1
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
2
|
Cimini D. Twenty years of merotelic kinetochore attachments: a historical perspective. Chromosome Res 2023; 31:18. [PMID: 37466740 PMCID: PMC10411636 DOI: 10.1007/s10577-023-09727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Micronuclei, small DNA-containing structures separate from the main nucleus, were used for decades as an indicator of genotoxic damage. Micronuclei containing whole chromosomes were considered a biomarker of aneuploidy and were believed to form, upon mitotic exit, from chromosomes that lagged behind in anaphase as all other chromosomes segregated to the poles of the mitotic spindle. However, the mechanism responsible for inducing anaphase lagging chromosomes remained unknown until just over twenty years ago. Here, I summarize what preceded and what followed this discovery, highlighting some of the open questions and opportunities for future investigation.
Collapse
Affiliation(s)
- Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
3
|
Cipak L, Selicky T, Jurcik J, Cipakova I, Osadska M, Lukacova V, Barath P, Gregan J. Tandem affinity purification protocol for isolation of protein complexes from Schizosaccharomyces pombe. STAR Protoc 2022; 3:101137. [PMID: 35128479 PMCID: PMC8808283 DOI: 10.1016/j.xpro.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Many cellular processes require the activities of complex molecular machines composed of several protein subunits. Insights into these systems can be gained by isolation of protein complexes followed by in vitro analyses determining the identity, posttranslational modifications, and interactions among proteins. Here, we present a protocol for tandem affinity purification (TAP) of protein complexes from the fission yeast Schizosaccharomyces pombe. The protocol employs cells expressing C-terminally TAP-tagged proteins and is suitable for the analysis of purified proteins by mass spectrometry. For complete information on the use and execution of this protocol, please refer to Cipakova et al. (2019).
Collapse
Affiliation(s)
- Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Tomas Selicky
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Michaela Osadska
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | | | - Peter Barath
- Medirex Group Academy, Novozamocka 67, 949 05 Nitra, Slovakia
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Juraj Gregan
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, 3430 Tulln an der Donau, Austria
| |
Collapse
|
4
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
5
|
Plowman R, Singh N, Tromer EC, Payan A, Duro E, Spanos C, Rappsilber J, Snel B, Kops GJPL, Corbett KD, Marston AL. The molecular basis of monopolin recruitment to the kinetochore. Chromosoma 2019; 128:331-354. [PMID: 31037469 PMCID: PMC6823300 DOI: 10.1007/s00412-019-00700-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
The monopolin complex is a multifunctional molecular crosslinker, which in S. pombe binds and organises mitotic kinetochores to prevent aberrant kinetochore-microtubule interactions. In the budding yeast S. cerevisiae, whose kinetochores bind a single microtubule, the monopolin complex crosslinks and mono-orients sister kinetochores in meiosis I, enabling the biorientation and segregation of homologs. Here, we show that both the monopolin complex subunit Csm1 and its binding site on the kinetochore protein Dsn1 are broadly distributed throughout eukaryotes, suggesting a conserved role in kinetochore organisation and function. We find that budding yeast Csm1 binds two conserved motifs in Dsn1, one (termed Box 1) representing the ancestral, widely conserved monopolin binding motif and a second (termed Box 2-3) with a likely role in enforcing specificity of sister kinetochore crosslinking. We find that Box 1 and Box 2-3 bind the same conserved hydrophobic cavity on Csm1, suggesting competition or handoff between these motifs. Using structure-based mutants, we also find that both Box 1 and Box 2-3 are critical for monopolin function in meiosis. We identify two conserved serine residues in Box 2-3 that are phosphorylated in meiosis and whose mutation to aspartate stabilises Csm1-Dsn1 binding, suggesting that regulated phosphorylation of these residues may play a role in sister kinetochore crosslinking specificity. Overall, our results reveal the monopolin complex as a broadly conserved kinetochore organiser in eukaryotes, which budding yeast have co-opted to mediate sister kinetochore crosslinking through the addition of a second, regulatable monopolin binding interface.
