1
|
Fernandez A, Artola M, Leon S, Otegui N, Jimeno A, Serrano D, Calvo A. Cancer Vulnerabilities Through Targeting the ATR/Chk1 and ATM/Chk2 Axes in the Context of DNA Damage. Cells 2025; 14:748. [PMID: 40422251 DOI: 10.3390/cells14100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
Eliciting DNA damage in tumor cells continues to be one of the most successful strategies against cancer. This is the case for classical chemotherapy drugs and radiotherapy. In the modern era of personalized medicine, this strategy tries to identify specific vulnerabilities found in each patient's tumor, to inflict DNA damage in certain cell contexts that end up in massive cancer cell death. Cells rely on multiple DNA repair pathways to fix DNA damage, but cancer cells frequently exhibit defects in these pathways, many times being tolerant to the damage. Key vulnerabilities, such as BRCA1/BRCA2 mutations, have been exploited with PARP inhibitors, leveraging synthetic lethality to selectively kill tumor cells and improving patients' survival. In the DNA damage response (DDR) network, kinases ATM, ATR, Chk1, and Chk2 coordinate DNA repair, cell cycle arrest, and apoptosis. Inhibiting these proteins enhances tumor sensitivity to DNA-damaging therapies, especially in DDR-deficient cancers. Several small-molecule inhibitors targeting ATM/Chk2 or ATR/Chk1 are currently being tested in preclinical and/or clinical settings, showing promise in cancer models and patients. Additionally, pharmacological blockade of ATM/Chk2 and ATR/Chk1 axes enhances the effects of immunotherapy by increasing tumor immunogenicity, promoting T-cell infiltration and activating immune responses. Combining ATM/Chk2- or ATR/Chk1-targeting drugs with conventional chemotherapy, radiotherapy or immune checkpoint inhibitors offers a compelling strategy to improve treatment efficacy, overcome resistance, and enhance patients' survival in modern oncology.
Collapse
Affiliation(s)
- Anell Fernandez
- Program in Solid Tumors, CIMA, Cancer Center Clinica Universidad de Navarra (CCUN), University of Navarra, Avenida de Pio XII, 55, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maider Artola
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Sergio Leon
- Program in Solid Tumors, CIMA, Cancer Center Clinica Universidad de Navarra (CCUN), University of Navarra, Avenida de Pio XII, 55, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Nerea Otegui
- Program in Solid Tumors, CIMA, Cancer Center Clinica Universidad de Navarra (CCUN), University of Navarra, Avenida de Pio XII, 55, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Aroa Jimeno
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- Program in Solid Tumors, CIMA, Cancer Center Clinica Universidad de Navarra (CCUN), University of Navarra, Avenida de Pio XII, 55, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
- IDISNA, 31008 Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, CIMA, Cancer Center Clinica Universidad de Navarra (CCUN), University of Navarra, Avenida de Pio XII, 55, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
- IDISNA, 31008 Pamplona, Spain
| |
Collapse
|
2
|
Liu Y, Wang Y, Tan S, Shi X, Wen J, Chen D, Zhao Y, Pan W, Jia Z, Lu C, Lou G. Characterization of G2/M checkpoint classifier for personalized treatment in uterine corpus endometrial carcinoma. Cancer Cell Int 2025; 25:34. [PMID: 39920729 PMCID: PMC11806828 DOI: 10.1186/s12935-025-03667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Uterine Corpus Endometrial Carcinoma (UCEC) is a highly heterogeneous tumor, and limitations in current diagnostic methods, along with treatment resistance in some patients, pose significant challenges for managing UCEC. The excessive activation of G2/M checkpoint genes is a crucial factor affecting malignancy prognosis and promoting treatment resistance. METHODS Gene expression profiles and clinical feature data mainly came from the TCGA-UCEC cohort. Unsupervised clustering was performed to construct G2/M checkpoint (G2MC) subtypes. The differences in biological and clinical features of different subtypes were compared through survival analysis, clinical characteristics, immune infiltration, tumor mutation burden, and drug sensitivity analysis. Ultimately, an artificial neural network (ANN) and machine learning were employed to develop the G2MC subtypes classifier. RESULTS We constructed a classifier based on the overall activity of the G2/M checkpoint signaling pathway to identify patients with different risks and treatment responses, and attempted to explore potential therapeutic targets. The results showed that two G2MC subtypes have completely different G2/M checkpoint-related gene expression profiles. Compared with the subtype C2, the subtype C1 exhibited higher G2MC scores and was associated with faster disease progression, higher clinical staging, poorer pathological types, and lower therapy responsiveness of cisplatin, radiotherapy and immunotherapy. Experiments targeting the feature gene KIF23 revealed its crucial role in reducing HEC-1A sensitivity to cisplatin and radiotherapy. CONCLUSION In summary, our study developed a classifier for identifying G2MC subtypes, and this finding holds promise for advancing precision treatment strategies for UCEC.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yusi Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shu Tan
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaochen Shi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinglin Wen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dejia Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenjing Pan
- Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyang Jia
- Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunru Lu
- Department of Gynecology, Suihua Maternity and Health Care Hospital, Suihua, China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
3
|
Qian J, Liao G, Chen M, Peng RW, Yan X, Du J, Huang R, Pan M, Lin Y, Gong X, Xu G, Zheng B, Chen C, Yang Z. Advancing cancer therapy: new frontiers in targeting DNA damage response. Front Pharmacol 2024; 15:1474337. [PMID: 39372203 PMCID: PMC11449873 DOI: 10.3389/fphar.2024.1474337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Genomic instability is a core characteristic of cancer, often stemming from defects in DNA damage response (DDR) or increased replication stress. DDR defects can lead to significant genetic alterations, including changes in gene copy numbers, gene rearrangements, and mutations, which accumulate over time and drive the clonal evolution of cancer cells. However, these vulnerabilities also present opportunities for targeted therapies that exploit DDR deficiencies, potentially improving treatment efficacy and patient outcomes. The development of PARP inhibitors like Olaparib has significantly improved the treatment of cancers with DDR defects (e.g., BRCA1 or BRCA2 mutations) based on synthetic lethality. This achievement has spurred further research into identifying additional therapeutic targets within the DDR pathway. Recent progress includes the development of inhibitors targeting other key DDR components such as DNA-PK, ATM, ATR, Chk1, Chk2, and Wee1 kinases. Current research is focused on optimizing these therapies by developing predictive biomarkers for treatment response, analyzing mechanisms of resistance (both intrinsic and acquired), and exploring the potential for combining DDR-targeted therapies with chemotherapy, radiotherapy, and immunotherapy. This article provides an overview of the latest advancements in targeted anti-tumor therapies based on DDR and their implications for future cancer treatment strategies.
Collapse
Affiliation(s)
- Jiekun Qian
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Guoliang Liao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maohui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xin Yan
- Department of Cardiac Medical Center Nursing, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianting Du
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Renjie Huang
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maojie Pan
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Yuxing Lin
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Guobing Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| |
Collapse
|
4
|
Wang J, Liu Y, Wu D, Tian C, Gao J, Yang Q, Hong X, Gu F, Zhang K, Hu Y, Xu S, Liu L, Zeng Y. OTUB1 Targets CHK1 for Deubiquitination and Stabilization to Facilitate Lung Cancer Progression and Radioresistance. Int J Radiat Oncol Biol Phys 2024; 119:1222-1233. [PMID: 38266782 DOI: 10.1016/j.ijrobp.2024.01.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Radioresistance of lung cancer poses a significant challenge when it comes to the treatment of advanced, recurrent, and metastatic cases. Ovarian tumor domain ubiquitin aldehyde binding 1 (OTUB1) is a key member of the deubiquitinase OTU superfamily. This protein is involved in various cellular functions, including cell proliferation, iron death, lipid metabolism, and cytokine secretion as well as immune response processes. However, its specific role and molecular mechanism in lung cancer radioresistance remain to be clarified. METHODS AND MATERIALS The expression levels of OTUB1 in paired lung cancer tissues were determined by immunohistochemistry. In vitro and in vivo experiments were conducted to investigate the impact of OTUB1 on the growth and proliferation of lung cancer. Coimmunoprecipitation and Western blotting techniques were performed to examine the interaction between OTUB1 and CHK1. The DNA damage response was measured by comet tailing and immunofluorescence staining. KEGG pathways and Gene Ontology terms were analyzed based on RNA sequencing. RESULTS Our findings reveal a high frequency of OTUB1 overexpression, which is associated with an unfavorable prognosis in patients with lung cancer. Through comprehensive investigations, we demonstrate that OTUB1 depletion impairs the process of DNA damage repair and overcomes radioresistance. In terms of the underlying mechanism, our study uncovers that OTUB1 deubiquitinates and stabilizes CHK1, which enhances CHK1 stability, thereby regulating DNA damage and repair. Additionally, we identify CHK1 as the primary downstream effector responsible for mediating the functional effects exerted by OTUB1 specifically in lung cancer. Importantly, OTUB1 has the potential to be a valuable marker for improving the efficacy of radiation therapy for lung adenocarcinoma. CONCLUSIONS These findings unveil a novel role for OTUB1 in enhancing radioresistance by deubiquitination and stabilization of the expression of CHK1 in lung cancer and indicate that targeting OTUB1 holds great potential as an effective therapeutic approach for enhancing the efficacy of radiation therapy in lung cancer.
