1
|
Yang MC, Huang WL, Chen HY, Lin SH, Chang YS, Tseng KY, Lo HJ, Wang IC, Lin CJ, Lan CY. Deletion of RAP1 affects iron homeostasis, azole resistance, and virulence in Candida albicans. mSphere 2025:e0015525. [PMID: 40265929 DOI: 10.1128/msphere.00155-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Rap1 is a DNA-binding protein conserved from yeast to mammals for its role in telomeric maintenance. Here, to explore additional functions of Candida albicans Rap1, we performed RNA sequencing analysis. Experimental validations further showed that Rap1 plays a role in iron regulation, especially under low-iron conditions. Moreover, Rap1 was involved in iron acquisition and modulation of iron-related genes. Rap1 was found to be associated with fluconazole resistance in a low-iron condition. Finally, we demonstrated that the deletion of RAP1 leads to reduced C. albicans virulence in a mouse model of infection. Together, this study reveals new functions of C. albicans Rap1, particularly in iron homeostasis, azole resistance, and virulence. IMPORTANCE Candida albicans is an important pathogenic fungus that can cause superficial to life-threatening infections. Iron is essential for almost all organisms, yet it is highly restricted within the human host to defend against pathogens. To grow and survive in the iron-limited host environment, C. albicans has evolved multiple iron acquisition mechanisms. Understanding the regulation of iron homeostasis is, therefore, critical for elucidating C. albicans pathogenesis and virulence. This study explores the novel functions of C. albicans Rap1, with a focus on its contribution to iron acquisition and utilization. Our findings further highlight how iron availability impacts antifungal resistance and virulence through Rap1, providing insight into the complex iron regulatory machinery of C. albicans.
Collapse
Affiliation(s)
- Min-Chi Yang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Luen Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsuan-Yu Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shin-Huey Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Yun Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Hsiu-Jung Lo
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Wang WH, Chen HY, Chen SY, Lan CY. Transcriptional profiling reveals the role of Candida albicans Rap1 in oxidative stress response. Biosci Rep 2024; 44:BSR20240689. [PMID: 39575984 DOI: 10.1042/bsr20240689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Candida albicans is a member of the human commensal microbiota but can also cause opportunistic infections, including life-threatening invasive candidiasis, particularly in immunocompromised patients. One of the important features of C. albicans commensalism and virulence is its ability to adapt to diverse environmental stress conditions within the host. Rap1 is a DNA-binding protein identified in yeasts, protozoa, and mammalian cells, and it plays multiple functions, including telomere regulation. Intriguingly, our previous study showed that Rap1 is also involved in cell wall integrity, biofilm formation, and virulence in C. albicans. In this work, using RNA-seq analysis and other approaches, the role of C. albicans Rap1 in oxidative stress response was further revealed. The RAP1-deletion mutant exhibited greater resistance to the superoxide generator menadione, a lower level of intracellular reactive oxygen species (ROS) upon menadione treatment, and higher expression levels of superoxide dismutase genes, all in response to oxidative stress. Moreover, the association between Rap1-mediated oxidative stress response and the mitogen-activated protein kinase (MAPK) Hog1, the transcription factor Cap1 and the TOR signalling was also determined. Together, these findings expand our understanding of the complex signalling and transcriptional mechanisms regulating stress responses in C. albicans.
