1
|
Zhang P, Gao H, Ye C, Yan R, Yu L, Xia C, Yang D. Large-Scale Transcriptome Data Analysis Identifies KIF2C as a Potential Therapeutic Target Associated With Immune Infiltration in Prostate Cancer. Front Immunol 2022; 13:905259. [PMID: 35720323 PMCID: PMC9203693 DOI: 10.3389/fimmu.2022.905259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers of the urinary system. In previous research, Kinesin family member 2C (KIF2C), as an oncogene, has been demonstrated to have a key role in the incidence and progression of different cancers. However, KIF2C has not been reported in PCa. We combined data from different databases, including The Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, and the Genomics of Drug Sensitivity in Cancer database, to explore the potential oncogenic role of KIF2C in PCa through a series of bioinformatics approaches, including analysis of the association between KIF2C and prognosis, clinicopathological features, gene mutations, DNA methylation, immune cell infiltration, and drug resistance. The results showed that KIF2C was significantly up-regulated in PCa. High KIF2C expression was associated with age, pathological stage, lymph node metastases, prostate-specific antigen (PSA), and Gleason score and significantly predicted an unfavorable prognosis in PCa patients. Results from Gene Set Enrichment Analysis (GSEA) suggested that KIF2C was involved in the cell cycle and immune response. KIF2C DNA methylation was reduced in PCa and was inversely linked with KIF2C expression. KIF2C was shown to have a strong relationship with the tumor microenvironment (TME), infiltrating cells, and immune checkpoint genes. Furthermore, high KIF2C expression was significantly resistant to a variety of MAPK signaling pathway-related inhibitors. Our study reveals that KIF2C may be a possible predictive biomarker for assessing prognosis in PCa patients with immune infiltration.
Collapse
Affiliation(s)
- Pingxin Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hang Gao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunwei Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lu Yu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
The chirality of the mitotic spindle provides a mechanical response to forces and depends on microtubule motors and augmin. Curr Biol 2022; 32:2480-2493.e6. [PMID: 35537456 PMCID: PMC9235856 DOI: 10.1016/j.cub.2022.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Forces produced by motor proteins and microtubule dynamics within the mitotic spindle are crucial for proper chromosome segregation. In addition to linear forces, rotational forces or torques are present in the spindle, which are reflected in the left-handed twisted shapes of microtubule bundles that make the spindle chiral. However, the biological role and molecular origins of spindle chirality are unknown. By developing methods for measuring the spindle twist, we show that spindles are most chiral near the metaphase-to-anaphase transition. To assess the role of chirality in spindle mechanics, we compressed the spindles along their axis. This resulted in a stronger left-handed twist, suggesting that the twisted shape allows for a mechanical response to forces. Inhibition or depletion of motor proteins that perform chiral stepping, Eg5/kinesin-5, Kif18A/kinesin-8, MKLP1/kinesin-6, and dynein, decreased the left-handed twist or led to right-handed twist, implying that these motors regulate the twist by rotating microtubules within their antiparallel overlaps or at the spindle pole. A right-handed twist was also observed after the depletion of the microtubule nucleator augmin, indicating its contribution to the twist through the nucleation of antiparallel bridging microtubules. The uncovered switch from left-handed to right-handed twist reveals the existence of competing mechanisms that promote twisting in opposite directions. As round spindles are more twisted than the elongated ones are, we infer that bending and twisting moments are generated by similar molecular mechanisms and propose a physiological role for spindle chirality in allowing the spindle to absorb mechanical load. Video abstract
Spindle twist depends on torque-generating motors Eg5, Kif18A, MKLP1, and dynein Without the microtubule nucleator augmin, spindles show right-handed twist Compression of the spindle along the axis increases the left-handed twist Rounder spindles are more twisted than elongated ones are
Collapse
|
3
|