Collapse
Affiliation(s)
- Juanjuan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Di Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Jiaqi Gao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China.
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Vinhaes CL, Fukutani ER, Santana GC, Arriaga MB, Barreto-Duarte B, Araújo-Pereira M, Maggitti-Bezerril M, Andrade AM, Figueiredo MC, Milne GL, Rolla VC, Kristki AL, Cordeiro-Santos M, Sterling TR, Andrade BB, Queiroz AT, for the RePORT Brazil Consortium. An integrative multi-omics approach to characterize interactions between tuberculosis and diabetes mellitus. iScience 2024; 27:109135. [PMID: 38380250 PMCID: PMC10877940 DOI: 10.1016/j.isci.2024.109135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Tuberculosis-diabetes mellitus (TB-DM) is linked to a distinct inflammatory profile, which can be assessed using multi-omics analyses. Here, a machine learning algorithm was applied to multi-platform data, including cytokines and gene expression in peripheral blood and eicosanoids in urine, in a Brazilian multi-center TB cohort. There were four clinical groups: TB-DM(n = 24), TB only(n = 28), DM(HbA1c ≥ 6.5%) only(n = 11), and a control group of close TB contacts who did not have TB or DM(n = 13). After cross-validation, baseline expression or abundance of MMP-28, LTE-4, 11-dTxB2, PGDM, FBXO6, SECTM1, and LINCO2009 differentiated the four patient groups. A distinct multi-omic-derived, dimensionally reduced, signature was associated with TB, regardless of glycemic status. SECTM1 and FBXO6 mRNA levels were positively correlated with sputum acid-fast bacilli grade in TB-DM. Values of the biomarkers decreased during the course of anti-TB therapy. Our study identified several markers associated with the pathophysiology of TB-DM that could be evaluated in future mechanistic investigations.
Collapse
Affiliation(s)
- Caian L. Vinhaes
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Departamento de Infectologia, Hospital Português da Bahia, Salvador 40140-901, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Gabriel C. Santana
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
| | - María B. Arriaga
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Beatriz Barreto-Duarte
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Programa Acadêmico de Tuberculose. Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Faculdade de Medicina, Univerdidade Federal da Bahia, Salvador, Brazil
| | - Mateus Maggitti-Bezerril
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
| | - Alice M.S. Andrade
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
| | - Marina C. Figueiredo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Valeria C. Rolla
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Afrânio L. Kristki
- Programa Acadêmico de Tuberculose. Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Universidade Nilton Lins, Manaus, Brazil
| | - Timothy R. Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruno B. Andrade
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Faculdade de Medicina, Univerdidade Federal da Bahia, Salvador, Brazil
| | - Artur T.L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - for the RePORT Brazil Consortium
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Departamento de Infectologia, Hospital Português da Bahia, Salvador 40140-901, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Programa Acadêmico de Tuberculose. Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Univerdidade Federal da Bahia, Salvador, Brazil
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Universidade Nilton Lins, Manaus, Brazil
| |
Collapse
|
6
|
Tozaki Y, Aoki H, Kato R, Toriuchi K, Arame S, Inoue Y, Hayashi H, Kubota E, Kataoka H, Aoyama M. The Combination of ATM and Chk1 Inhibitors Induces Synthetic Lethality in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15030735. [PMID: 36765693 PMCID: PMC9913148 DOI: 10.3390/cancers15030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Genetic abnormalities induce the DNA damage response (DDR), which enables DNA repair at cell cycle checkpoints. Although the DDR is thought to function in preventing the onset and progression of cancer, DDR-related proteins are also thought to contribute to tumorigenesis, tumor progression, and drug resistance by preventing irreparable genomic abnormalities from inducing cell death. In the present study, the combination of ataxia telangiectasia-mutated serine/threonine kinase (ATM) and checkpoint kinase 1 (Chk1) inhibition exhibited synergistic antitumor effects and induced synergistic lethality in colorectal cancer cells at a low dose. The ATM and Chk1 inhibitors synergistically promoted the activation of cyclin-dependent kinase 1 by decreasing the phosphorylation levels of T14 and Y15. Furthermore, the combined treatment increased the number of sub-G1-stage cells, phospho-histone H2A.X-positive cells, and TdT-mediated dUTP nick-end labeling-positive cells among colon cancer cells, suggesting that the therapy induces apoptosis. Finally, the combined treatment exhibited a robust antitumor activity in syngeneic tumor model mice. These findings should contribute to the development of new treatments for colorectal cancer that directly exploit the genomic instability of cancer cells.
Collapse
Affiliation(s)
- Yuri Tozaki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Rina Kato
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Saki Arame
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Correspondence: ; Tel.: +81-52-836-3451
| |
Collapse
|
7
|
Ando K, Ohira M, Takada I, Cázares-Ordoñez V, Suenaga Y, Nagase H, Kobayashi S, Koshinaga T, Kamijo T, Makishima M, Wada S. FGFR2 loss sensitizes MYCN-amplified neuroblastoma CHP134 cells to CHK1 inhibitor-induced apoptosis. Cancer Sci 2021; 113:587-596. [PMID: 34807483 PMCID: PMC8819351 DOI: 10.1111/cas.15205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. In this study, one CHK1i‐sensitive neuroblastoma cell line, CHP134, was investigated, which characteristically carries MYCN amplification and a chromosome deletion within the 10q region. Among several cancer‐related genes in the chromosome 10q region, mRNA expression of fibroblast growth factor receptor 2 (FGFR2) was altered in CHP134 cells and associated with an unfavorable prognosis of patients with neuroblastoma. Induced expression of FGFR2 in CHP134 cells reactivated downstream MEK/ERK signaling and resulted in cells resistant to CHK1i‐mediated cell growth inhibition. Consistently, the MEK1/2 inhibitor, trametinib, potentiated CHK1 inhibitor–mediated cell death in these cells. These results suggested that FGFR2 loss might be prone to highly effective CHK1i treatment. In conclusion, extreme cellular dependency of ERK activation may imply a possible application for the MEK1/2 inhibitor, either as a single inhibitor or in combination with CHK1i in MYCN‐amplified neuroblastomas.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.,Department of Clinical Diagnostic Oncology, Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan.,Chiba Cancer Center Research Institute, Chiba, Japan.,Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Verna Cázares-Ordoñez
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | | | - Hiroki Nagase
- Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shinichi Kobayashi
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan.,Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| |
Collapse
|
8
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
9
|
Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:244-263. [PMID: 34337349 PMCID: PMC8323830 DOI: 10.20517/cdr.2020.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
- Correspondence Address: Dr. Jac A. Nickoloff, Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Ft. Collins, CO 80523-1681, USA. E-mail:
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| |
Collapse
|
10
|
Ceramella J, Iacopetta D, Barbarossa A, Caruso A, Grande F, Bonomo MG, Mariconda A, Longo P, Carmela S, Sinicropi MS. Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment. Mini Rev Med Chem 2020; 20:444-465. [PMID: 31951166 DOI: 10.2174/1389557520666200117144701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 12/11/2022]
Abstract
Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | | | | | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| | - Saturnino Carmela
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| |
Collapse
|
11
|
Sun J, Zhu Z, Li W, Shen M, Cao C, Sun Q, Guo Z, Liu L, Wu D. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:222. [PMID: 33087136 PMCID: PMC7576867 DOI: 10.1186/s13046-020-01734-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Background Radioresistance is the major obstacle in radiation therapy (RT) for hepatocellular carcinoma (HCC). Dysregulation of DNA damage response (DDR), which includes DNA repair and cell cycle checkpoints activation, leads to radioresistance and limits radiotherapy efficacy in HCC patients. However, the underlying mechanism have not been clearly understood. Methods We obtained 7 pairs of HCC tissues and corresponding non-tumor tissues, and UBE2T was identified as one of the most upregulated genes. The radioresistant role of UBE2T was examined by colony formation assays in vitro and xenograft tumor models in vivo. Comet assay, cell cycle flow cytometry and γH2AX foci measurement were used to investigate the mechanism by which UBE2T mediating DDR. Chromatin fractionation and immunofluorescence staining were used to assess cell cycle checkpoint kinase 1(CHK1) activation. Finally, we analyzed clinical data from HCC patients to verify the function of UBE2T. Results Here, we found that ubiquitin-conjugating enzyme E2T (UBE2T) was upregulated in HCC tissues, and the HCC patients with higher UBE2T levels exhibited poorer outcomes. Functional studies indicated that UBE2T increased HCC radioresistance in vitro and in vivo. Mechanistically, UBE2T-RNF8, was identified as the E2-E3 pair, physically bonded with and monoubiquitinated histone variant H2AX/γH2AX upon radiation exposure. UBE2T-regulated H2AX/γH2AX monoubiquitination facilitated phosphorylation of CHK1 for activation and CHK1 release from the chromatin to cytosol for degradation. The interruption of UBE2T-mediated monoubiquitination on H2AX/γH2AX, including E2-enzyme-deficient mutation (C86A) of UBE2T and monoubiquitination-site-deficient mutation (K119/120R) of H2AX, cannot effectively activate CHK1. Moreover, genetical and pharmacological inhibition of CHK1 impaired the radioresistant role of UBE2T in HCC. Furthermore, clinical data suggested that the HCC patients with higher UBE2T levels exhibited worse response to radiotherapy. Conclusion Our results revealed a novel role of UBE2T-mediated H2AX/γH2AX monoubiquitination on facilitating cell cycle arrest activation to provide sufficient time for radiation-induced DNA repair, thus conferring HCC radioresistance. This study indicated that disrupting UBE2T-H2AX-CHK1 pathway maybe a promising potential strategy to overcome HCC radioresistance. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01734-4.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengying Shen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qingcan Sun
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zeqin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Santangelo R, Rizzarelli E, Copani A. Role for Metallothionein-3 in the Resistance of Human U87 Glioblastoma Cells to Temozolomide. ACS OMEGA 2020; 5:17900-17907. [PMID: 32743161 PMCID: PMC7392386 DOI: 10.1021/acsomega.9b04483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Metallothioneins (MTs) are metal-binding proteins that are overexpressed in various human cancers and are thought to be associated with resistance to cytotoxic drugs. The knowledge on MT expression, regulation, and function in human gliomas is limited. We found that MT3 mRNA was highly expressed in cell lines derived from grade IV gliomas (i.e., A172 and U87 cells), as compared to grade II astrocytoma cells (i.e., 1321N1). Different from 1321N1, U87 cells were partly resistant to the alkylating drug, temozolomide (TMZ) (100 μM for 96 h), which induced a massive accumulation of U87 into the S and G2 fractions of the cell cycle but not apoptotic death. Silencing of MT3 did not significantly affect U87 cell proliferation and survival, but it delayed G1/S transition and favored the occurrence of apoptosis in TMZ-treated cells. Accordingly, the combination of MT3 silencing and TMZ treatment increased the protein levels of checkpoint kinase-1, which was ultimately responsible for the lasting G1 arrest and death of double treated U87 cells.