Collapse
Affiliation(s)
- Wen-Han Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hsuan-Yu Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Sheng-Yuan Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Rai R, Biju K, Sun W, Sodeinde T, Al-Hiyasat A, Morgan J, Ye X, Li X, Chen Y, Chang S. Homology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2 B and RAP1. Nat Commun 2023; 14:2144. [PMID: 37059728 PMCID: PMC10104862 DOI: 10.1038/s41467-023-37761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Double-strand breaks (DSBs) due to genotoxic stress represent potential threats to genome stability. Dysfunctional telomeres are recognized as DSBs and are repaired by distinct DNA repair mechanisms. RAP1 and TRF2 are telomere binding proteins essential to protect telomeres from engaging in homology directed repair (HDR), but how this occurs remains unclear. In this study, we examined how the basic domain of TRF2 (TRF2B) and RAP1 cooperate to repress HDR at telomeres. Telomeres lacking TRF2B and RAP1 cluster into structures termed ultrabright telomeres (UTs). HDR factors localize to UTs, and UT formation is abolished by RNaseH1, DDX21 and ADAR1p110, suggesting that they contain DNA-RNA hybrids. Interaction between the BRCT domain of RAP1 and KU70/KU80 is also required to repress UT formation. Expressing TRF2∆B in Rap1-/- cells resulted in aberrant lamin A localization in the nuclear envelope and dramatically increased UT formation. Expressing lamin A phosphomimetic mutants induced nuclear envelope rupturing and aberrant HDR-mediated UT formation. Our results highlight the importance of shelterin and proteins in the nuclear envelope in repressing aberrant telomere-telomere recombination to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
| | - Kevin Biju
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Amer Al-Hiyasat
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Jaida Morgan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Yang Q, Nie Z, Zhu Y, Hao M, Liu S, Ding X, Wang F, Wang F, Geng X. Inhibition of TRF2 Leads to Ferroptosis, Autophagic Death, and Apoptosis by Causing Telomere Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6897268. [PMID: 37113742 PMCID: PMC10129434 DOI: 10.1155/2023/6897268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 02/04/2023] [Indexed: 04/29/2023]
Abstract
Background Gastric cancer (GC) is an aggressive malignancy with a high mortality rate and poor prognosis. Telomeric repeat-binding factor 2 (TRF2) is a critical telomere protection protein. Emerging evidence indicates that TRF2 may be an essential treatment option for GC; however, the exact mechanism remains largely unknown. Objective We aimed to explore the role of TRF2 in GC cells. The function and molecular mechanisms of TRF2 in the pathogenesis of GC were mainly discussed in this study. Methods Relevant data from GEPIA and TCGA databases regarding TRF2 gene expression and its prognostic significance in GC samples were analyzed. Analysis of 53BP1 foci at telomeres by immunofluorescence, metaphase spreads, and telomere-specific FISH analysis was carried out to explore telomere damage and dysfunction after TRF2 depletion. CCK8 cell proliferation, trypan blue staining, and colony formation assay were performed to evaluate cell survival. Apoptosis and cell migration were determined with flow cytometry and scratch-wound healing assay, respectively. qRT-PCR and Western blotting were carried out to analyze the mRNA and protein expression levels after TRF2 depletion on apoptosis, autophagic death, and ferroptosis. Results By searching with GEPIA and TCGA databases, the results showed that the expression levels of TRF2 were obviously elevated in the samples of GC patients, which was associated with adverse prognosis. Knockdown of TRF2 suppressed the cell growth, proliferation, and migration in GC cells, causing significant telomere dysfunction. Apoptosis, autophagic death, and ferroptosis were also triggered in this process. The pretreatment of chloroquine (autophagy inhibitor) and ferrostatin-1 (ferroptosis inhibitor) improved the survival phenotypes of GC cells. Conclusion Our data suggest that TRF2 depletion can inhibit cell growth, proliferation, and migration through the combined action of ferroptosis, autophagic death, and apoptosis in GC cells. The results indicate that TRF2 might be used as a potential target to develop therapeutic strategies for treating GC.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Ziyang Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- School of Life Sciences, Central China Normal University, Hubei Province, China
| | - Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Fuyang Hospital Affiliated to Anhui Medical University, Anhui Province 236000, China
| | - Mingying Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Siqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University, General Hospital, Tianjin 300052, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
Wang WH, Lai TX, Wu YC, Chen ZT, Tseng KY, Lan CY. Associations of Rap1 with Cell Wall Integrity, Biofilm Formation, and Virulence in Candida albicans. Microbiol Spectr 2022; 10:e0328522. [PMID: 36416583 PMCID: PMC9769648 DOI: 10.1128/spectrum.03285-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Rap1 (repressor activator protein 1) is a multifunctional protein, playing important roles in telomeric and nontelomeric functions in many eukaryotes. Candida albicans Rap1 has been previously shown to be involved in telomeric regulation, but its other functions are still mostly unknown. In this study, we found that the deletion of the RAP1 gene altered cell wall properties, composition, and gene expression. In addition, deletion of RAP1 affected C. albicans biofilm formation and modulated phagocytosis and cytokine release by host immune cells. Finally, the RAP1 gene deletion mutant showed attenuation of C. albicans virulence in a Galleria mellonella infection model. Therefore, these findings provide new insights into Rap1 functions that are particularly relevant to pathogenesis and virulence of C. albicans. IMPORTANCE C. albicans is an important fungal pathogen of humans. The cell wall is the outermost layer of C. albicans and is important for commensalism and infection by this pathogen. Moreover, the cell wall is also an important target for antifungals. Studies of how C. albicans maintains its cell wall integrity are critical for a better understanding of fungal pathogenesis and virulence. This work focuses on exploring unknown functions of C. albicans Rap1 and reveals its contribution to cell wall integrity, biofilm formation, and virulence. Notably, these findings will also improve our general understanding of complex machinery to control pathogenesis and virulence of fungal pathogens.