Collapse
Affiliation(s)
- Rebecca Plowman
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Namit Singh
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Synthorx Inc., 11099 North Torrey Pines Road, Suite 290, La Jolla, CA, 92037, USA
| | - Eelco C Tromer
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Angel Payan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Chemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eris Duro
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.,Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Adele L Marston
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
6
|
Singh N, Corbett KD. The budding-yeast RWD protein Csm1 scaffolds diverse protein complexes through a conserved structural mechanism. Protein Sci 2018; 27:2094-2100. [PMID: 30252178 DOI: 10.1002/pro.3515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/06/2022]
Abstract
RWD domains mediate protein-protein interactions in a variety of pathways in eukaryotes. In budding yeast, the RWD domain protein Csm1 is particularly versatile, assembling key complexes in the nucleolus and at meiotic kinetochores through multiple protein interaction surfaces. Here, we reveal a third functional context for Csm1 by identifying a new Csm1-interacting protein, Dse3. We show that Dse3 interacts with Csm1 in a structurally equivalent manner to its known binding partners Mam1 and Ulp2, despite these three proteins' lack of overall sequence homology. We theorize that the unique "clamp" structure of Csm1 and the loose sequence requirements for Csm1 binding have led to its incorporation into at least three different structural/signaling pathways in budding yeast.
Collapse
Affiliation(s)
- Namit Singh
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, 92093
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, 92093.,Department of Chemistry, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
7
|
Klemm AH, Bosilj A, Gluncˇic M, Pavin N, Tolic IM. Metaphase kinetochore movements are regulated by kinesin-8 motors and microtubule dynamic instability. Mol Biol Cell 2018; 29:1332-1345. [PMID: 29851559 PMCID: PMC5994901 DOI: 10.1091/mbc.e17-11-0667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.
Collapse
Affiliation(s)
- Anna H Klemm
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Matko Gluncˇic
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva M Tolic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Division of Molecular Biology, Rud¯er Boškovic´ Institute, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Milas A, Jagrić M, Martinčić J, Tolić IM. Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells. Methods Cell Biol 2018; 145:191-215. [DOI: 10.1016/bs.mcb.2018.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Salas-Pino S, Gallardo P, Barrales RR, Braun S, Daga RR. The fission yeast nucleoporin Alm1 is required for proteasomal degradation of kinetochore components. J Cell Biol 2017; 216:3591-3608. [PMID: 28974540 PMCID: PMC5674884 DOI: 10.1083/jcb.201612194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/28/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
TPR nucleoporins form the nuclear pore complex basket. The fission yeast TPR Alm1 is required for localization of the proteasome to the nuclear envelope, which is in turn required for kinetochore homeostasis and proper chromosome segregation. Kinetochores (KTs) are large multiprotein complexes that constitute the interface between centromeric chromatin and the mitotic spindle during chromosome segregation. In spite of their essential role, little is known about how centromeres and KTs are assembled and how their precise stoichiometry is regulated. In this study, we show that the nuclear pore basket component Alm1 is required to maintain both the proteasome and its anchor, Cut8, at the nuclear envelope, which in turn regulates proteostasis of certain inner KT components. Consistently, alm1-deleted cells show increased levels of KT proteins, including CENP-CCnp3, spindle assembly checkpoint activation, and chromosome segregation defects. Our data demonstrate a novel function of the nucleoporin Alm1 in proteasome localization required for KT homeostasis.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| | - Paola Gallardo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| | - Ramón R Barrales
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martiensried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martiensried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| |
Collapse
|
10
|
Li T, Mary H, Grosjean M, Fouchard J, Cabello S, Reyes C, Tournier S, Gachet Y. MAARS: a novel high-content acquisition software for the analysis of mitotic defects in fission yeast. Mol Biol Cell 2017; 28:1601-1611. [PMID: 28450455 PMCID: PMC5469604 DOI: 10.1091/mbc.e16-10-0723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Faithful segregation of chromosomes during cell division relies on multiple processes such as chromosome attachment and correct spindle positioning. Yet mitotic progression is defined by multiple parameters, which need to be quantitatively evaluated. To study the spatiotemporal control of mitotic progression, we developed a high-content analysis (HCA) approach that combines automated fluorescence microscopy with real-time quantitative image analysis and allows the unbiased acquisition of multiparametric data at the single-cell level for hundreds of cells simultaneously. The Mitotic Analysis and Recording System (MAARS) provides automatic and quantitative single-cell analysis of mitotic progression on an open-source platform. It can be used to analyze specific characteristics such as cell shape, cell size, metaphase/anaphase delays, and mitotic abnormalities including spindle mispositioning, spindle elongation defects, and chromosome segregation defects. Using this HCA approach, we were able to visualize rare and unexpected events of error correction during anaphase in wild-type or mutant cells. Our study illustrates that such an expert system of mitotic progression is able to highlight the complexity of the mechanisms required to prevent chromosome loss during cell division.