Collapse
Affiliation(s)
- Rosa Santangelo
- Department
of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Enrico Rizzarelli
- Department
of Chemical Sciences, University of Catania, 95125 Catania, Italy
- Institute
of Crystallography, National Council of
Research, 95125 Catania, Italy
| | - Agata Copani
- Department
of Drug Sciences, University of Catania, 95125 Catania, Italy
- Institute
of Crystallography, National Council of
Research, 95125 Catania, Italy
| |
Collapse
|
13
|
Xie L, Jia L, Qu J, Chen D, Lv Y, Li H, Zheng J. Expression and prognostic significance of the P53-related DNA damage repair proteins checkpoint kinase 1 (CHK1) and growth arrest and DNA-damage-inducible 45 alpha (GADD45A) in human oral squamous cell carcinoma. Eur J Oral Sci 2020; 128:128-135. [PMID: 32154612 DOI: 10.1111/eos.12685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
DNA damage repair is a key factor in the maintenance of cell genome stability, plays an important role in the regulation of tumour evolution, and can affect the prognosis of cancer patients. This study aimed to detect the protein expression of the DNA damage repair protein P53 and its upstream and downstream regulators, CHK1, GADD45A, and MDM2, in oral squamous cell carcinoma (OSCC), in order to analyse the association between the expression of these proteins and overall survival, and to assess their prognostic implications for OSCC patients. The expression of the above proteins was detected by immunohistochemistry in 80 human OSCC tissue samples and in non-cancerous tissue samples. Compared to that in the non-cancerous tissue, the expression of CHK1, GADD45A, and MDM2 in OSCC tissue was significantly increased. The protein expression of the tumour suppressor gene P53 was also increased. Patients with high CHK1 and MDM2 expression levels had a reduced survival time and a poor prognosis, whereas patients with high GADD45A expression levels had a good prognosis. Our results indicate that high CHK1 expression is an independent risk factor for poor OSCC prognosis, and that CHK1 may be a potential target for OSCC clinical treatment.
Collapse
Affiliation(s)
- Liping Xie
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Limin Jia
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Jinyue Qu
- Department of Stomatology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Harbin Medical University, Harbin, China
| | - Yanhong Lv
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Haixia Li
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Jinhua Zheng
- Department of Anatomy, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2020; 49:100673. [PMID: 31877405 DOI: 10.1016/j.drup.2019.100673] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy continues to be a major treatment strategy for various human malignancies. However, the frequent emergence of chemoresistance compromises chemotherapy efficacy leading to poor prognosis. Thus, overcoming drug resistance is pivotal to achieve enhanced therapy efficacy in various cancers. Although increased evidence has revealed that reduced drug uptake, increased drug efflux, drug target protein alterations, drug sequestration in organelles, enhanced drug metabolism, impaired DNA repair systems, and anti-apoptotic mechanisms, are critically involved in drug resistance, the detailed resistance mechanisms have not been fully elucidated in distinct cancers. Recently, F-box protein (FBPs), key subunits in Skp1-Cullin1-F-box protein (SCF) E3 ligase complexes, have been found to play critical roles in carcinogenesis, tumor progression, and drug resistance through degradation of their downstream substrates. Therefore, in this review, we describe the functions of FBPs that are involved in drug resistance and discuss how FBPs contribute to the development of cancer drug resistance. Furthermore, we propose that targeting FBPs might be a promising strategy to overcome drug resistance and achieve better treatment outcome in cancer patients. Lastly, we state the limitations and challenges of using FBPs to overcome chemotherapeutic drug resistance in various cancers.
Collapse
Affiliation(s)
- Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
15
|
Zou X, Zhu C, Zhang L, Zhang Y, Fu F, Chen Y, Zhou J. MicroRNA-708 Suppresses Cell Proliferation and Enhances Chemosensitivity of Cervical Cancer Cells to cDDP by Negatively Targeting Timeless. Onco Targets Ther 2020; 13:225-235. [PMID: 32021269 PMCID: PMC6966141 DOI: 10.2147/ott.s227015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose Cervical cancer is the fourth most common cause of cancer-associated mortality in women worldwide. Previous studies have reported that microRNAs (miRNAs) are involved in multiple biological aspects of cancer progression by regulating gene expression. Here, we investigated the role of microRNA-708 (miR-708) in cervical cancer. Methods The expression levels of miR-708 in cervical cancer tissues and paired-normal cervical tissues were tested by quantitative polymerase chain reaction (qPCR). The interaction between miR-708 and Timeless was identified by bioinformatics method, dual-luciferase reporter assay, and Western blotting. The effects of over-expression of miR-708 on cell proliferation and cisplatin sensitivity were determined by Cell Counting Kit-8 (CCK-8) and colony formation assay. Cell cycle and apoptosis were analyzed by flow cytometry. DNA damage induced by over-expression of miR-708 was determined by comet assay. Expression levels of the genes involved in repair of DNA damage were analyzed by Western blotting. Results MiR-708 was down-regulated in cervical cancer tissues compared with paired-normal cervical tissues. By bioinformatics method, Western blotting, and dual-luciferase reporter assay, we found that Timeless was a direct target of miR-708. Furthermore, miR-708 suppressed cellular viability, colony formation, promoted apoptosis, and induced DNA damage levels. MiR-708 also enhanced chemosensitivity of cervical cancer cells to cDDP via impairing the ATR/CHK1 signaling pathway. Conclusion We conclude that miR-708 suppresses cell proliferation, facilitates cisplatin efficacy, and impairs DNA repair pathway in cervical cancer cells. These results demonstrate that miR-708 might be a candidate therapeutic target for future cervical cancer therapy.
Collapse
Affiliation(s)
- Xinwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Chenjie Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fengqing Fu
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
16
|
Co-Inhibition of the DNA Damage Response and CHK1 Enhances Apoptosis of Neuroblastoma Cells. Int J Mol Sci 2019; 20:ijms20153700. [PMID: 31362335 PMCID: PMC6696225 DOI: 10.3390/ijms20153700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
Checkpoint kinase 1 (CHK1) is a central mediator of the DNA damage response (DDR) at the S and G2/M cell cycle checkpoints, and plays a crucial role in preserving genomic integrity. CHK1 overexpression is thought to contribute to cancer aggressiveness, and several selective inhibitors of this kinase are in clinical development for various cancers, including neuroblastoma (NB). Here, we examined the sensitivity of MYCN-amplified NB cell lines to the CHK1 inhibitor PF-477736 and explored mechanisms to increase its efficacy. PF-477736 treatment of two sensitive NB cell lines, SMS-SAN and CHP134, increased the expression of two pro-apoptotic proteins, BAX and PUMA, providing a mechanism for the effect of the CHK1 inhibitor. In contrast, in NB-39-nu and SK-N-BE cell lines, PF-477736 induced DNA double-strand breaks and activated the ataxia telangiectasia mutated serine/threonine kinase (ATM)-p53-p21 axis of the DDR pathway, which rendered the cells relatively insensitive to the antiproliferative effects of the CHK1 inhibitor. Interestingly, combined treatment with PF-477736 and the ATM inhibitor Ku55933 overcame the insensitivity of NB-39-nu and SK-N-BE cells to CHK1 inhibition and induced mitotic cell death. Similarly, co-treatment with PF-477736 and NU7441, a pharmacological inhibitor of DNA-PK, which is also essential for the DDR pathway, rendered the cells sensitive to CHK1 inhibition. Taken together, our results suggest that synthetic lethality between inhibitors of CHK1 and the DDR drives G2/M checkpoint abrogation and could be a novel potential therapeutic strategy for NB.