Collapse
Affiliation(s)
- Wen-Han Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Xiu Lai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chia Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zzu-Ting Chen
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuo-Yun Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Myler LR, Kinzig CG, Sasi NK, Zakusilo G, Cai SW, de Lange T. The evolution of metazoan shelterin. Genes Dev 2021; 35:1625-1641. [PMID: 34764137 PMCID: PMC8653790 DOI: 10.1101/gad.348835.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
In this study, Myler et al. investigated the evolutionary origins of shelterin complex, which is comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1; blocks the DNA damage response at chromosome ends; and interacts with telomerase and the CST complex to regulate telomere length. They describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor, and providing insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins. The mammalian telomeric shelterin complex—comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.
Collapse
Affiliation(s)
- Logan R Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Charles G Kinzig
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - George Zakusilo
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
8
|
Li B, Zhao Y. Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities. Pathogens 2021; 10:pathogens10080967. [PMID: 34451431 PMCID: PMC8402208 DOI: 10.3390/pathogens10080967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, Variant Surface Glycoprotein (VSG), to evade the host immune response. Such antigenic variation is a key pathogenesis mechanism that enables T. brucei to establish long-term infections. VSG is expressed exclusively from subtelomere loci in a strictly monoallelic manner, and DNA recombination is an important VSG switching pathway. The integrity of telomere and subtelomere structure, maintained by multiple telomere proteins, is essential for T. brucei viability and for regulating the monoallelic VSG expression and VSG switching. Here we will focus on T. brucei TRF and RAP1, two telomere proteins with unique nucleic acid binding activities, and summarize their functions in telomere integrity and stability, VSG switching, and monoallelic VSG expression. Targeting the unique features of TbTRF and TbRAP1′s nucleic acid binding activities to perturb the integrity of telomere structure and disrupt VSG monoallelic expression may serve as potential therapeutic strategy against T. brucei.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (B.L.); (Y.Z.)
| | - Yanxiang Zhao
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Correspondence: (B.L.); (Y.Z.)
| |
Collapse
|
9
|
Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI. Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 2020; 37:101614. [PMID: 32863187 PMCID: PMC7767754 DOI: 10.1016/j.redox.2020.101614] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to “cell cycle arrest” or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.
Collapse
Affiliation(s)
- Abishai Dominic
- Department of Molecular and Cellular Biology Texas A&M Health Science Center, USA; Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Priyanka Banerjee
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA
| | - Dale J Hamilton
- Department of Medicine, Center for Bioenergetics Houston Methodist Research Institute, Texas, USA
| | - Nhat-Tu Le
- Department of Cardio-Vascular Regeneration, Houston Methodist Research Institute, Texas, USA.
| | - Jun-Ichi Abe
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Anuja K, Kar M, Chowdhury AR, Shankar G, Padhi S, Roy S, Akhter Y, Rath AK, Banerjee B. Role of telomeric RAP1 in radiation sensitivity modulation and its interaction with CSC marker KLF4 in colorectal cancer. Int J Radiat Biol 2020; 96:790-802. [PMID: 31985344 DOI: 10.1080/09553002.2020.1721609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aims: Radiotherapy is predominantly used as one of the treatment modalities to treat local tumor in colorectal cancer (CRC). Hindrance in disease treatment can be attributed to radio-tolerance of cancer stem cells (CSCs) subsistence in the tumor. Understanding the radio-resistant property of CSCs might help in the accomplishment of targeted radiotherapy treatment and increased disease-free survival. Telomeric RAP1 contributes in modulation of various transcription factors leading to aberrant cell proliferation and tumor cell migration. Therefore, we investigated the role of RAP1 in maintaining resistance phenotype and acquired stemness in radio-resistant cells.Main methods: Characterization of HCT116 derived radio-resistant cell (HCT116RR) was performed by cell survival and DNA damage profiling. RAP1 silenced cells were investigated for DNA damage and expression of CSC markers through western blotting and Real-time PCR post-irradiation. Molecular docking and co-immunoprecipitation study were performed to investigate RAP1 and KLF4 interaction followed by RAP1 protein status profiling in CRC patient.Key findings: We established radio-resistant cells, which showed tolerance to radiotherapy and elevated expression of CSC markers along with RAP1. RAP1 silencing showed enhanced DNA damage and reduced expression of CSC markers post-irradiation. We observed strong physical interaction between RAP1 and KLF4 protein. Furthermore, higher RAP1 expression was observed in the tumor of CRC patients. Dataset analysis also revealed that high expression of RAP1 expression is associated with poor prognosis.Significance: We conclude that higher expression of RAP1 implicates its possible role in promoting radio-resistance in CRC cells by modulating DNA damage and CSC phenotype.