Collapse
Affiliation(s)
- Tong Li
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Hadrien Mary
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Marie Grosjean
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Jonathan Fouchard
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Simon Cabello
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Céline Reyes
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Sylvie Tournier
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Yannick Gachet
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| |
Collapse
|
11
|
Buđa R, Vukušić K, Tolić IM. Dissection and characterization of microtubule bundles in the mitotic spindle using femtosecond laser ablation. Methods Cell Biol 2017; 139:81-101. [PMID: 28215341 DOI: 10.1016/bs.mcb.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mitotic spindle is a highly organized and dynamic structure required for segregation of the genetic material into two daughter cells. Although most of the individual players involved in building the spindle have been characterized in vitro, a general understanding of how all of the spindle players act together in vivo is still missing. Hence, in recent years, experiments have focused on introducing mechanical perturbations of the spindle on a micron scale, thereby providing insight into its function and organization, as well as into forces acting in the spindle. Among different types of mechanical perturbations, optical ones are more flexible, less invasive, and more precise than other approaches. In this chapter, we describe a detailed protocol for cutting the microtubule bundles in human cells using a near-infrared femtosecond laser. This type of laser microsurgery provides the ability to precisely sever a single microtubule bundle while preserving spindle integrity and dynamics. Furthermore, we describe quantitative measurements obtained from the response of a severed microtubule bundle to laser ablation, which reveal the structure and function of individual parts of the spindle, such as the bridging fiber connecting sister k-fibers. Finally, the method described here can be easily combined with other quantitative techniques to address the complexity of the spindle.
Collapse
Affiliation(s)
- R Buđa
- Ruđer Bošković Institute, Zagreb, Croatia
| | - K Vukušić
- Ruđer Bošković Institute, Zagreb, Croatia
| | - I M Tolić
- Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
12
|
Ye Q, Ur SN, Su TY, Corbett KD. Structure of the Saccharomyces cerevisiae Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator. EMBO J 2016; 35:2139-2151. [PMID: 27491543 DOI: 10.15252/embj.201694082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/20/2016] [Indexed: 11/09/2022] Open
Abstract
In budding yeast, the monopolin complex mediates sister kinetochore cross-linking and co-orientation in meiosis I. The CK1δ kinase Hrr25 is critical for sister kinetochore co-orientation, but its roles are not well understood. Here, we present the structures of Hrr25 and its complex with the monopolin subunit Mam1. Hrr25 possesses a "central domain" that packs tightly against the kinase C-lobe, adjacent to the binding site for Mam1. Together, the Hrr25 central domain and Mam1 form a novel, contiguous embellishment to the Hrr25 kinase domain that affects Hrr25 conformational dynamics and enzyme kinetics. Mam1 binds a hydrophobic surface on the Hrr25 N-lobe that is conserved in CK1δ-family kinases, suggesting a role for this surface in recruitment and/or regulation of these enzymes throughout eukaryotes. Finally, using purified proteins, we find that Hrr25 phosphorylates the kinetochore receptor for monopolin, Dsn1. Together with our new structural insights into the fully assembled monopolin complex, this finding suggests that tightly localized Hrr25 activity modulates monopolin complex-kinetochore interactions through phosphorylation of both kinetochore and monopolin complex components.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Ludwig Institute for Cancer Research, San Diego Branch, San Diego, La Jolla, CA, USA
| | - Sarah N Ur
- Ludwig Institute for Cancer Research, San Diego Branch, San Diego, La Jolla, CA, USA
| | - Tiffany Y Su
- Ludwig Institute for Cancer Research, San Diego Branch, San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, San Diego, La Jolla, CA, USA Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Cojoc G, Roscioli E, Zhang L, García-Ulloa A, Shah JV, Berns MW, Pavin N, Cimini D, Tolić IM, Gregan J. Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 2016; 212:767-76. [PMID: 27002163 PMCID: PMC4810299 DOI: 10.1083/jcb.201506011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/25/2016] [Indexed: 11/29/2022] Open
Abstract
Accurate chromosome segregation depends on proper kinetochore-microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response of the kinetochore from its length change. In both mammalian PtK1 cells and in the fission yeast Schizosaccharomyces pombe, kinetochores shortened after microtubule severing. Interestingly, the inner kinetochore-centromere relaxed faster than the outer kinetochore. Whereas in fission yeast all kinetochores relaxed to a similar length, in PtK1 cells the more stretched kinetochores remained more stretched. Simple models suggest that these differences arise because the mechanical structure of the mammalian kinetochore is more complex. Our study establishes merotelic kinetochores as an experimental model for studying the mechanical response of the kinetochore in live cells and reveals a viscoelastic behavior of the kinetochore that is conserved in yeast and mammalian cells.