Collapse
|
17
|
Tong L, Song P, Jiang K, Xu L, Jin T, Wang P, Hu X, Fang S, Gao A, Zhou Y, Liu T, Li J, Hu Y. Discovery of (R)-5-((5-(1-methyl-1H-pyrazol-4-yl)-4-(methylamino)pyrimidin-2-yl)amino)-3-(piperidin-3-yloxy)picolinonitrile, a novel CHK1 inhibitor for hematologic malignancies. Eur J Med Chem 2019; 173:44-62. [DOI: 10.1016/j.ejmech.2019.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/17/2022]
|
18
|
Cai L, Li J, Zhao J, Guo Y, Xie M, Zhang X, Wang L, Tian H, Li A, Li Q, Miao Y. Fbxo6 confers drug-sensitization to cisplatin via inhibiting the activation of Chk1 in non-small cell lung cancer. FEBS Lett 2019; 593:1827-1836. [PMID: 31140586 DOI: 10.1002/1873-3468.13461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Fbxo6 (also called FBG2) is a critical component of the evolutionarily conserved ubiquitin-protein ligase complex SCF (Skp1/Cdc53-Cullin1/F-box). Previous studies have demonstrated that Fbxo6 facilitates the growth and proliferation but inhibits the apoptosis and invasion of gastric cancer cells. However, the role of Fbxo6 in non-small cell lung cancer (NSCLC) is still not clear. Our results revealed that Fbxo6 expression is correlated with early TNM stage and favorable overall survival of NSCLC patients. Further in vitro experiments showed that Fbxo6 inhibits proliferation, facilitates apoptosis and promotes the sensitivity of cisplatin via decreased expression and phosphorylation of Chk1. Thus, Fbxo6 may be a useful prognosis marker and therapeutic target to overcome the chemoresistance of cisplatin-based chemotherapy agents in NSCLC patients.
Collapse
Affiliation(s)
- Lin Cai
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Jingduo Li
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Yingxue Guo
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Menghua Xie
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Hua Tian
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and the Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Abbas HHK, Alhamoudi KMH, Evans MD, Jones GDD, Foster SS. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good? BMC Cancer 2018; 18:423. [PMID: 29661172 PMCID: PMC5903006 DOI: 10.1186/s12885-018-4332-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Methods Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. Results MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. Conclusions MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution. Electronic supplementary material The online version of this article (10.1186/s12885-018-4332-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein H K Abbas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.,Department of Pathology and Forensic Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Kheloud M H Alhamoudi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
| | - Mark D Evans
- Faculty of Health and Life Sciences, De Montfort University, Leicester, Leicestershire, LE1 9BH, UK
| | - George D D Jones
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| | - Steven S Foster
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| |
Collapse
|
20
|
Johnsen JI, Dyberg C, Fransson S, Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res 2018; 131:164-176. [PMID: 29466695 DOI: 10.1016/j.phrs.2018.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden.
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Pathology and Genetics, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res 2017; 806:64-74. [PMID: 28779875 DOI: 10.1016/j.mrfmmm.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways.
Collapse
|
22
|
Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 2017; 6:S875-S891. [PMID: 30574452 PMCID: PMC6298755 DOI: 10.21037/tcr.2017.06.02] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy is an effective tool in the fight against cancer. It is non-invasive and painless, and with advanced tumor imaging and beam control systems, radiation can be delivered to patients safely, generally with minor or no adverse side effects, accounting for its increasing use against a broad range of tumors. Tumors and normal cells respond to radiation-induced DNA damage by activating a complex network of DNA damage signaling and repair pathways that determine cell fate including survival, death, and genome stability. DNA damage response (DDR) proteins represent excellent targets to augment radiotherapy, and many agents that inhibit key response proteins are being combined with radiation and genotoxic chemotherapy in clinical trials. This review focuses on how insights into molecular mechanisms of DDR pathways are translated to small animal preclinical studies, to clinical studies of naturally occurring tumors in companion animals, and finally to human clinical trials. Companion animal studies, under the umbrella of comparative oncology, have played key roles in the development of clinical radiotherapy throughout its >100-year history. There is growing appreciation that rapid translation of basic knowledge of DNA damage and repair systems to improved radiotherapy practice requires a comprehensive approach that embraces the full spectrum of cancer research, with companion animal clinical trials representing a critical bridge between small animal preclinical studies, and human clinical trials.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P Allen
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Susan M LaRue
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Kim KS, Choi KJ, Bae S. A novel Chk1-binding peptide that enhances genotoxic sensitivity through the cellular redistribution of nuclear Chk1. Int J Mol Med 2016; 38:1490-1498. [PMID: 28025997 PMCID: PMC5065296 DOI: 10.3892/ijmm.2016.2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Since checkpoint kinase 1 (Chk1) is an essential factor for cell viability following DNA damage, the inhibition of Chk1 has been a major focus of pharmaceutical development to enhance the sensitivity of tumor cells to chemo- and radiotherapy that damage DNA. However, due to the off-target effects of conventional Chk1-targeting strategies and the toxicity of Chk1 inhibitors, alternative strategies are required to target Chk1. To facilitate such efforts, in this study, we identified a specific Chk1-binding 12-mer peptide from the screening of a phage display library and characterized the peptide in terms of cellular cytotoxicity, and in terms of its effect on Chk1 activity and sensitivity to genotoxic agents. This peptide, named N-terminal Chk1-binding peptide (Chk1‑NP), bound the kinase domain of Chk1. Simulation of the binding revealed that the very N-terminus of the Chk1 kinase domain is the potential peptide binding site. Of note, the polyarginine-mediated internalization of Chk1‑NP redistributed nuclear Chk1 with a prominent decrease in the nucleus in the absence of DNA damage. Treatment with Chk1‑NP peptide alone decreased the viability of p53-defective HeLa cells, but not that of p53-functional NCI-H460 cells under normal conditions. The treatment of HeLa or NCI-H460 cells with the peptide significantly enhanced radiation sensitivity following ionizing radiation (IR) with a greater enhancement observed in HeLa cells. Moreover, the IR-induced destabilization of Chk1 was aggravated by treatment with Chk1‑NP. Therefore, the decreased nuclear localization and protein levels of Chk1 seem to be responsible for the enhanced cancer cell killing following combined treatment with IR and Chk1‑NP. The approach using the specific Chk1-binding peptide may facilitate the mechanistic understanding and potential modulation of Chk1 activities and may provide a novel rationale for the development of specific Chk1-targeting agents.
Collapse
Affiliation(s)
- Kwang Seok Kim
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyu Jin Choi
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Sangwoo Bae
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| |
Collapse
|
24
|
DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer. Biomolecules 2015; 5:3204-59. [PMID: 26610585 PMCID: PMC4693276 DOI: 10.3390/biom5043204] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.
Collapse
|
25
|
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 2015; 36:3-17. [PMID: 26416465 DOI: 10.1016/j.semcancer.2015.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Suzanne J Randle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
26
|
Baldeyron C, Brisson A, Tesson B, Némati F, Koundrioukoff S, Saliba E, De Koning L, Martel E, Ye M, Rigaill G, Meseure D, Nicolas A, Gentien D, Decaudin D, Debatisse M, Depil S, Cruzalegui F, Pierré A, Roman-Roman S, Tucker GC, Dubois T. TIPIN depletion leads to apoptosis in breast cancer cells. Mol Oncol 2015; 9:1580-98. [PMID: 26004086 DOI: 10.1016/j.molonc.2015.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/10/2015] [Accepted: 04/23/2015] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the breast cancer subgroup with the most aggressive clinical behavior. Alternatives to conventional chemotherapy are required to improve the survival of TNBC patients. Gene-expression analyses for different breast cancer subtypes revealed significant overexpression of the Timeless-interacting protein (TIPIN), which is involved in the stability of DNA replication forks, in the highly proliferative associated TNBC samples. Immunohistochemistry analysis showed higher expression of TIPIN in the most proliferative and aggressive breast cancer subtypes including TNBC, and no TIPIN expression in healthy breast tissues. The depletion of TIPIN by RNA interference impairs the proliferation of both human breast cancer and non-tumorigenic cell lines. However, this effect may be specifically associated with apoptosis in breast cancer cells. TIPIN silencing results in higher levels of single-stranded DNA (ssDNA), indicative of replicative stress (RS), in TNBC compared to non-tumorigenic cells. Upon TIPIN depletion, the speed of DNA replication fork was significantly decreased in all BC cells. However, TIPIN-depleted TNBC cells are unable to fire additional replication origins in response to RS and therefore undergo apoptosis. TIPIN knockdown in TNBC cells decreases tumorigenicity in vitro and delays tumor growth in vivo. Our findings suggest that TIPIN is important for the maintenance of DNA replication and represents a potential treatment target for the worst prognosis associated breast cancers, such as TNBC.
