also analysed the role of the NF-κB signalling pathway on proliferation and apoptosis of GH3 tumours in vivo. The administration of BAY to nude mice bearing GH3 tumours increased the number of TUNEL-positive cells and decreased the number of proliferating GH3 cells. These findings suggest that GH3 cells lose their oestrogenic inhibitory action on the NF-κB pathway and that the pro-apoptotic effect of TNF-α on these tumour pituitary cells does not require sensitisation by oestrogens as occurs in normal pituitary cells. NF-κB was required for the survival of GH3 cells, suggesting that pharmacological inhibition of the NF-κB pathway could interfere with pituitary tumour progression.
Collapse
Affiliation(s)
- G Eijo
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - M F Gottardo
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - G Jaita
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - M L Magri
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - M Moreno Ayala
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - S Zárate
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - M Candolfi
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - D Pisera
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - A Seilicovich
- Instituto de Investigaciones Biomédicas, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
27
|
Liu Y, Yan W, Tohme S, Chen M, Fu Y, Tian D, Lotze M, Tang D, Tsung A. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol 2015; 63:114-21. [PMID: 25681553 PMCID: PMC4475488 DOI: 10.1016/j.jhep.2015.02.009] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The mechanisms of hypoxia-induced tumor growth remain unclear. Hypoxia induces intracellular translocation and release of a variety of damage associated molecular patterns (DAMPs) such as nuclear HMGB1 and mitochondrial DNA (mtDNA). In inflammation, Toll-like receptor (TLR)-9 activation by DNA-containing immune complexes has been shown to be mediated by HMGB1. We thus hypothesize that HMGB1 binds mtDNA in the cytoplasm of hypoxic tumor cells and promotes tumor growth through activating TLR9 signaling pathways. METHODS C57BL6 mice were injected with Hepa1-6 cancer cells. TLR9 and HMGB1 were inhibited using shRNA or direct antagonists. HuH7 and Hepa1-6 cancer cells were investigated in vitro to determine how the interaction of HMGB1 and mtDNA activates TLR9 signaling pathways. RESULTS During hypoxia, HMGB1 translocates from the nucleus to the cytosol and binds to mtDNA released from damaged mitochondria. This complex subsequently activates TLR9 signaling pathways to promote tumor cell proliferation. Loss of HMGB1 or mtDNA leads to a defect in TLR9 signaling pathways in response to hypoxia, resulting in decreased tumor cell proliferation. Also, the addition of HMGB1 and mtDNA leads to the activation of TLR9 and subsequent tumor cell proliferation. Moreover, TLR9 is overexpressed in both hypoxic tumor cells in vitro and in human hepatocellular cancer (HCC) specimens; and, injection in mice to knockdown either HMGB1 or TLR9 from HCC cells suppressed tumor growth in vivo. CONCLUSIONS Our data reveals a novel mechanism by which the interactions of HMGB1 and mtDNA activate TLR9 signaling during hypoxia to induce tumor growth.
Collapse
Affiliation(s)
- Yao Liu
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA,Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical College, China
| | - Wei Yan
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA,Department of Gastroenterology, Huazhong University of Science and Technology, China
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Man Chen
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Yu Fu
- Department of Gastroenterology, Huazhong University of Science and Technology, China
| | - Dean Tian
- Department of Gastroenterology, Huazhong University of Science and Technology, China
| | - Michael Lotze
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
28
|
Wang Z, Xia Q, Cui J, Diao Y, Li J. Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line. Oncol Rep 2014; 31:2720-6. [PMID: 24788927 DOI: 10.3892/or.2014.3154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/11/2014] [Indexed: 11/06/2022] Open
Abstract
Diallyl trisulfide (DATS), the main sulfuric compound in garlic, has been shown to have antitumor effects. The present study aimed to ascertain whether DATS reverses the drug resistance of human osteosarcoma cells in vitro and to investigate its potential mechanisms. Human osteosarcoma U2-OS cells were treated with different concentrations of DATS. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while P-glycoprotein (P-gp) expression and the proportion of apoptotic cells were measured by flow cytometry. Morphological changes were observed under an optical microscope. Νuclear factor-κB (NF-κB) and inhibitor of NF-κB (IκB) activities were measured by PCR and western blot analysis. Results showed that the proliferation of U2-OS cells treated with different concentrations of DATS was significantly decreased in a concentration- and time-dependent manner. DATS increased the toxic effect of adriamycin on U2-OS cells. Moreover, P-gp expression was decreased and the apoptosis rate was increased in a concentration-dependent manner following treatment of DATS. Additionally, NF-κB activity was inhibited by DATS while expression of IκB was increased. Our data clearly suggest that DATS has significant anticancer effects on human osteosarcoma cells. The potential mechanisms include reducing the multidrug resistance and inducing apoptosis. NF-κB suppression may be involved in DATS-induced inhibition of cell proliferation.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Emergency Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Xia