Collapse
Affiliation(s)
- Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emanuele Roscioli
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Lijuan Zhang
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alfonso García-Ulloa
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Michael W Berns
- Beckman Laser Institute and University of California, Irvine, Irvine, CA 92612
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
14
|
Cabello S, Gachet Y, Tournier S. Cutting edge science: Laser surgery illuminates viscoelasticity of merotelic kinetochores. J Cell Biol 2016; 212:747-9. [PMID: 27002164 PMCID: PMC4810310 DOI: 10.1083/jcb.201603008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence in eukaryotic cells suggests that mechanical forces are essential for building a robust mitotic apparatus and correcting inappropriate chromosome attachments. In this issue, Cojoc et al. (2016. J. Cell Biol., http://dx.doi.org/10.1083/jcb.201506011) use laser microsurgery in vivo to measure and study the viscoelastic properties of kinetochores.
Collapse
Affiliation(s)
- Simon Cabello
- Laboratoire de Biologie Cellulaire et Moléculaire de Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Yannick Gachet
- Laboratoire de Biologie Cellulaire et Moléculaire de Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Sylvie Tournier
- Laboratoire de Biologie Cellulaire et Moléculaire de Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
15
|
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe. Genetics 2015; 201:1467-78. [PMID: 26510788 DOI: 10.1534/genetics.115.181792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.
Collapse
|
16
|
Nicolai S, Filippi S, Caputo M, Cipak L, Gregan J, Ammerer G, Frontini M, Willems D, Prantera G, Balajee AS, Proietti-De-Santis L. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB) Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics. PLoS One 2015; 10:e0128558. [PMID: 26030138 PMCID: PMC4451243 DOI: 10.1371/journal.pone.0128558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/29/2015] [Indexed: 01/19/2023] Open
Abstract
The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER) known as transcription coupled repair (TCR). CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP) technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.
Collapse
Affiliation(s)
- Serena Nicolai
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Silvia Filippi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Manuela Caputo
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Lubos Cipak
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Juraj Gregan
- Department of Genetics, Comenius University in Bratislava, Slovakia
| | - Gustav Ammerer
- Department of Biochemistry, Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge, United Kingdom
| | - Daniela Willems
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Giorgio Prantera
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Adayabalam S. Balajee
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York, 10032, United States of America
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| |
Collapse
|
17
|
Reyes C, Serrurier C, Gauthier T, Gachet Y, Tournier S. Aurora B prevents chromosome arm separation defects by promoting telomere dispersion and disjunction. ACTA ACUST UNITED AC 2015; 208:713-27. [PMID: 25778919 PMCID: PMC4362453 DOI: 10.1083/jcb.201407016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The segregation of centromeres and telomeres at mitosis is coordinated at multiple levels to prevent the formation of aneuploid cells, a phenotype frequently observed in cancer. Mitotic instability arises from chromosome segregation defects, giving rise to chromatin bridges at anaphase. Most of these defects are corrected before anaphase onset by a mechanism involving Aurora B kinase, a key regulator of mitosis in a wide range of organisms. Here, we describe a new role for Aurora B in telomere dispersion and disjunction during fission yeast mitosis. Telomere dispersion initiates in metaphase, whereas disjunction takes place in anaphase. Dispersion is promoted by the dissociation of Swi6/HP1 and cohesin Rad21 from telomeres, whereas disjunction occurs at anaphase after the phosphorylation of condensin subunit Cnd2. Strikingly, we demonstrate that deletion of Ccq1, a telomeric shelterin component, rescued cell death after Aurora inhibition by promoting the loading of condensin on chromosome arms. Our findings reveal an essential role for telomeres in chromosome arm segregation.
Collapse
Affiliation(s)
- Céline Reyes
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Céline Serrurier
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Tiphaine Gauthier
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Yannick Gachet
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Sylvie Tournier
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| |
Collapse
|
18
|
Guarino E, Cojoc G, García-Ulloa A, Tolić IM, Kearsey SE. Real-time imaging of DNA damage in yeast cells using ultra-short near-infrared pulsed laser irradiation. PLoS One 2014; 9:e113325. [PMID: 25409521 PMCID: PMC4237433 DOI: 10.1371/journal.pone.0113325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200-1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception.