Collapse
Affiliation(s)
- Kumari Anuja
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Amit Roy Chowdhury
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Swatishree Padhi
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
11
|
Cai Y, Ying F, Liu H, Ge L, Song E, Wang L, Zhang D, Hoi Ching Tang E, Xia Z, Irwin MG. Deletion of Rap1 protects against myocardial ischemia/reperfusion injury through suppressing cell apoptosis via activation of STAT3 signaling. FASEB J 2020; 34:4482-4496. [PMID: 32020680 DOI: 10.1096/fj.201901592rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Ischemic heart disease is a leading cause of morbidity and mortality. Repressor activator protein 1 (Rap1), an established telomere-associated protein, is a novel modulator of hypoxia-induced apoptosis. This study aimed to explore the potential direct role of Rap1 in myocardial ischemia/reperfusion injury (I/RI) and to determine the underlying molecular mechanism. In a mouse model of myocardial I/RI (30-min of left descending coronary artery ligation followed by 2-h reperfusion), Rap1 deficiency significantly reduced myocardial infarct size (IS) and improved cardiac systolic/diastolic function. This was associated with a reduction in apoptosis in the post-ischemic myocardium. In H9C2 and primary cardiomyocytes, Rap1 knockdown or knockout significantly suppressed hypoxia/reoxygenation (H/R)-induced cell injury and apoptosis through increasing the phosphorylation/activation of STAT3 at site Ser727 and translocation of STAT3 to the nucleus. We surmise this since Stattic (selective STAT3 inhibitor) pretreatment canceled the abovementioned protective effect. Furthermore, co-immunoprecipitation assay revealed a direct interaction between Rap1 and STAT3, but not JAK2, suggesting that the association of Rap1 with STAT3 may contribute to the reduced activity of STAT3 (Ser727 ) upon H/R stimulation. In conclusion, Rap1 deficiency protects the heart from ischemic damage through STAT3-dependent reduction of cardiomyocyte apoptosis, which may yield viable target for pharmacological intervention in ischemic heart disease.
Collapse
Affiliation(s)
- Yin Cai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Fan Ying
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Hao Liu
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China.,Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Ge
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun, China
| | - Erfei Song
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lin Wang
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Eva Hoi Ching Tang
- Department of Pharmacology and Pharmacy and School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Michael G Irwin
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Chen Y. The structural biology of the shelterin complex. Biol Chem 2019; 400:457-466. [PMID: 30352022 DOI: 10.1515/hsz-2018-0368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
The shelterin complex protects telomeric DNA and plays critical roles in maintaining chromosome stability. The structures and functions of the shelterin complex have been extensively explored in the past decades. This review summarizes the current progress on structural studies of shelterin complexes from different species. It focuses on the structural features and assembly of common structural domains, highlighting the evolutionary plasticity and conserved roles of shelterin proteins in telomere homeostasis and protection.