Yang J, Wu Z, Yang L, Jeong JH, Zhu Y, Lu J, Wang B, Wang N, Wang Y, Shen K, Li R. Characterization of Kinesin Family Member 2C as a Proto-Oncogene in Cervical Cancer. Front Pharmacol 2022; 12:785981. [PMID: 35153749 PMCID: PMC8828917 DOI: 10.3389/fphar.2021.785981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Kinesin family member 2C (KIF2C) is known as an oncogenic gene to regulate tumor progression and metastasis. However, its pan-cancer analysis has not been reported. In this study, we comprehensively analyzed the characteristics of KIF2C in various cancers. We found that KIF2C was highly expressed and corresponded to a poor prognosis in various cancers. We also found a significant correlation between KIF2C and clinicopathological characteristics, particularly in cervical cancer, which is the most common gynecological malignancy and is the second leading cause of cancer-related deaths among women worldwide. KIF2C mutation is strongly associated with the survival rate of cervical cancer, and KIF2C expression was significantly upregulated in cervical cancer tissues and cervical cancer cells. Moreover, KIF2C promoted cervical cancer cells proliferation, invasion, and migration in vitro and as well increased tumor growth in vivo. KIF2C knockdown promotes the activation of the p53 signaling pathway by regulating the expression of related proteins. The rescue assay with KIF2C and p53 double knockdown partially reversed the inhibitory influence of KIF2C silencing on cervical cancer processes. In summary, our study provided a relatively comprehensive description of KIF2C as an oncogenic gene and suggested KIF2C as a therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Jing Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zimeng Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Ovarian Malignancies, Zhengzhou, China.,Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
| | - Ji-Hak Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Yuanhang Zhu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baojin Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Ovarian Malignancies, Zhengzhou, China
| | - Nannan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiqing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
KIF2C Is a Novel Prognostic Biomarker and Correlated with Immune Infiltration in Endometrial Cancer. Stem Cells Int 2021; 2021:1434856. [PMID: 34650608 PMCID: PMC8510809 DOI: 10.1155/2021/1434856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
Endometrial cancer (EC) is commonly diagnosed cancer in women, and the prognosis of advanced types of EC is extremely poor. Kinesin family member 2C (KIF2C) has been reported as an oncogene in cancers. However, its pathophysiological roles and the correlation with tumor-infiltrating lymphocytes in EC remain unclear. The mRNA and protein levels of KIF2C in EC tissues were detected by qRT-PCR, Western blot (WB), and IHC. CCK8, Transwell, and colony formation assay were applied to assess the effects of KIF2C on cell proliferation, migration, and invasion. Cell apoptosis and cell cycle were analyzed by flow cytometry. The antitumor effect was further validated in the nude mouse xenograft cancer model and humanized mouse model. KIF2C expression was higher in EC. Knockdown of KIF2C prolonged the G1 phases and inhibited EC cell proliferation, migration, and invasion in vitro. Bioinformatics analysis indicated that KIF2C is negatively correlated with the infiltration level of CD8+ T cells but positively with the poor prognosis of EC patients. The apoptosis of CD8+ T cell was inhibited after the knockdown of KIF2C and was further inhibited when it is combined with anti-PD1. Conversely, compared to the knockdown of KIF2C expression alone, the combination of anti-PD1 further promoted the apoptosis of Ishikawa and RL95-2 cells. Moreover, the knockdown of KIF2C inhibited the expression of Ki-67 and the growth of tumors in the nude mouse xenograft cancer model. Our study found that the antitumor efficacy was further evaluated by the combination of anti-PD1 and KIF2C knockdown in a humanized mouse model. This study indicated that KIF2C is a novel prognostic biomarker that determines cancer progression and also a target for the therapy of EC and correlated with tumor immune cells infiltration in EC.
Collapse
|
5
|
Schweiggert J, Habeck G, Hess S, Mikus F, Beloshistov R, Meese K, Hata S, Knobeloch K, Melchior F. SCF Fbxw5 targets kinesin-13 proteins to facilitate ciliogenesis. EMBO J 2021; 40:e107735. [PMID: 34368969 PMCID: PMC8441365 DOI: 10.15252/embj.2021107735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Microtubule depolymerases of the kinesin-13 family play important roles in various cellular processes and are frequently overexpressed in different cancer types. Despite the importance of their correct abundance, remarkably little is known about how their levels are regulated in cells. Using comprehensive screening on protein microarrays, we identified 161 candidate substrates of the multi-subunit ubiquitin E3 ligase SCFFbxw5 , including the kinesin-13 member Kif2c/MCAK. In vitro reconstitution assays demonstrate that MCAK and its closely related orthologs Kif2a and Kif2b become efficiently polyubiquitylated by neddylated SCFFbxw5 and Cdc34, without requiring preceding modifications. In cells, SCFFbxw5 targets MCAK for proteasomal degradation predominantly during G2 . While this seems largely dispensable for mitotic progression, loss of Fbxw5 leads to increased MCAK levels at basal bodies and impairs ciliogenesis in the following G1 /G0 , which can be rescued by concomitant knockdown of MCAK, Kif2a or Kif2b. We thus propose a novel regulatory event of ciliogenesis that begins already within the G2 phase of the preceding cell cycle.