Collapse
Affiliation(s)
- Estrella Guarino
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Iva M. Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Cell Death Dis 2014; 5:e1268. [PMID: 24874740 PMCID: PMC4047889 DOI: 10.1038/cddis.2014.228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/14/2014] [Indexed: 01/03/2023]
Abstract
Cockayne syndrome (CS) is a progressive developmental and neurodegenerative disorder resulting in premature death at childhood and cells derived from CS patients display DNA repair and transcriptional defects. CS is caused by mutations in csa and csb genes, and patients with csb mutation are more prevalent. A hallmark feature of CSB patients is neurodegeneration but the precise molecular cause for this defect remains enigmatic. Further, it is not clear whether the neurodegenerative condition is due to loss of CSB-mediated functions in adult neurogenesis. In this study, we examined the role of CSB in neurogenesis by using the human neural progenitor cells that have self-renewal and differentiation capabilities. In this model system, stable CSB knockdown dramatically reduced the differentiation potential of human neural progenitor cells revealing a key role for CSB in neurogenesis. Neurite outgrowth, a characteristic feature of differentiated neurons, was also greatly abolished in CSB-suppressed cells. In corroboration with this, expression of MAP2 (microtubule-associated protein 2), a crucial player in neuritogenesis, was also impaired in CSB-suppressed cells. Consistent with reduced MAP2 expression in CSB-depleted neural cells, tandem affinity purification and chromatin immunoprecipitation studies revealed a potential role for CSB in the assembly of transcription complex on MAP2 promoter. Altogether, our data led us to conclude that CSB has a crucial role in coordinated regulation of transcription and chromatin remodeling activities that are required during neurogenesis.
Collapse
|
20
|
Burrack LS, Applen Clancey SE, Chacón JM, Gardner MK, Berman J. Monopolin recruits condensin to organize centromere DNA and repetitive DNA sequences. Mol Biol Cell 2013; 24:2807-19. [PMID: 23885115 PMCID: PMC3771944 DOI: 10.1091/mbc.e13-05-0229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Higher-order structure of chromatin is essential for chromosome segregation and repetitive DNA stability. Monopolin recruits condensin to organize centromere DNA irrespective of the number of kinetochore–microtubule attachments. In addition, the role of monopolin in stabilizing repeat tracts observed in budding yeast is conserved in Candida albicans. The establishment and maintenance of higher-order structure at centromeres is essential for accurate chromosome segregation. The monopolin complex is thought to cross-link multiple kinetochore complexes to prevent merotelic attachments that result in chromosome missegregation. This model is based on structural analysis and the requirement that monopolin execute mitotic and meiotic chromosome segregation in Schizosaccharomyces pombe, which has more than one kinetochore–microtubule attachment/centromere, and co-orient sister chromatids in meiosis I in Saccharomyces cerevisiae. Recent data from S. pombe suggest an alternative possibility: that the recruitment of condensin is the primary function of monopolin. Here we test these models using the yeast Candida albicans. C. albicans cells lacking monopolin exhibit defects in chromosome segregation, increased distance between centromeres, and decreased stability of several types of repeat DNA. Of note, changing kinetochore–microtubule copy number from one to more than one kinetochore–microtubule/centromere does not alter the requirement for monopolin. Furthermore, monopolin recruits condensin to C. albicans centromeres, and overexpression of condensin suppresses chromosome segregation defects in strains lacking monopolin. We propose that the key function of monopolin is to recruit condensin in order to promote the assembly of higher-order structure at centromere and repetitive DNA.
Collapse
Affiliation(s)
- Laura S Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
21
|
Sarkar S, Shenoy RT, Dalgaard JZ, Newnham L, Hoffmann E, Millar JBA, Arumugam P. Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I. PLoS Genet 2013; 9:e1003610. [PMID: 23861669 PMCID: PMC3701701 DOI: 10.1371/journal.pgen.1003610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/20/2013] [Indexed: 01/21/2023] Open
Abstract
Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.
Collapse
Affiliation(s)
| | | | | | - Louise Newnham
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | | |
Collapse
|
22
|
Liu YT, Ma CH, Jayaram M. Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids. Nucleic Acids Res 2013; 41:4144-58. [PMID: 23423352 PMCID: PMC3627588 DOI: 10.1093/nar/gkt096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/13/2022] Open
Abstract
The 2-micron plasmid, a high copy extrachromosomal element in Saccharomyces cerevisiae, propagates itself with nearly the same stability as the chromosomes of its host. Plasmid stability is conferred by a partitioning system consisting of the plasmid-coded proteins Rep1 and Rep2 and a cis-acting locus STB. Circumstantial evidence suggests that the partitioning system couples plasmid segregation to chromosome segregation during mitosis. However, the coupling mechanism has not been elucidated. In order to probe into this question more incisively, we have characterized the segregation of a single-copy STB reporter plasmid by manipulating mitosis to force sister chromatids to co-segregate either without mother-daughter bias or with a finite daughter bias. We find that the STB plasmid sisters are tightly correlated to sister chromatids in the extents of co-segregation as well as the bias in co-segregation under these conditions. Furthermore, this correlation is abolished by delaying spindle organization or preventing cohesin assembly during a cell cycle. Normal segregation of the 2-micron plasmid has been shown to require spindle integrity and the cohesin complex. Our results are accommodated by a model in which spindle- and cohesin-dependent association of plasmid sisters with sister chromatids promotes their segregation by a hitchhiking mechanism.