Collapse
Affiliation(s)
- Céline Baldeyron
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Amélie Brisson
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Bruno Tesson
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France; INSERM, U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Biology of Cancer, Paris, F-75248, France; Mines ParisTech, Fontainebleau, F-77300, France
| | - Fariba Némati
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Laboratory of Preclinical Investigation, Department of Translational Research, Paris, F-75248, France
| | - Stéphane Koundrioukoff
- Institut Curie, Centre de Recherche, Paris, F-75248, France; CNRS, UMR 3244, Paris, F-75248, France; Université Pierre and Marie Curie Paris VI, Paris, F-75005, France
| | - Elie Saliba
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Leanne De Koning
- Institut Curie, Centre de Recherche, Paris, F-75248, France; RPPA Platform, Department of Translational Research, Paris, F-75248, France
| | - Elise Martel
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - Mengliang Ye
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Guillem Rigaill
- Unité de Recherche en Génomique Végétale, INRA-CNRS-Université d'Evry Val d'Essonne, Evry, F-91057, France
| | - Didier Meseure
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - André Nicolas
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - David Gentien
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Platform of Molecular Biology Facilities, Department of Translational Research, Paris, F-75248, France
| | - Didier Decaudin
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Laboratory of Preclinical Investigation, Department of Translational Research, Paris, F-75248, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, Paris, F-75248, France; CNRS, UMR 3244, Paris, F-75248, France; Université Pierre and Marie Curie Paris VI, Paris, F-75005, France
| | - Stéphane Depil
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Francisco Cruzalegui
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Alain Pierré
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Sergio Roman-Roman
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Gordon C Tucker
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Thierry Dubois
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France.
| |
Collapse
|
27
|
GONG JIAN, CAO JUAN, LIU GUINAN, HUO JIRONG. Function and mechanism of F-box proteins in gastric cancer (Review). Int J Oncol 2015; 47:43-50. [DOI: 10.3892/ijo.2015.2983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
|
28
|
Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response. Br J Cancer 2015; 112:901-11. [PMID: 25688741 PMCID: PMC4453942 DOI: 10.1038/bjc.2014.576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/16/2023] Open
Abstract
Background: Checkpoint kinase1 (CHK1), which is a key component of DNA-damage-activated checkpoint signalling response, may have a role in breast cancer (BC) pathogenesis and influence response to chemotherapy. This study investigated the clinicopathological significance of phosphorylated CHK1 (pCHK1) protein in BC. Method: pCHK1 protein expression was assessed using immunohistochemistry in a large, well-characterized annotated series of early-stage primary operable invasive BC prepared as tissue microarray (n=1200). Result: pCHK1 showed nuclear and/or cytoplasmic expression. Tumours with nuclear expression showed positive associations with favourable prognostic features such as lower grade, lower mitotic activity, expression of hormone receptor and lack of expression of KI67 and PI3K (P<0.001). On the other hand, cytoplasmic expression was associated with features of poor prognosis such as higher grade, triple-negative phenotype and expression of KI67, p53, AKT and PI3K. pCHK1 expression showed an association with DNA damage response (ATM, RAD51, BRCA1, KU70/KU80, DNA-PKCα and BARD1) and sumoylation (UBC9 and PIASγ) biomarkers. Subcellular localisation of pCHK1 was associated with the expression of the nuclear transport protein KPNA2. Positive nuclear expression predicted better survival outcome in patients who did not receive chemotherapy in the whole series and in ER-positive tumours. In ER-negative and triple-negative subgroups, nuclear pCHK1 predicted shorter survival in patients who received cyclophosphamide, methotrexate and 5-florouracil chemotherapy. Conclusions: Our data suggest that pCHK1 may have prognostic and predictive significance in BC. Subcellular localisation of pCHK1 protein is related to its function.
Collapse
|
29
|
Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, Venook AP, Loechner S, Rosen LS, Shanahan F, Parry D, Shumway S, Grabowsky JA, Freshwater T, Sorge C, Kang SP, Isaacs R, Munster PN. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol 2015; 33:1060-6. [PMID: 25605849 DOI: 10.1200/jco.2014.57.5027] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE We determined the safety, pharmacokinetics, pharmacodynamics, and recommended phase II dose of MK-8776 (SCH 900776), a potent, selective checkpoint kinase 1 (Chk1) inhibitor, as monotherapy and in combination with gemcitabine in a first-in-human phase I clinical trial in patients with advanced solid tumor malignancies. PATIENTS AND METHODS Forty-three patients were treated by intravenous infusion with MK-8776 at seven dose levels ranging from 10 to 150 mg/m(2) as monotherapy and then in combination with gemcitabine 800 mg/m(2) (part A, n = 26) or gemcitabine 1,000 mg/m(2) (part B, n = 17). Forty percent of patients had three or more prior treatment regimens, and one third of patients had previously received gemcitabine. RESULTS As monotherapy, MK-8776 was well tolerated, with QTc prolongation (19%), nausea (16%), fatigue (14%), and constipation (14%) as the most frequent adverse effects. Combination therapy demonstrated a higher frequency of adverse effects, predominantly fatigue (63%), nausea (44%), decreased appetite (37%), thrombocytopenia (32%), and neutropenia (24%), as well as dose-related, transient QTc prolongation (17%). The median number of doses of MK-8776 administered was five doses, with relative dose-intensity of 0.96. Bioactivity was assessed by γ-H2AX ex vivo assay. Of 30 patients evaluable for response, two showed partial response, and 13 exhibited stable disease. CONCLUSION MK-8776 was well tolerated as monotherapy and in combination with gemcitabine. Early evidence of clinical efficacy was observed. The recommended phase II dose is MK-8776 200 mg plus gemcitabine 1,000 mg/m(2) on days 1 and 8 of a 21-day cycle.
Collapse
Affiliation(s)
- Adil I Daud
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ.
| | - Michelle T Ashworth
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jonathan Strosberg
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jonathan W Goldman
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - David Mendelson
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Gregory Springett
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Alan P Venook
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Sabine Loechner
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Lee S Rosen
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Frances Shanahan
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - David Parry
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Stuart Shumway
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jennifer A Grabowsky
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Tomoko Freshwater
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Christopher Sorge
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Soonmo Peter Kang
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Randi Isaacs
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Pamela N Munster
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| |
Collapse
|
30
|
Yun H, Shi R, Yang Q, Zhang X, Wang Y, Zhou X, Mu K. Over expression of hRad9 protein correlates with reduced chemosensitivity in breast cancer with administration of neoadjuvant chemotherapy. Sci Rep 2014; 4:7548. [PMID: 25520248 PMCID: PMC5378947 DOI: 10.1038/srep07548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 12/01/2014] [Indexed: 02/04/2023] Open
Abstract
Human Rad 9 (hRad9), part of the Rad9-Hus1-Rad1 complex plays an important role in DNA damage repair as an up-stream regulator of checkpoint signaling, however little is known about its role in response to chemotherapy of breast cancer and whether hRad9 inhibition can potentiate the cytotoxic effects of chemotherapy on breast cancer cells remains to be elucidated. Fifty cases of breast cancer receiving neoadjuvant therapy were collected. All these cases were revised and classified into chemotherapy sensitive (CS) or chemotherapy resistant (CR) group according to the Miller and Payne (MP) grading system. Immunohistochemically, hRad9 positive tumours showed nuclear and/or cytoplasmic staining. hRad9 over-expression was associated with an impaired neoadjuvant chemotherapy response. A significant correlation was found between expression of hRad9 and Cyclin D1. In vitro, hRad9 was knocked down using siRNA in breast cancer cell line MCF-7 and MDA-MB-231. Deregulated expression of Rad9 accompanied by down expression of chk1 enhanced the sensitivity of human breast cancer cells to doxorubicin. Our work suggests that hRad9 might be a potential predictor for the response to chemotherapy in patients with breast cancer and its clinical value as a target for improving chemosensitivity needs further exploration.
