1
|
Liu Q, Pillus L, Petty EL. Functional tug of war between kinases, phosphatases, and the Gcn5 acetyltransferase in chromatin and cell cycle checkpoint controls. G3 (BETHESDA, MD.) 2023; 13:jkad021. [PMID: 36772957 PMCID: PMC10085806 DOI: 10.1093/g3journal/jkad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Covalent modifications of chromatin regulate genomic structure and accessibility in diverse biological processes such as transcriptional regulation, cell cycle progression, and DNA damage repair. Many histone modifications have been characterized, yet understanding the interactions between these and their combinatorial effects remains an active area of investigation, including dissecting functional interactions between enzymes mediating these modifications. In budding yeast, the histone acetyltransferase Gcn5 interacts with Rts1, a regulatory subunit of protein phosphatase 2A (PP2A). Implicated in the interaction is the potential for the dynamic phosphorylation of conserved residues on histone H2B and the Cse4 centromere-specific histone H3 variant. To probe these dynamics, we sought to identify kinases which contribute to the phosphorylated state. In a directed screen beginning with in silico analysis of the 127 members of yeast kinome, we have now identified 16 kinases with genetic interactions with GCN5 and specifically found distinct roles for the Hog1 stress-activated protein kinase. Deletion of HOG1 (hog1Δ) rescues gcn5Δ sensitivity to the microtubule poison nocodazole and the lethality of the gcn5Δ rts1Δ double mutant. The Hog1-Gcn5 interaction requires the conserved H2B-T91 residue, which is phosphorylated in vertebrate species. Furthermore, deletion of HOG1 decreases aneuploidy and apoptotic populations in gcn5Δ cells. Together, these results introduce Hog1 as a kinase that functionally opposes Gcn5 and Rts1 in the context of the spindle assembly checkpoint and suggest further kinases may also influence GCN5's functions.
Collapse
Affiliation(s)
- Qihao Liu
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Lorraine Pillus
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Emily L Petty
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| |
Collapse
|
2
|
Li J, Yan C, Wang Y, Chen C, Yu H, Liu D, Huang K, Han Y. GCN5-mediated regulation of pathological cardiac hypertrophy via activation of the TAK1-JNK/p38 signaling pathway. Cell Death Dis 2022; 13:421. [PMID: 35490166 PMCID: PMC9056507 DOI: 10.1038/s41419-022-04881-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Pathological cardiac hypertrophy is a process of abnormal remodeling of cardiomyocytes in response to pressure overload or other stress stimuli, resulting in myocardial injury, which is a major risk factor for heart failure, leading to increased morbidity and mortality. General control nonrepressed protein 5 (GCN5)/lysine acetyltransferase 2 A, a member of the histone acetyltransferase and lysine acetyltransferase families, regulates a variety of physiological and pathological events. However, the function of GCN5 in pathological cardiac hypertrophy remains unclear. This study aimed to explore the role of GCN5 in the development of pathological cardiac hypertrophy. GCN5 expression was increased in isolated neonatal rat cardiomyocytes (NRCMs) and mouse hearts of a hypertrophic mouse model. GCN5 overexpression aggravated the cardiac hypertrophy triggered by transverse aortic constriction surgery. In contrast, inhibition of GCN5 impairs the development of pathological cardiac hypertrophy. Similar results were obtained upon stimulation of NRCMs (having GCN5 overexpressed or knocked down) with phenylephrine. Mechanistically, our results indicate that GCN5 exacerbates cardiac hypertrophy via excessive activation of the transforming growth factor β-activated kinase 1 (TAK1)-c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Using a TAK1-specific inhibitor in rescue experiments confirmed that the activation of TAK1 is essential for GCN5-mediated cardiac hypertrophy. In summary, the current study elucidated the role of GCN5 in promotion of cardiac hypertrophy, thereby implying it to be a potential target for treatment.