Collapse
Affiliation(s)
| | | | - Makkuni Jayaram
- Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
23
|
Cipak L, Gupta S, Rajovic I, Jin QW, Anrather D, Ammerer G, McCollum D, Gregan J. Crosstalk between casein kinase II and Ste20-related kinase Nak1. Cell Cycle 2013; 12:884-8. [PMID: 23462181 PMCID: PMC3637346 DOI: 10.4161/cc.24095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the sterile 20 (Ste20) serine/threonine protein kinase was originally identified as a component of the S. cerevisiae mating pathway, it has homologs in higher eukaryotes and is part of a larger family of Ste20-like kinases. Ste20-like kinases are involved in multiple cellular processes, such as cell growth, morphogenesis, apoptosis and immune response. Carrying out such a diverse array of biological functions requires numerous regulatory inputs and outputs in the form of protein-protein interactions and post-translational modifications. Hence, a thorough knowledge of Ste20-like kinase binding partners and phosphorylation sites will be essential for understanding the various roles of these kinases. Our recent study revealed that Schizosaccharomyces pombe Nak1 (a conserved member of the GC-kinase sub-family of Ste20-like kinases) is in a complex with the leucine-rich repeat-containing protein Sog2. Here, we show a novel and unexpected interaction between the Nak1-Sog2 kinase complex and Casein kinase 2 (Cka1, Ckb1 and Ckb2) using tandem-affinity purification followed by mass spectrometric analysis. In addition, we identify unique phosphosites on Nak1, Sog2 and the catalytic subunit of casein kinase 2, Cka1. Given the conserved nature of these kinases, we expect this work will shed light on the functions of these proteins both in yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen JS, Broadus MR, McLean JR, Feoktistova A, Ren L, Gould KL. Comprehensive proteomics analysis reveals new substrates and regulators of the fission yeast clp1/cdc14 phosphatase. Mol Cell Proteomics 2013; 12:1074-86. [PMID: 23297348 DOI: 10.1074/mcp.m112.025924] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The conserved family of Cdc14 phosphatases targets cyclin-dependent kinase substrates in yeast, mediating late mitotic signaling events. To discover substrates and regulators of the Schizosaccharomyces pombe Cdc14 phosphatase Clp1, TAP-tagged Clp1, and a substrate trapping mutant (Clp1-C286S) were purified from asynchronous and mitotic (prometaphase and anaphase) cells and binding partners were identified by 2D-LC-MS/MS. Over 100 Clp1-interacting proteins were consistently identified, over 70 of these were enriched in Clp1-C286S-TAP (potential substrates) and we and others detected Cdk1 phosphorylation sites in over half (44/73) of these potential substrates. According to GO annotations, Clp1-interacting proteins are involved in many essential cellular processes including mitosis, cytokinesis, ribosome biogenesis, transcription, and trafficking among others. We confirmed association and dephosphorylation of multiple candidate substrates, including a key scaffolding component of the septation initiation network called Cdc11, an essential kinase of the conserved morphogenesis-related NDR kinase network named Shk1, and multiple Mlu1-binding factor transcriptional regulators. In addition, we identified Sal3, a nuclear β-importin, as the sole karyopherin required for Clp1 nucleoplasmic shuttling, a key mode of Cdc14 phosphatase regulation. Finally, a handful of proteins were more abundant in wild type Clp1-TAP versus Clp1-C286S-TAP, suggesting that they may directly regulate Clp1 signaling or serve as scaffolding platforms to localize Clp1 activity.
Collapse
Affiliation(s)
- Jun-Song Chen
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 1161 21 Avenue South, MCN B2309, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kerr GW, Sarkar S, Arumugam P. How to halve ploidy: lessons from budding yeast meiosis. Cell Mol Life Sci 2012; 69:3037-51. [PMID: 22481439 PMCID: PMC11114884 DOI: 10.1007/s00018-012-0974-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 11/26/2022]
Abstract
Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.