Collapse
Affiliation(s)
- Haiqin Yun
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Ranran Shi
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Qingrui Yang
- Department of Rheumatology and Immunology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaofang Zhang
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Yan Wang
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Xingchen Zhou
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Kun Mu
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| |
Collapse
|
31
|
Abdel-Fatah TMA, Middleton FK, Arora A, Agarwal D, Chen T, Moseley PM, Perry C, Doherty R, Chan S, Green AR, Rakha E, Ball G, Ellis IO, Curtin NJ, Madhusudan S. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol Oncol 2014; 9:569-85. [PMID: 25468710 DOI: 10.1016/j.molonc.2014.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
ATR-CHEK1 signalling is critical for genomic stability. ATR-CHEK1 signalling may be deregulated in breast cancer and have prognostic, predictive and therapeutic significance. We investigated ATR, CHEK1 and phosphorylated CHEK1 (Ser345) protein (pCHEK1) levels in 1712 breast cancers. ATR and CHEK1 mRNA expression was evaluated in 1950 breast cancers. Pre-clinically, biological consequences of ATR gene knock down or ATR inhibition by the small molecule inhibitor (VE-821) were investigated in MCF7 and MDA-MB-231 breast cancer cell lines and in non-tumorigenic breast epithelial cells (MCF10A). High ATR and high cytoplasmic pCHEK1 levels were significantly associated with higher tumour stage, higher mitotic index, pleomorphism and lymphovascular invasion. In univariate analyses, high ATR and high cytoplasmic pCHEK1 levels were associated with poor breast cancer specific survival (BCSS). In multivariate analysis, high ATR level remains an independent predictor of adverse outcome. At the mRNA level, high CHEK1 remains associated with aggressive phenotypes including lymph node positivity, high grade, Her-2 overexpression, triple negative, aggressive molecular phenotypes and adverse BCSS. Pre-clinically, CHEK1 phosphorylation at serine(345) following replication stress was impaired in ATR knock down and in VE-821 treated breast cancer cells. Doxycycline inducible knockdown of ATR suppressed growth, which was restored when ATR was re-expressed. Similarly, VE-821 treatment resulted in a dose dependent suppression of cancer cell growth and survival (MCF7 and MDA-MB-231) but was less toxic in non-tumorigenic breast epithelial cells (MCF10A). We provide evidence that ATR and CHEK1 are promising biomarkers and rational drug targets for personalized therapy in breast cancer.
Collapse
Affiliation(s)
| | - Fiona K Middleton
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Tao Chen
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Emad Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK; Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1PB, UK.
| |
Collapse
|
32
|
Gong J, Lv L, Huo J. Roles of F-box proteins in human digestive system tumors (Review). Int J Oncol 2014; 45:2199-207. [PMID: 25270675 DOI: 10.3892/ijo.2014.2684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2022] Open
Abstract
F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.
Collapse
Affiliation(s)
- Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
33
|
Calvo E, Chen VJ, Marshall M, Ohnmacht U, Hynes SM, Kumm E, Diaz HB, Barnard D, Merzoug FF, Huber L, Kays L, Iversen P, Calles A, Voss B, Lin AB, Dickgreber N, Wehler T, Sebastian M. Preclinical analyses and phase I evaluation of LY2603618 administered in combination with pemetrexed and cisplatin in patients with advanced cancer. Invest New Drugs 2014; 32:955-68. [PMID: 24942404 DOI: 10.1007/s10637-014-0114-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
LY2603618 is an inhibitor of checkpoint kinase 1 (CHK1), an important regulator of the DNA damage checkpoints. Preclinical experiments analyzed NCI-H2122 and NCI-H441 NSCLC cell lines and in vitro/in vivo models treated with pemetrexed and LY2603618 to provide rationale for evaluating this combination in a clinical setting. Combination treatment of LY2603618 with pemetrexed arrested DNA synthesis following initiation of S-phase in cells. Experiments with tumor-bearing mice administered the combination of LY2603618 and pemetrexed demonstrated a significant increase of growth inhibition of NCI-H2122 (H2122) and NCI-H441 (H441) xenograft tumors. These data informed the clinical assessment of LY2603618 in a seamless phase I/II study, which administered pemetrexed (500 mg/m(2)) and cisplatin (75 mg/m(2)) and escalating doses of LY2603618: 130-275 mg. Patients were assessed for safety, toxicity, and pharmacokinetics. In phase I, 14 patients were enrolled, and the most frequently reported adverse events included fatigue, nausea, pyrexia, neutropenia, and vomiting. No DLTs were reported at the tested doses. The systemic exposure of LY2603618 increased in a dose-dependent manner. Pharmacokinetic parameters that correlate with the maximal pharmacodynamic effect in nonclinical xenograft models were achieved at doses ≥240 mg. The pharmacokinetics of LY2603618, pemetrexed, and cisplatin were not altered when used in combination. Two patients achieved a confirmed partial response (both non-small cell lung cancer), and 8 patients had stable disease. LY2603618 administered in combination with pemetrexed and cisplatin demonstrated an acceptable safety profile. The recommended phase II dose of LY2603618 was 275 mg.
Collapse
Affiliation(s)
- Emiliano Calvo
- START Madrid, Clara Campal Comprehensive Cancer Center, Medical Oncology Division, Madrid Norte Sanchinarro University Hospital, Madrid, Spain, 28050,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Balupuri A, Balasubramanian PK, Gadhe CG, Cho SJ. Docking-based 3D-QSAR study of pyridyl aminothiazole derivatives as checkpoint kinase 1 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:651-671. [PMID: 24911214 DOI: 10.1080/1062936x.2014.923040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Checkpoint kinase 1 (Chk1) is a promising target for the design of novel anticancer agents. In the present work, molecular docking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed on pyridyl aminothiazole derivatives as Chk1 inhibitors. AutoDock was used to determine the probable binding conformations of all the compounds inside the active site of Chk1. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were developed based on the docking conformations and alignments. The CoMFA model produced statistically significant results with a cross-validated correlation coefficient (q2) of 0.608 and a coefficient of determination (r2) of 0.972. The reliable CoMSIA model with q2 of 0.662 and r2 of 0.970 was obtained from the combination of steric, electrostatic and hydrogen bond acceptor fields. The predictive power of the models were assessed using an external test set of 14 compounds and showed reasonable external predictabilities (r(2)pred) of 0.668 and 0.641 for CoMFA and CoMSIA models, respectively. The models were further evaluated by leave-ten-out cross-validation, bootstrapping and progressive scrambling analyses. The study provides valuable information about the key structural elements that are required in the rational design of potential drug candidates of this class of Chk1 inhibitors.
Collapse
Affiliation(s)
- A Balupuri
- a Department of Bio-New Drug Development, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| | | | | | | |
Collapse
|
35
|
Xie Y, Wei RR, Huang GL, Zhang MY, Yuan YF, Wang HY. Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma. Med Oncol 2014; 31:844. [PMID: 24464213 DOI: 10.1007/s12032-014-0844-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/15/2014] [Indexed: 12/19/2022]
Abstract
Checkpoint kinase 1 (CHEK1) is an evolutionarily conserved Ser/Thr kinase, which mediates cell-cycle arrest after DNA damage, and we previously reported that CHEK1 was overexpressed and associated with poor prognosis in hepatocellular carcinoma (HCC), indicating it was oncogenic gene. In this study, we aimed to elucidate the mechanism of CHEK1 overexpression in HCC. We first verified the upregulated CHEK1 by qRT-PCR and western blot in 30 HCC samples compared with corresponding non-tumor liver tissues. In silico analysis showed that CHEK1 was a candidate target of miR-497, which was previously found to be downregulated in HCC by us. To test whether miR-497 could bind to 3'untranslated region (3'UTR) of CHEK1, luciferase reporter assay was conducted. The result revealed that miR-497 could bind to the 3'untranslated region (3'UTR) of CHEK1 mRNA. Western blot showed that ectopic expression of miR-497 suppressed the CHEK1 expression and inhibition of miR-497 led to significant upregulation of CHEK1. Finally, miR-497 expression was measured in the same 30 HCC samples, and the correlation between miR-497 and CHEK1 was analyzed. The results indicated that miR-497 was downregulated in HCC and had a significant negative correlation with CHEK1. Taken together, these results demonstrated that CHEK1 was negatively regulated by miR-497, and the overexpressed CHEK1 was resulted from the downregulated miR-497 in HCC, which provided a potential molecular target for HCC therapy.
Collapse
Affiliation(s)
- Yin Xie
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
36
|
Metformin inhibits growth and sensitizes osteosarcoma cell lines to cisplatin through cell cycle modulation. Oncol Rep 2013; 31:370-5. [DOI: 10.3892/or.2013.2862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/22/2013] [Indexed: 11/05/2022] Open
|
37
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
38
|
Blackwood E, Epler J, Yen I, Flagella M, O'Brien T, Evangelista M, Schmidt S, Xiao Y, Choi J, Kowanetz K, Ramiscal J, Wong K, Jakubiak D, Yee S, Cain G, Gazzard L, Williams K, Halladay J, Jackson PK, Malek S. Combination drug scheduling defines a "window of opportunity" for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900. Mol Cancer Ther 2013; 12:1968-80. [PMID: 23873850 DOI: 10.1158/1535-7163.mct-12-1218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2-M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1 should potentiate the antitumor effect of chemotherapeutic agents by inactivating the postreplication checkpoint, causing premature entry into mitosis with damaged DNA resulting in mitotic catastrophe. Here, we describe the characterization of GNE-900, an ATP-competitive, selective, and orally bioavailable ChK1 inhibitor. In combination with chemotherapeutic agents, GNE-900 sustains ATR/ATM signaling, enhances DNA damage, and induces apoptotic cell death. The kinetics of checkpoint abrogation seems to be more rapid in p53-mutant cells, resulting in premature mitotic entry and/or accelerated cell death. Importantly, we show that GNE-900 has little single-agent activity in the absence of chemotherapy and does not grossly potentiate the cytotoxicity of gemcitabine in normal bone marrow cells. In vivo scheduling studies show that optimal administration of the ChK1 inhibitor requires a defined lag between gemcitabine and GNE-900 administration. On the refined combination treatment schedule, gemcitabine's antitumor activity against chemotolerant xenografts is significantly enhanced and dose-dependent exacerbation of DNA damage correlates with extent of tumor growth inhibition. In summary, we show that in vivo potentiation of gemcitabine activity is mechanism based, with optimal efficacy observed when S-phase arrest and release is followed by checkpoint abrogation with a ChK1 inhibitor.