Collapse
Affiliation(s)
- Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
13
|
Kotla S, Le NT, Vu HT, Ko KA, Gi YJ, Thomas TN, Giancursio C, Lusis AJ, Cooke JP, Fujiwara K, Abe JI. Endothelial senescence-associated secretory phenotype (SASP) is regulated by Makorin-1 ubiquitin E3 ligase. Metabolism 2019; 100:153962. [PMID: 31476350 PMCID: PMC7059097 DOI: 10.1016/j.metabol.2019.153962] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Disturbed flow (d-flow)-induced senescence and activation of endothelial cells (ECs) have been suggested to have critical roles in promoting atherosclerosis. Telomeric repeat-binding factor 2 (TERF2)-interacting protein (TERF2IP), a member of the shelterin complex at the telomere, regulates the senescence-associated secretory phenotype (SASP), in which EC activation and senescence are engendered simultaneously by p90RSK-induced phosphorylation of TERF2IP S205 and subsequent nuclear export of the TERF2IP-TERF2 complex. In this study, we investigated TERF2IP-dependent gene expression and its role in regulating d-flow-induced SASP. METHODS A principal component analysis and hierarchical clustering were used to identify genes whose expression is regulated by TERF2IP in ECs under d-flow conditions. Senescence was determined by reduced telomere length, increased p53 and p21 expression, and increased apoptosis; EC activation was detected by NF-κB activation and the expression of adhesion molecules. The involvement of TERF2IP S205 phosphorylation in d-flow-induced SASP was assessed by depletion of TERF2IP and mutation of the phosphorylation site. RESULTS Our unbiased transcriptome analysis showed that TERF2IP caused alteration in the expression of a distinct set of genes, including rapamycin-insensitive companion of mTOR (RICTOR) and makorin-1 (MKRN1) ubiquitin E3 ligase, under d-flow conditions. In particular, both depletion of TERF2IP and overexpression of the TERF2IP S205A phosphorylation site mutant in ECs increased the d-flow and p90RSK-induced MKRN1 expression and subsequently inhibited apoptosis, telomere shortening, and NF-κB activation in ECs via suppression of p53, p21, and telomerase (TERT) induction. CONCLUSIONS MKRN1 and RICTOR belong to a distinct reciprocal gene set that is both negatively and positively regulated by p90RSK. TERF2IP S205 phosphorylation, a downstream event of p90RSK activation, uniquely inhibits MKRN1 expression and contributes to EC activation and senescence, which are key events for atherogenesis.
Collapse
Affiliation(s)
- Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Hang Thi Vu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamlyn N Thomas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carolyn Giancursio
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aldos J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Kotla S, Vu HT, Ko KA, Wang Y, Imanishi M, Heo KS, Fujii Y, Thomas TN, Gi YJ, Mazhar H, Paez-Mayorga J, Shin JH, Tao Y, Giancursio CJ, Medina JL, Taunton J, Lusis AJ, Cooke JP, Fujiwara K, Le NT, Abe JI. Endothelial senescence is induced by phosphorylation and nuclear export of telomeric repeat binding factor 2-interacting protein. JCI Insight 2019; 4:124867. [PMID: 31045573 PMCID: PMC6538340 DOI: 10.1172/jci.insight.124867] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
The interplay among signaling events for endothelial cell (EC) senescence, apoptosis, and activation and how these pathological conditions promote atherosclerosis in the area exposed to disturbed flow (d-flow) in concert remain unclear. The aim of this study was to determine whether telomeric repeat-binding factor 2-interacting protein (TERF2IP), a member of the shelterin complex at the telomere, can regulate EC senescence, apoptosis, and activation simultaneously, and if so, by what molecular mechanisms. We found that d-flow induced p90RSK and TERF2IP interaction in a p90RSK kinase activity-dependent manner. An in vitro kinase assay revealed that p90RSK directly phosphorylated TERF2IP at the serine 205 (S205) residue, and d-flow increased TERF2IP S205 phosphorylation as well as EC senescence, apoptosis, and activation by activating p90RSK. TERF2IP phosphorylation was crucial for nuclear export of the TERF2IP-TRF2 complex, which led to EC activation by cytosolic TERF2IP-mediated NF-κB activation and also to senescence and apoptosis of ECs by depleting TRF2 from the nucleus. Lastly, using EC-specific TERF2IP-knockout (TERF2IP-KO) mice, we found that the depletion of TERF2IP inhibited d-flow-induced EC senescence, apoptosis, and activation, as well as atherosclerotic plaque formation. These findings demonstrate that TERF2IP is an important molecular switch that simultaneously accelerates EC senescence, apoptosis, and activation by S205 phosphorylation.