- Department of Urinary Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jia Cui
- Shouguang Centre for Disease Control and Prevention, Shouguang, Shandong 262700, P.R. China
| | - Yutao Diao
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
29
|
Misaggi R, Di Sanzo M, Cosentino C, Bond HM, Scumaci D, Romeo F, Stellato C, Giurato G, Weisz A, Quaresima B, Barni T, Amato F, Viglietto G, Morrone G, Cuda G, Faniello MC, Costanzo F. Identification of H ferritin-dependent and independent genes in K562 differentiating cells by targeted gene silencing and expression profiling. Gene 2013; 535:327-35. [PMID: 24239552 DOI: 10.1016/j.gene.2013.10.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023]
Abstract
Ferritin is best known as the key molecule in intracellular iron storage, and is involved in several metabolic processes such as cell proliferation, differentiation and neoplastic transformation. We have recently demonstrated that the shRNA silencing of the ferritin heavy subunit (FHC) in a melanoma cell line is accompanied by a consistent modification of gene expression pattern leading to a reduced potential in terms of proliferation, invasiveness, and adhesion ability of the silenced cells. In this study we sought to define the repertoire of genes whose expression might be affected by FHC during the hemin-induced differentiation of the erythromyeloid cell line K562. To this aim, gene expression profiling was performed in four different sets of cells: i) wild type K562; ii) sh-RNA FHC-silenced K562; iii) hemin-treated wild-type K562; and iv) hemin-treated FHC-silenced K562. Statistical analysis of the gene expression data, performed by two-factor ANOVA, identified three distinct classes of transcripts: a) Class 1, including 657 mRNAs whose expression is modified exclusively during hemin-induced differentiation of K562 cells, independently from the FHC relative amounts; b) Class 2, containing a set of 70 mRNAs which are consistently modified by hemin and FHC-silencing; and c) Class 3, including 128 transcripts modified by FHC-silencing but not by hemin. Our data indicate that FHC may function as a modulator of gene expression during erythroid differentiation and add new findings to the knowledge of the complex gene network modulated during erythroid differentiation.
Collapse
Affiliation(s)
- Roberta Misaggi
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Heather M Bond
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Domenica Scumaci
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Amato
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Morrone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
30
|
Kou X, Jing Y, Deng W, Sun K, Han Z, Ye F, Yu G, Fan Q, Gao L, Zhao Q, Zhao X, Li R, Wei L, Wu M. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells. BMC Cancer 2013; 13:438. [PMID: 24066693 PMCID: PMC3849379 DOI: 10.1186/1471-2407-13-438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 09/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. METHODS For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. RESULTS TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. CONCLUSIONS Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway.
Collapse
Affiliation(s)
- Xingrui Kou
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, P, R China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ilarraza R, Wu Y, Skappak CD, Ajamian F, Proud D, Adamko DJ. Rhinovirus has the unique ability to directly activate human T cells in vitro. J Allergy Clin Immunol 2013; 131:395-404. [PMID: 23374267 DOI: 10.1016/j.jaci.2012.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 10/22/2012] [Accepted: 11/30/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rhinovirus infection is a leading cause of exacerbation of airway diseases. We hypothesize that airway viruses activate inflammatory cells, inducing airway dysfunction. We have previously shown that airway viruses can induce eosinophil degranulation when cocultured with T cells and monocyte-derived dendritic cells (moDCs). These findings suggested that antigen presentation was important for T-cell activation. OBJECTIVE Given the clinical importance of rhinovirus, we sought to determine whether it had any unique abilities to activate inflammatory cells compared with another common virus, such as respiratory syncytial virus (RSV). METHODS We cocultured combinations of human leukocytes (T cells, moDCs, and eosinophils) with each virus. Using assays of BrdU incorporation, flow cytometry, and ELISA, we measured T-cell activation, rhinovirus expression, T-cell death, and eosinophil cysteinyl leukotriene release. RESULTS In contrast to RSV, rhinovirus induced T-cell activation without the involvement of moDCs. Without moDCs, rhinovirus induced T-cell proliferation of both CD4 and CD8(+) cells, cytokine production, and ultimately, eosinophil stimulation. Although chloroquine inhibited RSV-induced activation of T cells through moDCs, rhinovirus was not inhibited; UV inactivation did block the rhinovirus effect. We also found that T cells could be infected by rhinovirus in vitro and within human nasal explant tissue. Although Toll-like receptors did not appear to be involved in T-cell activation, antagonists of Jun N-terminal kinase and nuclear factor κB did inhibit T-cell responses to rhinovirus. CONCLUSION Rhinovirus has the unique ability to bypass antigen presentation and directly infect and activate human T cells. This could explain the strong association of rhinovirus with exacerbation of airway diseases.