Collapse
Affiliation(s)
- Elizabeth Blackwood
- Corresponding Authors: Elizabeth Blackwood and Shiva Malek, Genentech, 1 DNA Way, South San Francisco, CA 94080.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2013; 134:1013-23. [PMID: 23613359 DOI: 10.1002/ijc.28226] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved DNA damage response (DDR) and cell cycle checkpoints preserve genome integrity. Central to these genome surveillance pathways is a protein kinase, Chk1. DNA damage induces activation of Chk1, which then transduces the checkpoint signal and facilitates cell cycle arrest and DNA damage repair. Significant progress has been made recently toward our understanding of Chk1 regulation and its implications in cancer etiology and therapy. Specifically, a model that involves both spatiotemporal and conformational changes of proteins has been proposed for Chk1 activation. Further, emerging evidence suggests that Chk1 does not appear to be a tumor suppressor; instead, it promotes tumor growth and may contribute to anticancer therapy resistance. Recent data from our laboratory suggest that activating, but not inhibiting, Chk1 in the absence of chemotherapy might represent an innovative approach to suppress tumor growth. These findings suggest unique regulation of Chk1 in cell biology and cancer etiology, pointing to novel strategies for targeting Chk1 in cancer therapy.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
40
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2013; 3:1068-111. [PMID: 23085539 PMCID: PMC3717945 DOI: 10.18632/oncotarget.659] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gonzalez-Angulo AM, Liu S, Chen H, Chavez-Macgregor M, Sahin A, Hortobagyi GN, Mills GB, Do KA, Meric-Bernstam F. Functional proteomics characterization of residual breast cancer after neoadjuvant systemic chemotherapy. Ann Oncol 2012; 24:909-16. [PMID: 23139263 DOI: 10.1093/annonc/mds530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The purpose of this study was to determine the functional proteomic characteristics of residual breast cancer and hormone receptor (HR)-positive breast cancer after neoadjuvant systemic chemotherapy, and their relationship with patient outcomes. METHODS Reverse phase protein arrays of 76 proteins were carried out. A boosting approach in conjunction with a Cox proportional hazard model defined relapse predictors. A risk score (RS) was calculated with the sum of the coefficients from the final model. Survival outcomes and associations of the RS with relapse were estimated. An independent test set was used to validate the results. RESULTS Test (n = 99) and validation sets (n = 79) were comparable. CoxBoost revealed a three-biomarker (CHK1pS345, Caveolin1, and RAB25) and a two-biomarker (CD31 and Cyclin E1) model that correlated with recurrence-free survival (RFS) in all residual breast cancers and in HR-positive disease, respectively. Unsupervised clustering split patients into high- and low risk of relapse groups with different 3-year RFS (P ≤ 0.001 both). RS was a substantial predictor of RFS (P = 0.0008 and 0.0083) after adjustment for other substantial characteristics. Similar results were found in validation sets. CONCLUSIONS We found models that independently predicted RFS in all residual breast cancer and in residual HR-positive disease that may represent potential targets of therapy in this resistant disease.
Collapse
Affiliation(s)
- A M Gonzalez-Angulo
- Departments of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Boulevard, Houston, TX 77030-4009,
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
WANG XIAOBIN, MA ZHIKUN, XIAO ZHENG, LIU HUI, DOU ZHONGLING, FENG XIAOSHAN, SHI HAIJUN. Chk1 knockdown confers radiosensitization in prostate cancer stem cells. Oncol Rep 2012; 28:2247-54. [DOI: 10.3892/or.2012.2068] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/18/2012] [Indexed: 11/06/2022] Open
|
43
|
Liu S, Opiyo SO, Manthey K, Glanzer JG, Ashley AK, Amerin C, Troksa K, Shrivastav M, Nickoloff JA, Oakley GG. Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucleic Acids Res 2012; 40:10780-94. [PMID: 22977173 PMCID: PMC3510507 DOI: 10.1093/nar/gks849] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA damage encountered by DNA replication forks poses risks of genome destabilization, a
precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote
repair and induce programed cell death when damage is severe. Checkpoints are critical
parts of the DNA damage response network that act to suppress cancer. DNA damage and
perturbation of replication machinery causes replication stress, characterized by
accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers
activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the
RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase
catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and
ATR] has well characterized roles in DNA double-strand break repair, but poorly understood
roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant
cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation
sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR
signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not
ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant
RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress
that persists in cells entering mitosis, indicating inappropriate mitotic entry with
unrepaired damage.
Collapse
Affiliation(s)
- Shengqin Liu
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, NE 68583, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Baca-López K, Mayorga M, Hidalgo-Miranda A, Gutiérrez-Nájera N, Hernández-Lemus E. The role of master regulators in the metabolic/transcriptional coupling in breast carcinomas. PLoS One 2012; 7:e42678. [PMID: 22952604 PMCID: PMC3428335 DOI: 10.1371/journal.pone.0042678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/10/2012] [Indexed: 12/24/2022] Open
Abstract
Metabolic transformations have been reported as involved in neoplasms survival. This suggests a role of metabolic pathways as potential cancer pharmacological targets. Modulating tumor's energy production pathways may become a substantial research area for cancer treatment. The significant role of metabolic deregulation as inducing transcriptional instabilities and consequently whole-system failure, is thus of foremost importance. By using a data integration approach that combines experimental evidence for high-throughput genome wide gene expression, a non-equilibrium thermodynamics analysis, nonlinear correlation networks as well as database mining, we were able to outline the role that transcription factors MEF2C and MNDA may have as main master regulators in primary breast cancer phenomenology, as well as the possible interrelationship between malignancy and metabolic dysfunction. The present findings are supported by the analysis of 1191 whole genome gene expression experiments, as well as probabilistic inference of gene regulatory networks, and non-equilibrium thermodynamics of such data. Other evidence sources include pathway enrichment and gene set enrichment analyses, as well as motif comparison with a comprehensive gene regulatory network (of homologue genes) in Arabidopsis thaliana. Our key finding is that the non-equilibrium free energies provide a realistic description of transcription factor activation that when supplemented with gene regulatory networks made us able to find deregulated pathways. These analyses also suggest a novel potential role of transcription factor energetics at the onset of primary tumor development. Results are important in the molecular systems biology of cancer field, since deregulation and coupling mechanisms between metabolic activity and transcriptional regulation can be better understood by taking into account the way that master regulators respond to physicochemical constraints imposed by different phenotypic conditions.
Collapse
Affiliation(s)
- Karol Baca-López
- Computational Genomics Department, National Institute of Genomic Medicine, México City, México
- School of Sciences, Autonomous University of the State of México, Toluca, México
| | - Miguel Mayorga
- School of Sciences, Autonomous University of the State of México, Toluca, México
| | | | - Nora Gutiérrez-Nájera
- Proteomics Core Facility, National Institute of Genomic Medicine, México City, México
| | - Enrique Hernández-Lemus
- Computational Genomics Department, National Institute of Genomic Medicine, México City, México
- Center for Complexity Sciences, National Autonomous University of México, México City, México
- * E-mail:
| |
Collapse
|
45
|
Carrassa L, Chilà R, Lupi M, Ricci F, Celenza C, Mazzoletti M, Broggini M, Damia G. Combined inhibition of Chk1 and Wee1: in vitro synergistic effect translates to tumor growth inhibition in vivo. Cell Cycle 2012; 11:2507-17. [PMID: 22713237 DOI: 10.4161/cc.20899] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Targeting Chk1 protein kinase can enhance the antitumor effects of radio- and chemotherapy. Recent evidence disclosed a role of Chk1 in unperturbed cell proliferation and survival, implying that Chk1 inhibitors could also be effective as single agents in tumors with a specific genetic background. To identify genes in synthetic lethality with Chk1, we did a high-throughput screening using a siRNA library directed against 719 human protein kinases in the human ovarian cancer cell line OVCAR-5, resistant to Chk1 inhibitors. Wee1 tyrosine kinase was the most significant gene in synthetic lethality with Chk1. Treatment with non-toxic concentrations of a Chk1 inhibitor (PF-00477736) and a Wee1 inhibitor (MK-1775) confirmed the marked synergistic effect in various human cancer cell lines (breast, ovarian, colon, prostate), independently of the p53 status. Detailed molecular analysis showed that the combination caused cancer cells to undergo premature mitosis before the end of DNA replication, with damaged DNA leading to cell death partly by apoptosis. In vivo treatment of mice bearing OVCAR-5 xenografts with the combination of Chk1 and Wee1 inhibitors led to greater tumor growth inhibition than with the inhibitors used as single agents with no toxicity. These data provide a strong rationale for the clinical investigation of the combination of a Chk1 and a Wee1 inhibitor.