Collapse
Affiliation(s)
- Jia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Can Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Yu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yaling Han
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
3
|
Deregulated levels of RUVBL1 induce transcription-dependent replication stress. Int J Biochem Cell Biol 2020; 128:105839. [PMID: 32846207 DOI: 10.1016/j.biocel.2020.105839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Collapse
|
4
|
Li Y, Sun D, Sun W, Yin D. Retracted: Ras-PI3K-AKT signaling promotes the occurrence and development of uveal melanoma by downregulating H3K56ac expression. J Cell Physiol 2019; 234:16032-16042. [PMID: 30770562 DOI: 10.1002/jcp.28261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Uveal melanoma (UM) is an intraocular malignant tumor characterized by rapid progression and recurrence. The current conventional treatments are unsatisfactory. Histone acetylation at H3 lysine 56 (H3K56ac) has been reported to be a tumor suppressor in breast cancer. However, whether H3K56ac prevents the occurrence and development of UM remains uninvestigated. The study aimed to explore the regulatory effect of H3K56ac on Ras-PI3K-AKT induced UM cells proliferation and migration. METHODS The vectors of pEGFP-RasWT , pEGFP-K-Ras G12V/Y40C , and pEGFP-N1 were transfected into MP46 cells, and protein levels of phosphorylated AKT Ser473 and H3K56ac were examined using western blot analysis. The effect of H3K56ac on cell proliferation and migration were studied using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide, colony formation, and Transwell assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and chromatin immunoprecipitation assays were performed to determine the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) downstream genes. Further, the regulatory effects of silent mating type information regulation 2 homolog-1 (SIRT1), general control nonderepressible 5 (GCN5), and mouse double minute 2 homolog (MDM2) on Ras-PI3K-AKT affected H3K56ac expression were also investigated. RESULTS H3K56ac expression was specifically downregulated by Ras-PI3K-AKT activation pathway. H3K56ac inhibited the tumorigenic effect of Ras-PI3K-AKT on MP46 cells viability, colony formation, and migration, as well as participated in regulating the transcription of PI3K/AKT downstream genes. SIRT1 silence recovered H3K56ac expression, and reversed the tumorigenic effect of Ras-PI3K-AKT activation on MP46 cells. Downregulation of H3K56ac induced by Ras-PI3K-AKT activation was found to be associated with MDM2-mediated the degradation of GCN5. CONCLUSIONS The results demonstrated that Ras-PI3K-AKT signaling promoted UM cells proliferation and migration via downregulation of H3K56ac expression, which might be related to MDM2-mediated the degradation of GCN5.
Collapse
Affiliation(s)
- Yaping Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Weixuan Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Qiao L, Zhang Q, Zhang W, Chen JJ. The lysine acetyltransferase GCN5 contributes to human papillomavirus oncoprotein E7-induced cell proliferation via up-regulating E2F1. J Cell Mol Med 2018; 22:5333-5345. [PMID: 30079588 PMCID: PMC6201343 DOI: 10.1111/jcmm.13806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
General control nondepressible 5 (GCN5), the first identified transcription-related lysine acetyltransferase (KAT), is an important catalytic component of a transcriptional regulatory SAGA (Spt-Ada-GCN5-Acetyltransferase) and ATAC (ADA2A-containing) complex. While GCN5 has been implicated in cancer development, its role in cervical cancer is not known. The human papillomavirus (HPV) oncoprotein E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, which plays a central role in cervical carcinogenesis. In this study, we observed that GCN5 was up-regulated in HPV E7-expressing cells, knockdown of GCN5 inhibited cell cycle progression and DNA synthesis in HPV E7-expressing cells. Notably, GCN5 knockdown reduced the steady-state levels of transcription factor E2F1. Depletion of E2F1 caused G1 arrest while overexpression of E2F1 rescued the inhibitory effects of GCN5 knockdown on G1/S progression in HPV E7-expressing cells. Results from chromatin immunoprecipitation (ChIP) assays demonstrated that GCN5 bound to the E2F1 promoter and increased the extent of histone acetylation within these regions. GCN5 also acetylated c-Myc and increased its ability to bind to the E2F1 promoter. Knockdown of c-Myc reduced the steady-state levels of E2F1 and caused G1 arrest. These results revealed a novel mechanism of E7 function whereby elevated GCN5 acetylates histones and c-Myc to regulate E2F1 expression and cell cycle progression.