Collapse
Affiliation(s)
- Jörg Schweiggert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Gregor Habeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Sandra Hess
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Felix Mikus
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Roman Beloshistov
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Klaus Meese
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | - Shoji Hata
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| | | | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)University of HeidelbergDKFZ ‐ ZMBH AllianceHeidelbergGermany
| |
Collapse
|
6
|
Vukušić K, Tolić IM. Anaphase B: Long-standing models meet new concepts. Semin Cell Dev Biol 2021; 117:127-139. [PMID: 33849764 PMCID: PMC8406420 DOI: 10.1016/j.semcdb.2021.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
Mitotic cell divisions ensure stable transmission of genetic information from a mother to daughter cells in a series of generations. To ensure this crucial task is accomplished, the cell forms a bipolar structure called the mitotic spindle that divides sister chromatids to the opposite sides of the dividing mother cell. After successful establishment of stable attachments of microtubules to chromosomes and inspection of connections between them, at the heart of mitosis, the cell starts the process of segregation. This spectacular moment in the life of a cell is termed anaphase, and it involves two distinct processes: depolymerization of microtubules bound to chromosomes, which is also known as anaphase A, and elongation of the spindle or anaphase B. Both processes ensure physical separation of disjointed sister chromatids. In this chapter, we review the mechanisms of anaphase B spindle elongation primarily in mammalian systems, combining different pioneering ideas and concepts with more recent findings that shed new light on the force generation and regulation of biochemical modules operating during spindle elongation. Finally, we present a comprehensive model of spindle elongation that includes structural, biophysical, and molecular aspects of anaphase B.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
7
|
Wu X, Sheng H, Wang L, Xia P, Wang Y, Yu L, Lv W, Hu J. A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging (Albany NY) 2021; 13:10034-10057. [PMID: 33795529 PMCID: PMC8064222 DOI: 10.18632/aging.202761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
We analyzed the prognostic value of N6-methyladenosine (m6A) regulatory genes in lung adenocarcinoma (LADC) and their association with tumor immunity and immunotherapy response. Seventeen of 20 m6A regulatory genes were differentially expressed in LDAC tissue samples from the TCGA and GEO databases. We developed a five-m6A regulatory gene prognostic signature based on univariate and Lasso Cox regression analysis. Western blot analysis confirmed that the five prognostic m6A regulatory proteins were highly expressed in LADC tissues. We constructed a nomogram with five-m6A regulatory gene prognostic risk signature and AJCC stages. ROC curves and calibration curves showed that the nomogram was well calibrated and accurately distinguished high-risk and low-risk LADC patients. Weighted gene co-expression analysis showed significant correlation between prognostic risk signature genes and the turquoise module enriched with cell cycle genes. The high-risk LADC patients showed significantly higher PD-L1 levels, increased tumor mutational burden, and a lower proportion of CD8+ T cells in the tumor tissues and improved response to immune checkpoint blockade therapy. These findings show that this five-m6A regulatory gene signature is a prognostic biomarker in LADC and that immune checkpoint blockade is a potential therapeutic option for high-risk LADC patients.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Luming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Pinghui Xia
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiqing Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Yu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
8
|
Ganguly A, Yang H, Cabral F. Detection and Quantification of Microtubule Detachment from Centrosomes and Spindle Poles. Methods Cell Biol 2013; 115:49-62. [DOI: 10.1016/b978-0-12-407757-7.00004-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Gwon MR, Cho JH, Kim JR. Mitotic centromere-associated kinase (MCAK/Kif2C) regulates cellular senescence in human primary cells through a p53-dependent pathway. FEBS Lett 2012; 586:4148-56. [PMID: 23098759 DOI: 10.1016/j.febslet.2012.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Mitotic centromere-associated kinase (MCAK/Kif2C) plays a critical role in chromosome movement and segregation with ATP-dependent microtubule depolymerase activity. However, its role in cellular senescence remains unclear. MCAK/Kif2C expression decreased in human primary cells under replicative and premature senescence. MCAK/Kif2C down-regulation in young cells induced premature senescence. MCAK/Kif2C overexpression in old cells partially reversed cell senescence. Senescence phenotypes by MCAK/Kif2C knockdown were observed in p16-knockdown cells, but not in p53-knockdown cells. These results suggest that MCAK/Kif2C plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue/organism aging and protection of cellular transformation.