Collapse
Affiliation(s)
- Ramses Ilarraza
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Yang J, Ikezoe T, Nishioka C, Yokoyama A. Over-expression of Mcl-1 impairs the ability of ATRA to induce growth arrest and differentiation in acute promyelocytic leukemia cells. Apoptosis 2013; 18:1403-1415. [DOI: 10.1007/s10495-013-0872-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 2013; 12:520-34. [PMID: 23220384 DOI: 10.1016/j.arr.2012.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023]
Abstract
Autophagy and apoptosis are crucial cellular housekeeping and tissue survival mechanisms. There is emerging evidence of important crosstalk between apoptosis and autophagy which can be linked to inflammasome activation. Beclin 1 is a platform protein which assembles an interactome consisting of diverse proteins which control the initiation of autophagocytosis and distinct phases in endocytosis. Recent studies have demonstrated that the anti-apoptotic Bcl-2 family members can interact with Beclin 1 and inhibit autophagy. Consequently, impaired autophagy can trigger inflammasome activation. Interestingly, the hallmarks of the ageing process include a decline in autophagy, increased resistance to apoptosis and a low-grade inflammatory phenotype. Age-related stresses, e.g. genotoxic, metabolic and environmental insults, enhance the expression of NF-κB-driven anti-apoptotic Bcl-2 proteins which repress the Beclin 1-dependent autophagy. Suppression of autophagocytosis provokes inflammation including NF-κB activation which further potentiates anti-apoptotic defence. In a context-dependent manner, this feedback defence mechanism can enhance the aging process or provoke tumorigenesis or cellular senescence. We will review the role of Beclin 1 interactome in the crosstalk between apoptosis, autophagy and inflammasomes emphasizing that disturbances in Beclin 1-dependent autophagy can have a crucial impact on the aging process.
Collapse
|
34
|
Benedetti G, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M. TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochem Pharmacol 2013; 85:274-86. [DOI: 10.1016/j.bcp.2012.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022]
|
35
|
Choi JG, Kim JL, Park J, Lee S, Park SJ, Kim JS, Choi CW. Effects of oral iron chelator deferasirox on human malignant lymphoma cells. THE KOREAN JOURNAL OF HEMATOLOGY 2012; 47:194-201. [PMID: 23071474 PMCID: PMC3464336 DOI: 10.5045/kjh.2012.47.3.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/04/2012] [Accepted: 08/03/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Iron is essential for cell proliferation and viability. It has been reported that iron depletion by a chelator inhibits proliferation of some cancer cells. Deferasirox is a new oral iron chelator, and a few reports have described its effects on lymphoma cells. The goal of this study was to determine the anticancer effects of deferasirox in malignant lymphoma cell lines. METHODS Three human malignant lymphoma cell lines (NCI H28:N78, Ramos, and Jiyoye) were treated with deferasirox at final concentrations of 20, 50, or 100 µM. Cell proliferation was evaluated by an MTT assay, and cell cycle and apoptosis were analyzed by flow cytometry. Western blot analysis was performed to determine the relative activity of various apoptotic pathways. The role of caspase in deferasirox-induced apoptosis was investigated using a luminescent assay. RESULTS The MTT assay showed that deferasirox had dose-dependent cytotoxic effects on all 3 cell lines. Cell cycle analysis showed that the sub-G1 portion increased in all 3 cell lines as the concentration of deferasirox increased. Early apoptosis was also confirmed in the treated cells by Annexin V and PI staining. Western blotting showed an increase in the cleavage of PARP, caspase 3/7, and caspase 9 in deferasirox-treated groups. CONCLUSION We demonstrated that deferasirox, a new oral iron-chelating agent, induced early apoptosis in human malignant lymphoma cells, and this apoptotic effect is dependent on the caspase-3/caspase-9 pathway.