Collapse
Affiliation(s)
- Lijun Qiao
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qishu Zhang
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Christensen MD, Nitiyanandan R, Meraji S, Daer R, Godeshala S, Goklany S, Haynes K, Rege K. An inhibitor screen identifies histone-modifying enzymes as mediators of polymer-mediated transgene expression from plasmid DNA. J Control Release 2018; 286:210-223. [PMID: 29964136 DOI: 10.1016/j.jconrel.2018.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
Effective transgene expression in mammalian cells relies on successful delivery, cytoplasmic trafficking, and nuclear translocation of the delivered vector, but delivery is impeded by several formidable physicochemical barriers on the surface of and within the target cell. Although methods to overcome cellular exclusion and endosomal entrapment have been studied extensively, strategies to overcome inefficient nuclear entry and subsequent intranuclear barriers to effective transient gene expression have only been sparsely explored. In particular, the role of nuclear packaging of DNA with histone proteins, which governs endogenous gene expression, has not been extensively elucidated in the case of exogenously delivered plasmids. In this work, a parallel screen of small molecule inhibitors of chromatin-modifying enzymes resulted in the identification of class I/II HDACs, sirtuins, LSD1, HATs, and the methyltransferases EZH2 and MLL as targets whose inhibition led to the enhancement of transgene expression following polymer-mediated delivery of plasmid DNA. Quantitative PCR studies revealed that HDAC inhibition enhances the amount of plasmid DNA delivered to the nucleus in UMUC3 human bladder cancer cells. Native chromatin immunoprecipitation (N-ChIP)-qPCR experiments in CHO-K1 cells indicated that plasmids indeed interact with intracellular core Histone H3, and inhibitors of HDAC and LSD1 proteins are able to modulate this interaction. Pair-wise treatments of effective inhibitors led to synergistic enhancement of transgene expression to varying extents in both cell types. Our results demonstrate that the ability to modulate enzymes that play a role in epigenetic processes can enhance the efficacy of non-viral gene delivery, resulting in significant implications for gene therapy and industrial biotechnology.
Collapse
Affiliation(s)
| | | | | | - René Daer
- Biological Design, Arizona State University, Tempe, AZ, USA
| | | | - Sheba Goklany
- Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Karmella Haynes
- Biomedical Engineering, Arizona State University, Tempe, AZ, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Xu HH, Su T, Xue Y. Histone H3 N-terminal acetylation sites especially K14 are important for rDNA silencing and aging. Sci Rep 2016; 6:21900. [PMID: 26906758 PMCID: PMC4764821 DOI: 10.1038/srep21900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/28/2016] [Indexed: 11/30/2022] Open
Abstract
Histone variants and histone modifications are essential components in the establishment and maintenance of the repressed status of heterochromatin. Among these histone variants and modifications, acetylation at histone H4K16 is uniquely important for the maintenance of silencing at telomere and mating type loci but not at the ribosomal DNA locus. Here we show that mutations at H3 N-terminal acetylation site K14 specifically disrupt rDNA silencing. However, the mutant ion at H3K14R doesn't affect the recruitment of Pol II repressor RENT (regulator of nucleolar silencing and telophase exit) complex at the rDNA region. Instead, the CAF-1(chromatin assembly factor I) subunit Cac2 level decreased in the H3K14R mutant. Further experiments revealed that the single mutation at H3K14 and multi-site mutations at H3 N-terminus including K14 also delayed replication-depend nucleosome assembly and advanced replicative life span. In conclusion, our data suggest that histone H3 N-terminal acetylation sites especially at K14 are important for rDNA silencing and aging.