Collapse
Affiliation(s)
- Mi-Ri Gwon
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | | | | |
Collapse
|
10
|
Ganguly A, Bhattacharya R, Cabral F. Control of MCAK degradation and removal from centromeres. Cytoskeleton (Hoboken) 2012; 69:303-11. [PMID: 22422706 DOI: 10.1002/cm.21026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 11/08/2022]
Abstract
Mitotic centromere associated kinesin (MCAK) is a kinesin related protein with the ability to stimulate microtubule depolymerization. It is found at spindle poles, where it may be involved in poleward microtubule flux, and at kinetochores and centromeres where it plays a role in correcting chromosome alignment errors. Its microtubule depolymerase activity and recruitment to centromeres is regulated by phosphorylation, but little is known about how MCAK is maintained at appropriate levels. We previously reported that MCAK accumulates during the cell cycle and is then degraded during mitosis. Using proteomic analysis, we have now identified a new phosphorylation site on MCAK that is responsible for its degradation. Mutation of the site to prevent phosphorylation prolonged the stability of the protein beyond the metaphase to anaphase transition and into the subsequent cell cycle whereas a phosphomimetic mutation accelerated degradation. Unexpectedly, the mutation that prevented phosphorylation also inhibited the removal of MCAK from centromeres causing it to remain attached throughout the cell cycle. Even low expression of phosphorylation-resistant MCAK delayed mitosis and interfered with cell division. Mitotic defects were also observed by overexpressing a green fluorescent protein-tagged version of wild-type MCAK that similarly escaped degradation and accumulated to toxic levels, but did not remain associated with kinetochores during interphase. The results demonstrate that degradation is an important mechanism for controlling the activity of MCAK.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
11
|
Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1816:164-71. [PMID: 21741453 PMCID: PMC3202616 DOI: 10.1016/j.bbcan.2011.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Mechanisms to explain tumor cell resistance to drugs that target the microtubule cytoskeleton have relied on the assumption that the drugs act either to suppress microtubule dynamics or to perturb the balance between assembled and nonassembled tubulin. Recently, however, it was found that these drugs also alter the stability of microtubule attachment to centrosomes, and do so at the same concentrations that are needed to inhibit cell division. Based on this new information, a new model is presented that explains resistance resulting from a variety of molecular changes that have been reported in the literature. The improved understanding of drug action and resistance has important implications for chemotherapy with these agents.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
12
|
Ganguly A, Yang H, Pedroza M, Bhattacharya R, Cabral F. Mitotic centromere-associated kinesin (MCAK) mediates paclitaxel resistance. J Biol Chem 2011; 286:36378-84. [PMID: 21903575 PMCID: PMC3196137 DOI: 10.1074/jbc.m111.296483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/06/2011] [Indexed: 12/25/2022] Open
Abstract
Paclitaxel has powerful anticancer activity, but some tumors are inherently resistant to the drug, whereas others are initially sensitive but acquire resistance during treatment. To deal with this problem, it will be necessary to understand the mechanisms of drug action and resistance. Recent studies indicate that paclitaxel blocks cell division by inhibiting the detachment of microtubules from centrosomes. Here, we demonstrate that mitotic centromere-associated kinesin (MCAK), a kinesin-related protein that destabilizes microtubules, plays an important role in microtubule detachment. Depletion of MCAK altered mitotic spindle morphology, increased the frequency of lagging chromosomes, and inhibited the proliferation of WT CHO cells, confirming that it is an essential protein for cell division. In contrast, MCAK depletion rescued the proliferation of mutant paclitaxel-dependent cell lines that are unable to divide because of defective spindle function resulting from altered α-tubulin or class III β-tubulin overexpression. In concert with the correction of mitotic defects, loss of MCAK reversed an aberrantly high frequency of microtubule detachment in the mutant cells and increased their sensitivity to paclitaxel. The results indicate that MCAK affects cell sensitivity to mitotic inhibitors by modulating the frequency of microtubule detachment, and they demonstrate that changes in a microtubule-interacting protein can reverse the effects of mutant tubulin expression.