Collapse
Affiliation(s)
- Jong Gwon Choi
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Ishida K, Nishizuka SS, Chiba T, Ikeda M, Kume K, Endo F, Katagiri H, Matsuo T, Noda H, Iwaya T, Yamada N, Fujiwara H, Takahashi M, Itabashi T, Uesugi N, Maesawa C, Tamura G, Sugai T, Otsuka K, Koeda K, Wakabayashi G. Molecular marker identification for relapse prediction in 5-FU-based adjuvant chemotherapy in gastric and colorectal cancers. PLoS One 2012; 7:e43236. [PMID: 22905237 PMCID: PMC3419205 DOI: 10.1371/journal.pone.0043236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
To confirm the clinical significance of NF-κB and JNK protein expression from experimentally identified candidates for predicting prognosis for patients with 5-FU treatment, we evaluated the protein expression of surgically removed specimens. A total of 79 specimens were obtained from 30 gastric and 49 colorectal cancer patients who underwent R0 resection followed by postoperative 5-FU based adjuvant chemotherapy. Immunohistochemical examinations of NF-κB and JNK on tissue microarrays (TMAs) revealed that significantly shorter time-to-relapse (TTR) in both NF-κB(+) and JNK(−) subgroups in both gastric (NF-κB(+), p = 0.0002, HR11.7. 95%CI3 3.2–43.4; JNK(−), p = 0.0302, HR4.4, 95%CI 1.2–16.6) and colon (NF-κB(+), p = 0.0038, HR36.9, 95%CI 3.2–426.0; JNK(−), p = 0.0098, HR3.2, 95%CI 1.3–7.7) cancers. These protein expression patterns also show strong discriminately power in gastric cancer patients for overall survival rate, suggesting a potential utility as prognostic or chemosensitivity markers. Baseline expression of these proteins using gastric cancer cell lines demonstrated the reciprocal patterns between NF-κB and JNK, while 5-FU exposure of these cell lines only induced NF-κB, suggesting that NF-κB plays a dominant role in the response to 5-FU. Subsequent siRNA experiments confirmed that gene knockdown of NF-κB increased 5-FU-specific sensitivity, whereas that of JNK did not affect the chemosensitivity. These results suggest that the expression of these proteins may aid in the decisions involved with adjuvant chemotherapy for gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Kazushige Ishida
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Satoshi S. Nishizuka
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- * E-mail:
| | - Takehiro Chiba
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Miyuki Ikeda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kohei Kume
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- Department of Tumor Biology, Center for Advanced Medical Science, Iwate Medical University, Yahaba, Japan
| | - Fumitaka Endo
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hirokatsu Katagiri
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Teppei Matsuo
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hironobu Noda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Takeshi Iwaya
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | - Noriyuki Yamada
- Division of Diagnostic Molecular Pathology, Department of Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hisataka Fujiwara
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Masanori Takahashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Tetsuya Itabashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Noriyuki Uesugi
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- Division of Diagnostic Molecular Pathology, Department of Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Chihaya Maesawa
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
- Department of Tumor Biology, Center for Advanced Medical Science, Iwate Medical University, Yahaba, Japan
| | - Gen Tamura
- Department of Pathology and Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Tamotsu Sugai
- Division of Diagnostic Molecular Pathology, Department of Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Koki Otsuka
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Keisuke Koeda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Go Wakabayashi
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
- MIAST (Medical Innovation by Advanced Science and Technology), Iwate Medical University, Morioka, Japan
| |
Collapse
|
37
|
Yang J, Ikezoe T, Nishioka C, Honda G, Yokoyama A. Thrombomodulin-induced differentiation of acute myelomonocytic leukemia cells via JNK signaling. Leuk Res 2012; 36:625-33. [PMID: 22342852 DOI: 10.1016/j.leukres.2012.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
We found recombinant human soluble thrombomodulin (rTM) induced growth arrest and differentiation of THP-1 cells by activating JNK/c-Jun signaling. Further activation of JNK by 1,25-(OH)(2)D(3) significantly enhanced rTM-mediated growth arrest and differentiation of THP-1 cells. Importantly, forced expression of domains 1, 2 and 3 of TM (TMD123) induced growth arrest and differentiation of leukemia cells freshly isolated from individuals with AMLs of M4/M5-French-American-British classification subtypes, but not those with less advanced AML. Further studies indicated that the epidermal growth factor-like domain of TM was critical for the anti-leukemia effects of TM and these effects were independent of protein C activation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | |
Collapse
|
38
|
Liu P, Wilson MJ. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cells. J Cell Physiol 2012; 227:867-76. [PMID: 21898400 PMCID: PMC3225649 DOI: 10.1002/jcp.22993] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNA 520c and 373 (miR-520c and miR-373) have been characterized as oncogenes and play critical roles in cancer cell metastasis. However, the relationship between these two microRNAs and matrix metalloproteinases (MMPs), which are important in cancer cell metastasis, remains unknown. Here, we report new evidence in which miR-520c and miR-373 effects in human fibrosarcoma HT1080 cells are associated with MMP9 activity, and this upregulation of MMP9 is not only at the activity and protein levels, but also at that of its mRNA. Our experimental data demonstrate that these effects occur not by direct binding to the MMP9 promoter, but by miR-520c and miR-373 directly targeting the 3'-untranslational region (UTR) of mRNAs of mTOR and SIRT1 (negative regulators of expression of MMP9 via inactivating the Ras/Raf/MEK/Erk signaling pathway and transcription factor NF-κB activity); and thus suppressing translation levels of SIRT1 and mTOR. Moreover, inhibition of key kinases of the Ras/Raf/MEK/Erk signaling pathway and Western blots for selected proteins further identified miR-520c and miR-373 as activating this signaling pathway and NF-κB. In conclusion, miR-520c and miR-373 increased the expression of MMP9 by directly targeting the 3'-UTRs of mRNAs of mTOR and SIRT1 and suppressing their translation; resulting in activation of the Ras/Raf/MEK/Erk signaling pathway and NF-κB; and, finally, increasing the mRNA, protein, and activity of MMP9 and enhancing cell migration and cell growth in 3D type I collagen gels.
Collapse
Affiliation(s)
- Ping Liu
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael J. Wilson
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Departments of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Departments of Urologic Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Minneapolis VA Medical Center, Minneapolis, MN 55417, USA
| |
Collapse
|
39
|
Liu Y, Chen Y, Wen L, Cui G. Molecular mechanisms underlying the time-dependent autophagy and apoptosis induced by nutrient depletion in multiple myeloma: a pilot study. ACTA ACUST UNITED AC 2012; 32:1-8. [PMID: 22282237 DOI: 10.1007/s11596-012-0001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Indexed: 11/26/2022]
Abstract
This study explored the molecular mechanisms underlying the time-dependent autophagy and apoptosis induced by nutrient depletion in human multiple myeloma cell line RPMI8226 cells. RT-PCR and qRT-PCR were used to evaluate the transcriptional levels of Deptor, JNK1, JNK2, JNK3, Raf-1, p53, p21 and NFκB1 at 0, 6, 12, 18, 24 and 48 h after nutrient depletion in RPMI8226 cells. We found that transcriptional levels of Deptor were increased time-dependently at 0, 6, 12 and 18 h, and then decreased. Its alternation was consistent with autophagy. Transcriptional levels of Raf-1, JNK1, JNK2, p53 and p21 were increased time-dependently at 0, 6, 12, 18, 24 and 48 h accompanying with the increase of apoptosis. Transcriptional levels of NFκB1 at 6, 12, 18, 24 and 48 h were decreased as compared with 0 h. It was suggested that all the studied signaling molecules were involved in cellular response to nutrient depletion in RPMI8226 cells. Deptor contributed to autophagy in this process. Raf-1/JNK /p53/p21 pathway may be involved in apoptosis, and NFκB1 may play a possible role in inhibiting apoptosis. It remained to be studied whether Deptor was involved in both autophagy and apoptosis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guohui Cui
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
40
|
Abstract
Histone deacetylase inhibitors (HDACIs) are epigenetically acting agents that modify chromatin structure and by extension, gene expression. However, they may influence the behavior and survival of transformed cells by diverse mechanisms, including promoting expression of death- or differentiation-inducing genes while downregulating the expression of prosurvival genes; acting directly to increase oxidative injury and DNA damage; acetylating and disrupting the function of multiple proteins, including DNA repair and chaperone proteins; and interfering with the function of corepressor complexes. Notably, HDACIs have been shown in preclinical studies to target transformed cells selectively, and these agents have been approved in the treatment of certain hematologic malignancies, for example, cutaneous T-cell lymphoma and peripheral T-cell lymphoma. However, attempts to extend the spectrum of HDACI activity to other malignancies, for example, solid tumors, have been challenging. This has led to the perception that HDACIs may have limited activity as single agents. Because of the pleiotropic actions of HDACIs, combinations with other antineoplastic drugs, particularly other targeted agents, represent a particularly promising avenue of investigation. It is likely that emerging insights into mechanism(s) of HDACI activity will allow optimization of this approach, and hopefully, will expand HDACI approvals to additional malignancies in the future.