Collapse
Affiliation(s)
- Heng-hao Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, China
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yong Xue
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Golla U, Bandi G, Tomar RS. Molecular Cytotoxicity Mechanisms of Allyl Alcohol (Acrolein) in Budding Yeast. Chem Res Toxicol 2015; 28:1246-64. [DOI: 10.1021/acs.chemrestox.5b00071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India
| | - Goutham Bandi
- Laboratory of Chromatin Biology,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India
| |
Collapse
|
9
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|
10
|
Burgess RJ, Han J, Zhang Z. The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast. J Biol Chem 2014; 289:10518-10529. [PMID: 24573675 DOI: 10.1074/jbc.m114.552463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of genome integrity is regulated in part by chromatin structure and factors involved in the DNA damage response pathway. Nucleosome assembly is a highly regulated process that restores chromatin structure after DNA replication, DNA repair, and gene transcription. During S phase the histone chaperones Asf1, CAF-1, and Rtt106 coordinate to deposit newly synthesized histones H3-H4 onto replicated DNA in budding yeast. Here we describe synthetic genetic interactions between RTT106 and the DDC1-MEC3-RAD17 (9-1-1) complex, a sliding clamp functioning in the S phase DNA damage and replication checkpoint response, upon treatment with DNA damaging agents. The DNA damage sensitivity of rad17Δ rtt106Δ cells depends on the function of Rtt106 in nucleosome assembly. Epistasis analysis reveals that 9-1-1 complex components interact with multiple DNA replication-coupled nucleosome assembly factors, including Rtt106, CAF-1, and lysine residues of H3-H4. Furthermore, rad17Δ cells exhibit defects in the deposition of newly synthesized H3-H4 onto replicated DNA. Finally, deletion of RAD17 results in increased association of Asf1 with checkpoint kinase Rad53, which may lead to the observed reduction in Asf1-H3 interaction in rad17Δ mutant cells. In addition, we observed that the interaction between histone H3-H4 with histone chaperone CAF-1 or Rtt106 increases in cells lacking Rad17. These results support the idea that the 9-1-1 checkpoint protein regulates DNA replication-coupled nucleosome assembly in part through regulating histone-histone chaperone interactions.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Junhong Han
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| |
Collapse
|
11
|
Delgoshaie N, Tang X, Kanshin ED, Williams EC, Rudner AD, Thibault P, Tyers M, Verreault A. Regulation of the histone deacetylase Hst3 by cyclin-dependent kinases and the ubiquitin ligase SCFCdc4. J Biol Chem 2014; 289:13186-96. [PMID: 24648511 DOI: 10.1074/jbc.m113.523530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCF(Cdc4) and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCF(Cdc4). Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCF(Cdc4).
Collapse
Affiliation(s)
- Neda Delgoshaie
- From the Institute for Research in Immunology and Cancer, Université de Montréal, Succursale Centre-Ville, Montreal, Quebec H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fang L, Wuptra K, Chen D, Li H, Huang SK, Jin C, Yokoyama KK. Environmental-stress-induced Chromatin Regulation and its Heritability. ACTA ACUST UNITED AC 2014; 5. [PMID: 25045581 PMCID: PMC4101908 DOI: 10.4172/2157-2518.1000156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives.
Collapse
Affiliation(s)
- Lei Fang
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Kenly Wuptra
- Center of Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung 807, Taiwan ; Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County 350, Taiwan
| | - Danqi Chen
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Hongjie Li
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Shau-Ku Huang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County 350, Taiwan ; Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Kazunari K Yokoyama
- Center of Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Xin Q, Gong Y, Lv X, Chen G, Liu W. Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation, and cellulase gene expression. Curr Microbiol 2013; 67:580-9. [PMID: 23748966 DOI: 10.1007/s00284-013-0396-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
Gcn5 is a well-established histone acetyltransferase involved in chromatin modification by catalyzing the acetylation of specific lysine residues within the N-terminal tails of the core histones. To assess the role of chromatin remodeling in the transcriptional response of cellulolytic Trichoderma reesei to the changes of environmental conditions, we identified the T. reesei ortholog of Saccharomyces cerevisiae Gcn5 by sequence alignment and functional analysis. Heterologous expression of TrGcn5 in S. cerevisiae gcn5Δ strain restored the growth defect under nutrient limitation as well as stresses. In contrast, mutant TrGcn5 with site-directed changes of residues critical for Gcn5 histone acetyltransferase activity could not complement the growth defect. The T. reesei gcn5Δ mutant strain displayed a strongly decreased growth rate and dramatic morphological changes including misshapen hyphal cells and abolished conidiation. Moreover, the induced expression of cellulase genes was severely impaired in the gcn5Δ T. reesei with acetylation of K9 and K14 of histone H3 in the cellulase gene promoter dramatically affected in the absence of TrGcn5. The results indicate that TrGcn5 plays a critical role in filamentous growth, morphogenesis, and transcriptional activation of specific genes including cellulase encoding genes.