Collapse
Affiliation(s)
- Anutosh Ganguly
- From the Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030
| | - Hailing Yang
- From the Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030
| | - Mesias Pedroza
- From the Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030
| | - Rajat Bhattacharya
- From the Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030
| | - Fernando Cabral
- From the Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030
| |
Collapse
|
13
|
Ganguly A, Yang H, Cabral F. Overexpression of mitotic centromere-associated Kinesin stimulates microtubule detachment and confers resistance to paclitaxel. Mol Cancer Ther 2011; 10:929-37. [PMID: 21471284 PMCID: PMC3112244 DOI: 10.1158/1535-7163.mct-10-1109] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous studies have implicated mutations in tubulin or the overexpression of specific tubulin genes in resistance to microtubule-targeted drugs. Much less is known about the role of accessory proteins that modulate microtubule behavior in the genesis of drug resistance. Here, we examine mitotic centromere-associated kinesin (MCAK), a member of the kinesin family of microtubule motor proteins that has the ability to stimulate microtubule depolymerization, and show that overexpressing the protein confers resistance to paclitaxel and epothilone A, but increases sensitivity to colcemid. Cells transfected with FLAG-tagged MCAK cDNA using a tet-off-regulated expression system had a disrupted microtubule cytoskeleton and were able to survive a toxic concentration of paclitaxel in the absence, but not in the presence of tetracycline, showing that drug resistance was caused by ectopic MCAK production. Moreover, a population that was heterogeneous with respect to FLAG-MCAK expression became enriched with cells that produced the ectopic protein when it was placed under paclitaxel selection. Similar to previously isolated mutants with altered tubulin, paclitaxel resistant cells resulting from MCAK overexpression were found to have decreased microtubule polymer and a seven-fold increase in the frequency of microtubule detachment from centrosomes. These data are consistent with a model for paclitaxel resistance that is based on stability of the attachment of microtubules to their nucleating centers, and they implicate MCAK in the mechanism of microtubule detachment.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| | - Hailing Yang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|
14
|
Lee YM, Kim E, Park M, Moon E, Ahn SM, Kim W, Hwang KB, Kim YK, Choi W, Kim W. Cell cycle-regulated expression and subcellular localization of a kinesin-8 member human KIF18B. Gene 2010; 466:16-25. [PMID: 20600703 DOI: 10.1016/j.gene.2010.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/06/2010] [Accepted: 06/17/2010] [Indexed: 12/13/2022]
Abstract
The human genome contains genes encoding for over 40 different types of kinesin and kinesin-like proteins. Of these, the functions of 13 kinesins remain uncharacterized. In this study, we constructed a plasmid containing the ORF of KIF18B and revealed that the KIF18B message of approximately 3kb is expressed in a tissue- and cell type-specific manners. A polypeptide of 842 amino acids was deduced from the ORF sequence. We identified another form of 873 amino acids which arises from alternative splicing at the C-terminal end. We also generated an anti-KIF18B antibody which detects a protein band of 120kDa. Western analyses showed that the protein level of KIF18B is elevated at late G(2) through metaphase, very similar to cyclin B1. Immunocytochemical staining revealed that the KIF18B protein is present predominantly in the nucleus and to a lesser extent in the cytoplasm of interphase cells. During mitosis, most KIF18B was found to be closely associated with astral microtubules emanating from the spindle pole during prometaphase and metaphase. Meanwhile, KIF18B was not detected at anaphase and telophase, consistent with the Western blotting data. The nuclear localization signal was roughly determined by using several EGFP-tagged deletion mutants of KIF18B. Together, the expression of KIF18B is regulated in a cell cycle-dependent manner and therefore may play an important role(s) in cell division.
Collapse
Affiliation(s)
- Young Mi Lee
- Institute for Medical Sciences, School of Medicine, Ajou University, Suwon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Barenco M, Brewer D, Papouli E, Tomescu D, Callard R, Stark J, Hubank M. Dissection of a complex transcriptional response using genome-wide transcriptional modelling. Mol Syst Biol 2009; 5:327. [PMID: 19920812 PMCID: PMC2795478 DOI: 10.1038/msb.2009.84] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/05/2009] [Indexed: 11/14/2022] Open
Abstract
Modern genomics technologies generate huge data sets creating a demand for systems level, experimentally verified, analysis techniques. We examined the transcriptional response to DNA damage in a human T cell line (MOLT4) using microarrays. By measuring both mRNA accumulation and degradation over a short time course, we were able to construct a mechanistic model of the transcriptional response. The model predicted three dominant transcriptional activity profiles—an early response controlled by NFκB and c-Jun, a delayed response controlled by p53, and a late response related to cell cycle re-entry. The method also identified, with defined confidence limits, the transcriptional targets associated with each activity. Experimental inhibition of NFκB, c-Jun and p53 confirmed that target predictions were accurate. Model predictions directly explained 70% of the 200 most significantly upregulated genes in the DNA-damage response. Genome-wide transcriptional modelling (GWTM) requires no prior knowledge of either transcription factors or their targets. GWTM is an economical and effective method for identifying the main transcriptional activators in a complex response and confidently predicting their targets.
Collapse
Affiliation(s)
- Martino Barenco
- Department of Molecular Heamatology and Cancer Biology, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 2009; 10:765-77. [PMID: 19851335 DOI: 10.1038/nrm2782] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
17
|
Bhattacharya R, Cabral F. Molecular basis for class V beta-tubulin effects on microtubule assembly and paclitaxel resistance. J Biol Chem 2009; 284:13023-32. [PMID: 19282281 DOI: 10.1074/jbc.m900167200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.
Collapse
Affiliation(s)
- Rajat Bhattacharya
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX 77030, USA
| | | |
Collapse
|