Collapse
Affiliation(s)
- Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond, Virginia, USA.
| | | |
Collapse
|
41
|
Jing Y, Han Z, Zhang S, Liu Y, Wei L. Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 2011; 1:29. [PMID: 21880137 PMCID: PMC3179439 DOI: 10.1186/2045-3701-1-29] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/31/2011] [Indexed: 02/08/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and also in the tumor invasion process. In addition, EMT also causes disruption of cell-cell adherence, loss of apico-basal polarity, matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. The tumor microenvironment plays an important role in facilitating cancer metastasis and may induce the occurrence of EMT in tumor cells. A large number of inflammatory cells infiltrating the tumor site, as well as hypoxia existing in a large area of tumor, in addition many stem cells present in tumor microenvironment, such as cancer stem cells (CSCs), mesenchymal stem cells (MSCs), all of these may be the inducers of EMT in tumor cells. The signaling pathways involved in EMT are various, including TGF-β, NF-κB, Wnt, Notch, and others. In this review, we discuss the current knowledge about the role of the tumor microenvironment in EMT and the related signaling pathways as well as the interaction between them.
Collapse
Affiliation(s)
- Yingying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, Shanghai, China.
| | | | | | | | | |
Collapse
|
42
|
Pamukcu B, Lip GYH, Shantsila E. The nuclear factor – kappa B pathway in atherosclerosis: A potential therapeutic target for atherothrombotic vascular disease. Thromb Res 2011; 128:117-23. [PMID: 21636112 DOI: 10.1016/j.thromres.2011.03.025] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/21/2011] [Accepted: 03/30/2011] [Indexed: 01/01/2023]
Affiliation(s)
- Burak Pamukcu
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, B18 7QH England, United Kingdom
| | | | | |
Collapse
|
43
|
Jain SS, AshokKumar M, Bird RP. Differential expression of TNF-α signaling molecules and ERK1 in distal and proximal colonic tumors associated with obesity. Tumour Biol 2011; 32:1005-12. [DOI: 10.1007/s13277-011-0202-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/08/2011] [Indexed: 01/03/2023] Open
|
44
|
Lipke AB, Matute-Bello G, Herrero R, Wong VA, Mongovin SM, Martin TR. Death receptors mediate the adverse effects of febrile-range hyperthermia on the outcome of lipopolysaccharide-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2011; 301:L60-70. [PMID: 21515659 DOI: 10.1152/ajplung.00314.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have shown that febrile-range hyperthermia enhances lung injury and mortality in mice exposed to inhaled LPS and is associated with increased TNF-α receptor activity, suppression of NF-κB activity in vitro, and increased apoptosis of alveolar epithelial cells in vivo. We hypothesized that hyperthermia enhances lung injury and mortality in vivo by a mechanism dependent on TNF receptor signaling. To test this, we exposed mice lacking the TNF-receptor family members TNFR1/R2 or Fas (TNFR1/R2(-/-) and lpr) to inhaled LPS with or without febrile-range hyperthermia. For comparison, we studied mice lacking IL-1 receptor activity (IL-1R(-/-)) to determine the role of inflammation on the effect of hyperthermia in vivo. TNFR1/R2(-/-) and lpr mice were protected from augmented alveolar permeability and mortality associated with hyperthermia, whereas IL-1R(-/-) mice were susceptible to augmented alveolar permeability but protected from mortality associated with hyperthermia. Hyperthermia decreased pulmonary concentrations of TNF-α and keratinocyte-derived chemokine after LPS in C57BL/6 mice and did not affect pulmonary inflammation but enhanced circulating markers of oxidative injury and nitric oxide metabolites. The data suggest that hyperthermia enhances lung injury by a mechanism that requires death receptor activity and is not directly associated with changes in inflammation mediated by hyperthermia. In addition, hyperthermia appears to enhance mortality by generating a systemic inflammatory response and not by a mechanism directly associated with respiratory failure. Finally, we observed that exposure to febrile-range hyperthermia converts a modest, survivable model of lung injury into a fatal syndrome associated with oxidative and nitrosative stress, similar to the systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Anne B Lipke
- Division of Pulmonary and Critical Care Medicine, Puget Sound Medical Center, University of Washington, Seattle, Washington 98108, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Stupack DG. Caspase-8 as a therapeutic target in cancer. Cancer Lett 2010; 332:133-40. [PMID: 20817393 DOI: 10.1016/j.canlet.2010.07.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/08/2010] [Accepted: 07/28/2010] [Indexed: 01/25/2023]
Abstract
Caspase-8 is an apical caspase which initiates programmed cell death following death receptor ligation. This central role in apoptosis has prompted significant clinical interest in regulating caspase-8 expression and proteolytic activity. However, caspase-8 has also been found to play a number of non-apoptotic roles in cells, such as promoting activation NF-κB signaling, regulating autophagy and altering endosomal trafficking, and enhancing cellular adhesion and migration. Therefore, depending upon the specific cellular context, caspase-8 may either potentiate or suppress tumor malignancy. Accordingly, a marked heterogeneity exists in the expression patterns of caspase-8 among different tumor types. Therapeutics have been developed which can increase caspase-8 expression, yet it remains unclear whether this approach will be beneficial in all cases. Care is warranted, and the role of caspase-8 should be addressed on a case by case basis.