Collapse
Affiliation(s)
- Gary William Kerr
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | |
Collapse
|
26
|
Corbett KD, Harrison SC. Molecular architecture of the yeast monopolin complex. Cell Rep 2012; 1:583-9. [PMID: 22813733 PMCID: PMC3494995 DOI: 10.1016/j.celrep.2012.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/25/2012] [Accepted: 05/16/2012] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae monopolin complex directs proper chromosome segregation in meiosis I by mediating co-orientation of sister kinetochores on the meiosis I spindle. The monopolin subunits Csm1 and Lrs4 form a V-shaped complex that may directly crosslink sister kinetochores. We report here biochemical characterization of the monopolin complex subunits Mam1 and Hrr25 and of the complete four-protein monopolin complex. By purifying monopolin subcomplexes with different subunit combinations, we have determined the stoichiometry and overall architecture of the full monopolin complex. We have determined the crystal structure of Csm1 bound to a Mam1 fragment, showing how Mam1 wraps around the Csm1 dimer and alters the stoichiometry of kinetochore-protein binding by Csm1. We further show that the kinase activity of Hrr25 is altered by Mam1 binding, and we identify Hrr25 phosphorylation sites on Mam1 that may affect monopolin complex stability and/or kinetochore binding in meiosis.
Collapse
Affiliation(s)
- Kevin D Corbett
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0660, USA.
| | | |
Collapse
|
27
|
Cipak L, Hyppa RW, Smith GR, Gregan J. ATP analog-sensitive Pat1 protein kinase for synchronous fission yeast meiosis at physiological temperature. Cell Cycle 2012; 11:1626-33. [PMID: 22487684 PMCID: PMC3341230 DOI: 10.4161/cc.20052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To study meiosis, synchronous cultures are often indispensable, especially for physical analyses of DNA and proteins. A temperature-sensitive allele of the Pat1 protein kinase (pat1-114) has been widely used to induce synchronous meiosis in the fission yeast Schizosaccharomyces pombe, but pat1-114-induced meiosis differs from wild-type meiosis, and some of these abnormalities might be due to higher temperature needed to inactivate the Pat1 kinase. Here, we report an ATP analog-sensitive allele of Pat1 [Pat1(L95A), designated pat1-as2] that can be used to generate synchronous meiotic cultures at physiological temperature. In pat1-as2 meiosis, chromosomes segregate with higher fidelity, and spore viability is higher than in pat1-114 meiosis, although recombination is lower by a factor of 2–3 in these mutants than in starvation-induced pat1+ meiosis. Addition of the mat-Pc gene improved chromosome segregation and spore viability to nearly the level of starvation-induced meiosis. We conclude that pat1-as2mat-Pc cells offer synchronous meiosis with most tested properties similar to those of wild-type meiosis.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Gay G, Courtheoux T, Reyes C, Tournier S, Gachet Y. A stochastic model of kinetochore-microtubule attachment accurately describes fission yeast chromosome segregation. ACTA ACUST UNITED AC 2012; 196:757-74. [PMID: 22412019 PMCID: PMC3308688 DOI: 10.1083/jcb.201107124] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.
Collapse
Affiliation(s)
- Guillaume Gay
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la proliferation, Université de Toulouse, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|
29
|
Choi SH, McCollum D. A role for metaphase spindle elongation forces in correction of merotelic kinetochore attachments. Curr Biol 2012; 22:225-30. [PMID: 22264609 DOI: 10.1016/j.cub.2011.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/07/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022]
Abstract
During mitosis, equal segregation of chromosomes depends on proper kinetochore-microtubule attachments. Merotelic kinetochore orientation, in which a single kinetochore binds microtubules from both spindle poles [1], is a major cause of chromosome instability [2], which is commonly observed in solid tumors [3, 4]. Using the fission yeast Schizosaccharomyces pombe, we show that a proper force balance between kinesin motors on interpolar spindle microtubules is critical for correcting merotelic attachments. Inhibition of the plus-end-directed spindle elongation motors kinesin-5 (Cut7) and kinesin-6 (Klp9) reduces spindle length, tension at kinetochores, and the frequency of merotelic attachments. In contrast, merotely is increased by deletion of the minus-end-directed kinesin-14 (Klp2) or overexpression of Klp9. Also, Cdk1 regulates spindle elongation forces to promote merotelic correction by phosphorylating and inhibiting Klp9. The role of spindle elongation motors in merotelic correction is conserved, because partial inhibition of the human kinesin-5 homolog Eg5 using the drug monastrol reduces spindle length and lagging chromosome frequency in both normal (RPE-1) and tumor (CaCo-2) cells. These findings reveal unexpected links between spindle forces and correction of merotelic attachments and show that pharmacological manipulation of spindle elongation forces might be used to reduce chromosome instability in cancer cells.