Collapse
Affiliation(s)
- Qi Xin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
14
|
The carboxyl terminus of Rtt109 functions in chaperone control of histone acetylation. EUKARYOTIC CELL 2013; 12:654-64. [PMID: 23457193 DOI: 10.1128/ec.00291-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rtt109 is a fungal histone acetyltransferase (HAT) that catalyzes histone H3 acetylation functionally associated with chromatin assembly. Rtt109-mediated H3 acetylation involves two histone chaperones, Asf1 and Vps75. In vivo, Rtt109 requires both chaperones for histone H3 lysine 9 acetylation (H3K9ac) but only Asf1 for full H3K56ac. In vitro, Rtt109-Vps75 catalyzes both H3K9ac and H3K56ac, whereas Rtt109-Asf1 catalyzes only H3K56ac. In this study, we extend the in vitro chaperone-associated substrate specificity of Rtt109 by showing that it acetylates vertebrate linker histone in the presence of Vps75 but not Asf1. In addition, we demonstrate that in Saccharomyces cerevisiae a short basic sequence at the carboxyl terminus of Rtt109 (Rtt109C) is required for H3K9ac in vivo. Furthermore, through in vitro and in vivo studies, we demonstrate that Rtt109C is required for optimal H3K56ac by the HAT in the presence of full-length Asf1. When Rtt109C is absent, Vps75 becomes important for H3K56ac by Rtt109 in vivo. In addition, we show that lysine 290 (K290) in Rtt109 is required in vivo for Vps75 to enhance the activity of the HAT. This is the first in vivo evidence for a role for Vps75 in H3K56ac. Taken together, our results contribute to a better understanding of chaperone control of Rtt109-mediated H3 acetylation.
Collapse
|
15
|
Trujillo KM, Osley MA. A role for H2B ubiquitylation in DNA replication. Mol Cell 2012; 48:734-46. [PMID: 23103252 PMCID: PMC3525772 DOI: 10.1016/j.molcel.2012.09.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/12/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
The monoubiquitylation of histone H2B plays an important role in gene expression by contributing to the regulation of transcription elongation and mRNA processing and export. We explored additional cellular functions of this histone modification by investigating its localization to intergenic regions. H2B ubiquitylation is present in chromatin around origins of DNA replication in budding yeast, and as DNA is replicated its levels are maintained on daughter strands by the Bre1 ubiquitin ligase. In the absence of H2B ubiquitylation, the prereplication complex is formed and activated, but replication fork progression is slowed down and the replisome becomes unstable in the presence of hydroxyurea. H2B ubiquitylation promotes the assembly or stability of nucleosomes on newly replicated DNA, and this function is postulated to contribute to fork progression and replisome stability.
Collapse
Affiliation(s)
- Kelly M Trujillo
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
16
|
Jiang J, Lu J, Lu D, Liang Z, Li L, Ouyang S, Kong X, Jiang H, Shen B, Luo C. Investigation of the acetylation mechanism by GCN5 histone acetyltransferase. PLoS One 2012; 7:e36660. [PMID: 22574209 PMCID: PMC3344931 DOI: 10.1371/journal.pone.0036660] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 04/04/2012] [Indexed: 11/29/2022] Open
Abstract
The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes.
Collapse
Affiliation(s)
- Junfeng Jiang
- Center for Systems Biology, Soochow University, Jiangsu, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junyan Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dan Lu
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Lianchun Li
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Sisheng Ouyang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Xiangqian Kong
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Jiangsu, China
- * E-mail: (CL); (BS)
| | - Cheng Luo
- Center for Systems Biology, Soochow University, Jiangsu, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (CL); (BS)
| |
Collapse
|
17
|
The yeast forkhead transcription factors fkh1 and fkh2 regulate lifespan and stress response together with the anaphase-promoting complex. PLoS Genet 2012; 8:e1002583. [PMID: 22438832 PMCID: PMC3305399 DOI: 10.1371/journal.pgen.1002583] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/20/2012] [Indexed: 11/19/2022] Open
Abstract
Forkhead box O (FOXO) transcription factors have a conserved function in regulating metazoan lifespan. A key function in this process involves the regulation of the cell cycle and stress responses including free radical scavenging. We employed yeast chronological and replicative lifespan assays, as well as oxidative stress assays, to explore the potential evolutionary conservation of function between the FOXOs and the yeast forkhead box transcription factors FKH1 and FKH2. We report that the deletion of both FKH genes impedes normal lifespan and stress resistance, particularly in stationary phase cells, which are non-responsive to caloric restriction. Conversely, increased expression of the FKHs leads to extended lifespan and improved stress response. Here we show the Anaphase-Promoting Complex (APC) genetically interacts with the Fkh pathway, likely working in a linear pathway under normal conditions, as fkh1Δ fkh2Δ post-mitotic survival is epistatic to that observed in apc5(CA) mutants. However, under stress conditions, post-mitotic survival is dramatically impaired in apc5(CA) fkh1Δ fkh2Δ, while increased expression of either FKH rescues APC mutant growth defects. This study establishes the FKHs role as evolutionarily conserved regulators of lifespan in yeast and identifies the APC as a novel component of this mechanism under certain conditions, likely through combined regulation of stress response, genomic stability, and cell cycle regulation.