Collapse
Affiliation(s)
- Dwayne G Stupack
- Department of Pathology & the Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive MC0803, La Jolla, CA 92093-0803, USA.
| |
Collapse
|
46
|
Messa E, Carturan S, Maffè C, Pautasso M, Bracco E, Roetto A, Messa F, Arruga F, Defilippi I, Rosso V, Zanone C, Rotolo A, Greco E, Pellegrino RM, Alberti D, Saglio G, Cilloni D. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematologica 2010; 95:1308-16. [PMID: 20534700 PMCID: PMC2913079 DOI: 10.3324/haematol.2009.016824] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-kappaB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. DESIGN AND METHODS We evaluated deferasirox activity on nuclear factor-kappaB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 muM deferasirox for 18h. RESULTS Nuclear factor-kappaB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. CONCLUSIONS Nuclear factor-kappaB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies.
Collapse
Affiliation(s)
- Emanuela Messa
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Sonia Carturan
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Chiara Maffè
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Marisa Pautasso
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Enrico Bracco
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Antonella Roetto
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Francesca Messa
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Francesca Arruga
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Ilaria Defilippi
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Valentina Rosso
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Chiara Zanone
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Antonia Rotolo
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Elisabetta Greco
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Rosa M. Pellegrino
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | | | - Giuseppe Saglio
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| | - Daniela Cilloni
- Division of Hematology and Internal Medicine, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy and
| |
Collapse
|
47
|
Hu B, Colletti LM. CXC receptor-2 knockout genotype increases X-linked inhibitor of apoptosis protein and protects mice from acetaminophen hepatotoxicity. Hepatology 2010; 52:691-702. [PMID: 20683965 PMCID: PMC2917773 DOI: 10.1002/hep.23715] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Although acetaminophen is a commonly used analgesic, it can be highly hepatotoxic. This study seeks to further investigate the mechanisms involved in acetaminophen-induced hepatotoxicity and the role of chemokine (C-X-C motif) receptor 2 (CXCR2) receptor/ligand interactions in the liver's response to and recovery from acetaminophen toxicity. The CXC chemokines and their receptor, CXCR2, are important inflammatory mediators and are involved in the control of some types of cellular proliferation. CXCR2 knockout mice exposed to a median lethal dose of acetaminophen had a significantly lower mortality rate than wild-type mice. This difference was at least partially attributable to a significantly decreased rate of apoptosis in CXCR2 knockout mice versus wild-type mice; there were no differences seen in hepatocyte proliferation in wild-type mice versus knockout mice after this injury. CONCLUSION The decreased rate of apoptosis in the knockout mice correlated with an almost undetectable and significantly decreased level of activated caspase-3 and significantly increased levels of X-linked inhibitor of apoptosis protein, which also correlated with increased levels of nuclear factor kappa B p52 and decreased levels of c-Jun N-terminal kinase; this provides a possible mechanism for the decrease in apoptosis seen in CXCR2 knockout mice.