Collapse
Affiliation(s)
- Sung Hugh Choi
- Department of Microbiology and Physiological Systems and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
30
|
Chen JS, Lu LX, Ohi MD, Creamer KM, English C, Partridge JF, Ohi R, Gould KL. Cdk1 phosphorylation of the kinetochore protein Nsk1 prevents error-prone chromosome segregation. ACTA ACUST UNITED AC 2011; 195:583-93. [PMID: 22065639 PMCID: PMC3257533 DOI: 10.1083/jcb.201105074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphorylation of the kinetochore component Nsk1 by Cdk1 antagonizes its localization to and function at the kinetochore and spindle during early mitosis. Cdk1 controls many aspects of mitotic chromosome behavior and spindle microtubule (MT) dynamics to ensure accurate chromosome segregation. In this paper, we characterize a new kinetochore substrate of fission yeast Cdk1, Nsk1, which promotes proper kinetochore–MT (k-MT) interactions and chromosome movements in a phosphoregulated manner. Cdk1 phosphorylation of Nsk1 antagonizes Nsk1 kinetochore and spindle localization during early mitosis. A nonphosphorylatable Nsk1 mutant binds prematurely to kinetochores and spindle, cementing improper k-MT attachments and leading to high rates of lagging chromosomes that missegregate. Accordingly, cells lacking nsk1 exhibit synthetic growth defects with mutations that disturb MT dynamics and/or kinetochore structure, and lack of proper phosphoregulation leads to even more severe defects. Intriguingly, Nsk1 is stabilized by binding directly to the dynein light chain Dlc1 independently of the dynein motor, and Nsk1–Dlc1 forms chainlike structures in vitro. Our findings establish new roles for Cdk1 and the Nsk1–Dlc1 complex in regulating the k-MT interface and chromosome segregation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cipak L, Zhang C, Kovacikova I, Rumpf C, Miadokova E, Shokat KM, Gregan J. Generation of a set of conditional analog-sensitive alleles of essential protein kinases in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2011; 10:3527-32. [PMID: 22030861 DOI: 10.4161/cc.10.20.17792] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genome of the fission yeast Schizosaccharomyces pombe encodes for 17 protein kinases that are essential for viability. Studies of the essential kinases often require the use of mutant strains carrying conditional alleles. To inactivate these kinases conditionally, we applied a recently developed chemical genetic strategy. The mutation of a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors, allowing for specific inactivation of the modified kinase. Using this approach, we constructed conditional analog-sensitive alleles of 13 essential protein kinases in the fission yeast S. pombe.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
To segregate chromosomes properly, the cell must prevent merotely, an error that occurs when a single kinetochore is attached to microtubules emanating from both spindle poles. Recent evidence suggests that cooperation between Pcs1/Mde4 and condensin complexes plays an important role in preventing merotely.
Collapse
|
33
|
Poon BP, Mekhail K. Cohesin and related coiled-coil domain-containing complexes physically and functionally connect the dots across the genome. Cell Cycle 2011; 10:2669-82. [PMID: 21822055 PMCID: PMC3219537 DOI: 10.4161/cc.10.16.17113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022] Open
Abstract
Interactions between genetic regions located across the genome maintain its three-dimensional organization and function. Recent studies point to key roles for a set of coiled-coil domain-containing complexes (cohibin, cohesin, condensin and monopolin) and related factors in the regulation of DNA-DNA connections across the genome. These connections are critical to replication, recombination, gene expression as well as chromosome segregation.
Collapse
Affiliation(s)
- Betty P.K Poon
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine; University of Toronto; Toronto, ON Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine; University of Toronto; Toronto, ON Canada
- Canada Research Chairs Program; Faculty of Medicine; University of Toronto; Toronto, ON Canada
| |
Collapse
|
34
|
Dudas A, Ahmad S, Gregan J. Sgo1 is required for co-segregation of sister chromatids during achiasmate meiosis I. Cell Cycle 2011; 10:951-5. [PMID: 21330786 DOI: 10.4161/cc.10.6.15032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.
Collapse
Affiliation(s)
- Andrej Dudas
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | | | | |
Collapse
|
35
|
Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 2011; 21:374-81. [PMID: 21306900 PMCID: PMC3117139 DOI: 10.1016/j.tcb.2011.01.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/13/2010] [Accepted: 01/07/2011] [Indexed: 01/06/2023]
Abstract
Accurate chromosome segregation depends on the proper attachment of sister kinetochores to microtubules emanating from opposite spindle poles. Merotelic kinetochore orientation is an error in which a single kinetochore is attached to microtubules emanating from both spindle poles. Despite correction mechanisms, merotelically attached kinetochores can persist until anaphase, causing chromatids to lag on the mitotic spindle and hindering their timely segregation. Recent studies showing that merotelic kinetochore attachment represents a major mechanism of aneuploidy in mitotic cells and is the primary mechanism of chromosomal instability in cancer cells have underlined the importance of studying merotely. Here, we highlight recent progress in our understanding of how cells prevent and correct merotelic kinetochore attachments.
Collapse
|