Collapse
|
18
|
Lopes da Rosa J, Kaufman PD. Chromatin-mediated Candida albicans virulence. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:349-55. [PMID: 21888998 PMCID: PMC3243783 DOI: 10.1016/j.bbagrm.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Candida albicans is the most prevalent human fungal pathogen. To successfully propagate an infection, this organism relies on the ability to change morphology, express virulence-associated genes and resist DNA damage caused by the host immune system. Many of these events involve chromatin alterations that are crucial for virulence. This review will focus on the studies that have been conducted on how chromatin function affects pathogenicity of C. albicans and other fungi. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Jessica Lopes da Rosa
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | - Paul D. Kaufman
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| |
Collapse
|
19
|
Cohen I, Poręba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer 2011; 2:631-47. [PMID: 21941619 DOI: 10.1177/1947601911417176] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors.
Collapse
Affiliation(s)
- Idan Cohen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | | |
Collapse
|
20
|
Li Y, Jaramillo-Lambert A, Hao J, Yang Y, Zhu W. The stability of histone acetyltransferase general control non-derepressible (Gcn) 5 is regulated by Cullin4-RING E3 ubiquitin ligase. J Biol Chem 2011; 286:41344-41352. [PMID: 21987584 DOI: 10.1074/jbc.m111.290767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone acetyltransferases play important roles in the regulation of chromatin structure and gene transcription. As one of the most important histone acetyltransferases, general control non-derepressible (Gcn) 5 has been linked to diverse cellular processes and tumorigenesis as well. We have recently identified a functional link between Gcn5 and acidic nucleoplasmic DNA-binding protein 1 (And-1) that is elevated in multiple cancer cells and is essential for Gcn5 protein stability. However, the mechanism by which And-1 regulates Gcn5 protein stability remains unknown. Here we show that the ablation of Cullin4-RING E3 ubiquitin ligase (CRL4) leads to the stabilization of Gcn5 in cells with depleted And-1, and Cdc10-dependent transcript 2 (Cdt2) serves as a substrate receptor protein of CRL4. Overexpression of Cdt2 reduces the Gcn5 protein levels, and CRL(Cdt2) is sufficient to ubiquitinate Gcn5 both in vivo and in vitro. And-1 stabilizes Gcn5 by impairing the interaction between Gcn5 and CRL(Cdt2) and thereby preventing Gcn5 ubiquitination and degradation. The degradation of Gcn5 is not dependent on proliferating cell nuclear antigen, an important player involved in CRL(Cdt2)-mediated protein degradation. Thus, CRL(Cdt2) and And-1 play an essential role in the regulation of Gcn5 protein stability. This study provides us with the mechanistic basis to develop alternative approaches to inhibit Gcn5 activity for cancer therapy.
Collapse
Affiliation(s)
- Yongming Li
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Aimee Jaramillo-Lambert
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Jing Hao
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Yi Yang
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037.
| |
Collapse
|
21
|
Abstract
Calcific aortic valve stenosis (CAVS) is a major health problem facing aging societies. The identification of osteoblast-like and osteoclast-like cells in human tissue has led to a major paradigm shift in the field. CAVS was thought to be a passive, degenerative process, whereas now the progression of calcification in CAVS is considered to be actively regulated. Mechanistic studies examining the contributions of true ectopic osteogenesis, nonosseous calcification, and ectopic osteoblast-like cells (that appear to function differently from skeletal osteoblasts) to valvular dysfunction have been facilitated by the development of mouse models of CAVS. Recent studies also suggest that valvular fibrosis, as well as calcification, may play an important role in restricting cusp movement, and CAVS may be more appropriately viewed as a fibrocalcific disease. High-resolution echocardiography and magnetic resonance imaging have emerged as useful tools for testing the efficacy of pharmacological and genetic interventions in vivo. Key studies in humans and animals are reviewed that have shaped current paradigms in the field of CAVS, and suggest promising future areas for research.