Collapse
Affiliation(s)
- Laura Carrassa
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hong J, Hu K, Yuan Y, Sang Y, Bu Q, Chen G, Yang L, Li B, Huang P, Chen D, Liang Y, Zhang R, Pan J, Zeng YX, Kang T. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J Clin Invest 2012; 122:2165-75. [PMID: 22585575 DOI: 10.1172/jci61380] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/04/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies resistant to current chemotherapies or radiotherapies, which makes it urgent to identify new therapeutic targets for HCC. In this study, we found that checkpoint kinase 1 (CHK1) was frequently overexpressed and correlated with poor clinical outcome in patients with HCC. We further showed that the CHK1 inhibitor GÖ6976 was capable of sensitizing HCC cells to cisplatin, indicating that CHK1 may have oncogenic function in HCC. We found that CHK1 phosphorylated the tumor suppressor spleen tyrosine kinase (L) (SYK[L]) and identified the phosphorylation site at Ser295. Furthermore, CHK1 phosphorylation of SYK(L) promoted its subsequent proteasomal degradation. Expression of a nonphosphorylated mutant of SYK(L) was more efficient at suppressing proliferation, colony formation, mobility, and tumor growth in HCC lines. Importantly, a strong inverse correlation between the expression levels of CHK1 and SYK(L) was observed in patients with HCC. Collectively, our data demonstrate that SYK(L) is a substrate of CHK1 in tumor cells and suggest that targeting the CHK1/SYK(L) pathway may be a promising strategy for treating HCC.
Collapse
Affiliation(s)
- Jian Hong
- State Key Laboratory of Oncology in South China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen L, Chao SB, Wang ZB, Qi ST, Zhu XL, Yang SW, Yang CR, Zhang QH, Ouyang YC, Hou Y, Schatten H, Sun QY. Checkpoint kinase 1 is essential for meiotic cell cycle regulation in mouse oocytes. Cell Cycle 2012; 11:1948-55. [PMID: 22544319 DOI: 10.4161/cc.20279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) plays key roles in all currently defined cell cycle checkpoints, but its functions in mouse oocyte meiosis remain unclear. In this study, we report the expression, localization and functions of Chk1 in mouse oocyte meiosis. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages and localized to the spindle from pro-metaphase I (pro-MI) to MII stages in mouse oocytes. Chk1 depletion facilitated the G 2/M transition while Chk1 overexpression inhibited the G 2/M transition as indicated by germinal vesicle breakdown (GVBD), through regulation of Cdh1 and Cyclin B1. Chk1 depletion did not affect meiotic cell cycle progression after GVBD, but its overexpression after GVBD activated the spindle assembly checkpoint and prevented homologous chromosome segregation, thus arresting oocytes at pro-MI or metaphase I (MI) stages. These results suggest that Chk1 is indispensable for prophase I arrest and functions in G 2/M checkpoint regulation in meiotic oocytes. Moreover, Chk1 overexpression affects meiotic spindle assembly checkpoint regulation and thus chromosome segregation.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology; Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Invest New Drugs 2012; 31:136-44. [PMID: 22492020 DOI: 10.1007/s10637-012-9815-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/19/2012] [Indexed: 01/10/2023]
Abstract
PURPOSE This phase I study aims at assessing the safety and tolerability of LY2603618, a selective inhibitor of Checkpoint Kinase 1, in combination with pemetrexed and determining the maximum tolerable dose and the pharmacokinetic parameters. EXPERIMENTAL DESIGN This was an open-label, multicenter, dose-escalation study in patients with advanced solid tumors. Increasing doses of LY2603618 (40-195 mg/m(2)) were combined with 500 mg/m(2) of pemetrexed. LY2603618 was administered on Days 1 and 9 and pemetrexed on Day 8 in a 28-day cycle. For all subsequent 21-day cycles, pemetrexed was administered on Day 1 and LY2603618 on Day 2. Antitumor activity was evaluated as per Response Evaluation Criteria in Solid Tumors 1.0. RESULTS A total of 31 patients were enrolled into six cohorts (three at 40 mg/m(2) over 4.5-hour infusion, 1-hour infusion in subsequent cohorts: three each at 40 mg/m(2), 70 mg/m(2), and 195 mg/m(2); 13 at 105 mg/m(2); six at 150 mg/m(2)). Four patients experienced a dose-limiting toxicity: diarrhea (105 mg/m(2)); reversible infusion-related reaction (150 mg/m(2)); thrombocytopenia (195 mg/m(2)); and fatigue (195 mg/m(2)). The maximum tolerated dose was defined as 150 mg/m(2). The pharmacokinetic data demonstrated that the exposure of LY2603618 increased in a dose-dependent manner, displayed a suitable half-life for maintaining required human exposures while minimizing the intra- and inter-cycle accumulation, and was unaffected by the pemetrexed administration. The pharmacokinetic-defined biologically efficacious dose was achieved at doses ≥105 mg/m(2). CONCLUSION LY2603618 administered approximately 24 h after pemetrexed showed acceptable safety and pharmacokinetic profiles.
Collapse
|
49
|
Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RWC, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ, Baylin SB, Zahnow CA. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21:430-46. [PMID: 22439938 PMCID: PMC3312044 DOI: 10.1016/j.ccr.2011.12.029] [Citation(s) in RCA: 494] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 06/20/2011] [Accepted: 12/30/2011] [Indexed: 12/26/2022]
Abstract
Reversal of promoter DNA hypermethylation and associated gene silencing is an attractive cancer therapy approach. The DNA methylation inhibitors decitabine and azacitidine are efficacious for hematological neoplasms at lower, less toxic, doses. Experimentally, high doses induce rapid DNA damage and cytotoxicity, which do not explain the prolonged time to response observed in patients. We show that transient exposure of cultured and primary leukemic and epithelial tumor cells to clinically relevant nanomolar doses, without causing immediate cytotoxicity, produce an antitumor "memory" response, including inhibition of subpopulations of cancer stem-like cells. These effects are accompanied by sustained decreases in genomewide promoter DNA methylation, gene reexpression, and antitumor changes in key cellular regulatory pathways. Low-dose decitabine and azacitidine may have broad applicability for cancer management.
Collapse
Affiliation(s)
- Hsing-Chen Tsai
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Huili Li
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Leander Van Neste
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yi Cai
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Carine Robert
- Department of Radiation Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James J. Shin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Kirsten M. Harbom
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Robert Beaty
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Emmanouil Pappou
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - James Harris
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Nita Ahuja
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Malcolm V. Brock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Breast Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - David Feller-Kopman
- Bronchoscopy and Interventional Pulmonology, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | - Lonny B. Yarmus
- Bronchoscopy and Interventional Pulmonology, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | - Yi-Chun Lin
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 USA
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 USA
| | - Jean-Pierre Issa
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030 USA
| | - Il Minn
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - William Matsui
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Yoon-Young Jang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Saul J. Sharkis
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Stephen B. Baylin
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Cynthia A. Zahnow
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Breast Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| |
Collapse
|
50
|
Pal J, Fulciniti M, Nanjappa P, Buon L, Tai YT, Tassone P, Munshi NC, Shammas MA. Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics Proteomics 2012; 9:55-66. [PMID: 22399496 PMCID: PMC5536098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling in cancer is implicated in various survival pathways including regulation of recombinase (RAD51). In this study, we evaluated PI3K and RAD51 as targets in Barrett's adenocarcinoma (BAC) cells both in vitro and in vivo. BAC cell lines (OE19, OE33, and FLO-1) were cultured in the presence of PI3K inhibitor (wortmannin) and the impact on growth and expression of AKT, phosphorylated-AKT (P-AKT), and RAD51 was determined. Wortmannin induced growth arrest and apoptosis in two BAC cell lines (OE33 and OE19), which had relatively higher expression of AKT. FLO-1 cells, with lower AKT expression, were less sensitive to treatment and investigated further. In FLO-1 cells, wortmannin suppressed ataxia telangiectasia and Rad3-related protein (ATR)-checkpoint kinase 1 (CHK1)-mediated checkpoint and multiple DNA repair genes, whereas RAD51 and CHK2 were not affected. Western blotting confirmed that RAD51 was suppressed by wortmannin in OE33 and OE19 cells, but not in FLO-1 cells. Suppression of RAD51 in FLO-1 cells down-regulated the expression of CHK2 and CHK1, and reduced the proliferative potential. Finally, the suppression of RAD51 in FLO-1 cells, significantly increased the anticancer activity of wortmannin in these cells, both in vitro and in vivo. We show that PI3K signaling and hsRAD51, through distinct roles in DNA damage response and repair pathways, provide survival advantage to BAC cells. In cells with inherent low expression of AKT, RAD51 is unaffected by PI3K suppression and provides an additional survival pathway. Simultaneous suppression of PI3K and RAD51, especially in cells with lower AKT expression, can significantly reduce their proliferative potential.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|