Collapse
Affiliation(s)
- Bin Hu
- University of Michigan, Department of Surgery, Ann Arbor, MI, USA
| | | |
Collapse
|
48
|
Gammadelta T cells are reduced and rendered unresponsive by hyperglycemia and chronic TNFalpha in mouse models of obesity and metabolic disease. PLoS One 2010; 5:e11422. [PMID: 20625397 PMCID: PMC2896399 DOI: 10.1371/journal.pone.0011422] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/11/2010] [Indexed: 11/23/2022] Open
Abstract
Epithelial cells provide an initial line of defense against damage and pathogens in barrier tissues such as the skin; however this balance is disrupted in obesity and metabolic disease. Skin γδ T cells recognize epithelial damage, and release cytokines and growth factors that facilitate wound repair. We report here that hyperglycemia results in impaired skin γδ T cell proliferation due to altered STAT5 signaling, ultimately resulting in half the number of γδ T cells populating the epidermis. Skin γδ T cells that overcome this hyperglycemic state are unresponsive to epithelial cell damage due to chronic inflammatory mediators, including TNFα. Cytokine and growth factor production at the site of tissue damage was partially restored by administering neutralizing TNFα antibodies in vivo. Thus, metabolic disease negatively impacts homeostasis and functionality of skin γδ T cells, rendering host defense mechanisms vulnerable to injury and infection.
Collapse
|
49
|
Zhan X, Desiderio DM. Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 2010; 3:13. [PMID: 20426862 PMCID: PMC2884164 DOI: 10.1186/1755-8794-3-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/28/2010] [Indexed: 12/25/2022] Open
Abstract
Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins), comparative proteomic data (56 differentially expressed proteins), and nitroproteomic data (17 nitroproteins). There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a pituitary control related to gene expression and cellular development, and no canonical toxicity pathways were identified. Conclusions This pathway network analysis demonstrated that mitochondrial dysfunction, oxidative stress, cell-cycle dysregulation, and the MAPK-signaling abnormality are significantly associated with a pituitary adenoma. These pathway-network data provide new insights into the molecular mechanisms of human pituitary adenoma pathogenesis, and new clues for an in-depth investigation of pituitary adenoma and biomarker discovery.
Collapse
Affiliation(s)
- Xianquan Zhan
- University of Tennessee Health Science Center, Memphis, USA.
| | | |
Collapse
|
50
|
Lipke AB, Matute-Bello G, Herrero R, Kurahashi K, Wong VA, Mongovin SM, Martin TR. Febrile-range hyperthermia augments lipopolysaccharide-induced lung injury by a mechanism of enhanced alveolar epithelial apoptosis. THE JOURNAL OF IMMUNOLOGY 2010; 184:3801-13. [PMID: 20200273 DOI: 10.4049/jimmunol.0903191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fever is common in critically ill patients and is associated with worse clinical outcomes, including increased intensive care unit mortality. In animal models, febrile-range hyperthermia (FRH) worsens acute lung injury, but the mechanisms by which this occurs remain uncertain. We hypothesized that FRH augments the response of the alveolar epithelium to TNF-alpha receptor family signaling. We found that FRH augmented LPS-induced lung injury and increased LPS-induced mortality in mice. At 24 h, animals exposed to hyperthermia and LPS had significant increases in alveolar permeability without changes in inflammatory cells in bronchoalveolar lavage fluid or lung tissue as compared with animals exposed to LPS alone. The increase in alveolar permeability was associated with an increase in alveolar epithelial apoptosis and was attenuated by caspase inhibition with zVAD.fmk. At 48 h, the animals exposed to hyperthermia and LPS had an enhanced lung inflammatory response. In murine lung epithelial cell lines (MLE-15, LA-4) and in primary type II alveolar epithelial cells, FRH enhanced apoptosis in response to TNF-alpha but not Fas ligand. The increase in apoptosis was caspase-8 dependent and associated with suppression of NF-kappaB activity. The FRH-associated NF-kappaB suppression was not associated with persistence of IkappaB-alpha, suggesting that FRH-mediated suppression of NF-kappaB occurs by means other than alteration of IkappaB-alpha kinetics. These data show for the first time that FRH promotes lung injury in part by increasing lung epithelial apoptosis. The enhanced apoptotic response might relate to FRH-mediated suppression of NF-kappaB activity in the alveolar epithelium with a resultant increase in susceptibility to TNF-alpha-mediated cell death.
Collapse
Affiliation(s)
- Anne B Lipke
- Medical Research Service, VA Puget Sound Medical Center, University of Washington, Seattle, WA 98108, USA
| | | | | | | | | | | | | |
Collapse
|