Collapse
Affiliation(s)
- Jordan D Miller
- Department of Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
22
|
Abstract
Histone acetyltransferases (HATs) play a central role in the modification of chromatin as well as in pathogenesis of a broad set of diseases including cancers. Gcn5 is the first identified transcription-related histone acetyltransferase (HAT) that has been implicated in the regulation of diverse cellular functions. However, how Gcn5 proteins are regulated remains largely unknown. Here we show that And-1 (a HMG domain-containing protein) has remarkable capability to regulate the stability of Gcn5 proteins and thereby histone H3 acetylation. We find that And-1 forms a complex with both histone H3 and Gcn5. Downregulation of And-1 results in Gcn5 degradation, leading to the reduction of H3K9 and H3K56 acetylation. And-1 overexpression stabilizes Gcn5 through protein-protein interactions in vivo. Furthermore, And-1 expression is increased in cancer cells in a manner correlating with increased Gcn5 and H3K9Ac and H3K56Ac. Thus, our data reveal not only a functional link between Gcn5 and And-1 that is essential to regulate Gcn5 protein stability and histone H3 acetylation, but also a potential role of And-1 in cancer.
Collapse
|
23
|
Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci U S A 2011; 108:10620-5. [PMID: 21673141 DOI: 10.1073/pnas.1019735108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent work has identified several posttranslational modifications (PTMs) on chromatin-remodeling complexes. Compared with our understanding of histone PTMs, significantly less is known about the functions of PTMs on remodeling complexes, because identification of their specific roles often is hindered by the presence of redundant pathways. Remodels the Structure of Chromatin (RSC) is an essential, multifunctional ATP-dependent chromatin-remodeling enzyme of Saccharomyces cerevisiae that preferentially binds acetylated nucleosomes. RSC is itself acetylated by Gcn5 on lysine 25 (K25) of its Rsc4 subunit, adjacent to two tandem bromodomains. It has been shown that an intramolecular interaction between the acetylation mark and the proximal bromodomain inhibits binding of the second bromodomain to acetylated histone H3 tails. We report here that acetylation does not significantly alter the catalytic activity of RSC or its ability to recognize histone H3-acetylated nucleosomes preferentially in vitro. However, we find that Rsc4 acetylation is crucial for resistance to DNA damage in vivo. Epistatic miniarray profiling of the rsc4-K25R mutant reveals an interaction with mutants in the INO80 complex, a mediator of DNA damage and replication stress tolerance. In the absence of a core INO80 subunit, rsc4-K25R mutants display sensitivity to hydroxyurea and delayed S-phase progression under DNA damage. Thus, Rsc4 helps promote resistance to replication stress, and its single acetylation mark regulates this function. These studies offer an example of acetylation of a chromatin-remodeling enzyme controlling a biological output of the system rather than regulating its core enzymatic properties.
Collapse
|
24
|
Albaugh BN, Arnold KM, Lee S, Denu JM. Autoacetylation of the histone acetyltransferase Rtt109. J Biol Chem 2011; 286:24694-701. [PMID: 21606491 DOI: 10.1074/jbc.m111.251579] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rtt109 is a yeast histone acetyltransferase (HAT) that associates with histone chaperones Asf1 and Vps75 to acetylate H3K56, H3K9, and H3K27 and is important in DNA replication and maintaining genomic integrity. Recently, mass spectrometry and structural studies of Rtt109 have shown that active site residue Lys-290 is acetylated. However, the functional role of this modification and how the acetyl group is added to Lys-290 was unclear. Here, we examined the mechanism of Lys-290 acetylation and found that Rtt109 catalyzes intramolecular autoacetylation of Lys-290 ∼200-times slower than H3 acetylation. Deacetylated Rtt109 was prepared by reacting with a sirtuin protein deacetylase, producing an enzyme with negligible HAT activity. Autoacetylation of Rtt109 restored full HAT activity, indicating that autoacetylation is necessary for HAT activity and is a fully reversible process. To dissect the mechanism of activation, biochemical, and kinetic analyses were performed with Lys-290 variants of the Rtt109-Vps75 complex. We found that autoacetylation of Lys-290 increases the binding affinity for acetyl-CoA and enhances the rate of acetyl-transfer onto histone substrates. This study represents the first detailed investigation of a HAT enzyme regulated by single-site intramolecular autoacetylation.
Collapse
Affiliation(s)
- Brittany N Albaugh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | | | | | | |
Collapse
|