Collapse
Affiliation(s)
- Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hang Thi Vu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yin Wang
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyung-Sun Heo
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuka Fujii
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tamlyn N. Thomas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Young Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hira Mazhar
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jesus Paez-Mayorga
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Ji-Hyun Shin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yunting Tao
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Carolyn J. Giancursio
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jan L.M. Medina
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Aldos J. Lusis
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Zhang X, Liu Z, Liu X, Wang S, Zhang Y, He X, Sun S, Ma S, Shyh-Chang N, Liu F, Wang Q, Wang X, Liu L, Zhang W, Song M, Liu GH, Qu J. Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein Cell 2019; 10:649-667. [PMID: 30796637 PMCID: PMC6711945 DOI: 10.1007/s13238-019-0610-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/03/2019] [Indexed: 01/19/2023] Open
Abstract
RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiyuan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
17
|
Harrington L, Pucci F. In medio stat virtus: unanticipated consequences of telomere dysequilibrium. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0444. [PMID: 29335368 PMCID: PMC5784064 DOI: 10.1098/rstb.2016.0444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 12/13/2022] Open
Abstract
The integrity of chromosome ends, or telomeres, depends on myriad processes that must balance the need to compact and protect the telomeric, G-rich DNA from detection as a double-stranded DNA break, and yet still permit access to enzymes that process, replicate and maintain a sufficient reserve of telomeric DNA. When unable to maintain this equilibrium, erosion of telomeres leads to perturbations at or near the telomeres themselves, including loss of binding by the telomere protective complex, shelterin, and alterations in transcription and post-translational modifications of histones. Although the catastrophic consequences of full telomere de-protection are well described, recent evidence points to other, less obvious perturbations that arise when telomere length equilibrium is altered. For example, critically short telomeres also perturb DNA methylation and histone post-translational modifications at distal sites throughout the genome. In murine stem cells for example, this dysregulated chromatin leads to inappropriate suppression of pluripotency regulator factors such as Nanog. This review summarizes these recent findings, with an emphasis on how these genome-wide, telomere-induced perturbations can have profound consequences on cell function and fate. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
Collapse
Affiliation(s)
- Lea Harrington
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Fabio Pucci
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
18
|
Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells 2019; 8:cells8010058. [PMID: 30654521 PMCID: PMC6356271 DOI: 10.3390/cells8010058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the “telomere clock” in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Collapse
|
19
|
Cai Y, Sukhova GK, Wong HK, Xu A, Tergaonkar V, Vanhoutte PM, Tang EHC. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions. Cell Cycle 2016; 14:3580-92. [PMID: 26505215 DOI: 10.1080/15384101.2015.1100771] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yin Cai
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Galina K Sukhova
- b Division of Cardiovascular Medicine; Brigham and Women's Hospital; Harvard Medical School ; Boston , MA USA
| | - Hoi Kin Wong
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Aimin Xu
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China.,c Department of Medicine ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Vinay Tergaonkar
- d Institute of Molecular and Cell Biology ; Biopolis A*STAR, Singapore
| | - Paul M Vanhoutte
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| | - Eva Hoi Ching Tang
- a Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology ; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China.,e School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Hong Kong , China
| |
Collapse
|
20
|
Gaullier G, Miron S, Pisano S, Buisson R, Le Bihan YV, Tellier-Lebègue C, Messaoud W, Roblin P, Guimarães BG, Thai R, Giraud-Panis MJ, Gilson E, Le Du MH. A higher-order entity formed by the flexible assembly of RAP1 with TRF2. Nucleic Acids Res 2016; 44:1962-76. [PMID: 26748096 PMCID: PMC4770236 DOI: 10.1093/nar/gkv1531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
Telomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shelterin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question is how its interaction may influence TRF2 properties and regulate its capacity to bind multiple proteins. Through a combination of biochemical, biophysical and structural approaches, we unveiled a unique mode of assembly between RAP1 and TRF2. The complete interaction scheme between the full-length proteins involves a complex biphasic interaction of RAP1 that directly affects the binding properties of the assembly. These results reveal how a non-DNA binding protein can influence the properties of a DNA-binding partner by mutual conformational adjustments.
Collapse
Affiliation(s)
- Guillaume Gaullier
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, UMR 9198 CNRS, Université Paris-Sud, Batiment 144, CEA Saclay, Gif-sur-Yvette, F-91191, France
| | - Simona Miron
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, UMR 9198 CNRS, Université Paris-Sud, Batiment 144, CEA Saclay, Gif-sur-Yvette, F-91191, France
| | - Sabrina Pisano
- Institute for Research on Cancer and Aging, Nice (IRCAN); CNRS UMR7284/INSERM U1081; Faculty of Medicine; Nice, 06107, France
| | - Rémi Buisson
- Institute for Research on Cancer and Aging, Nice (IRCAN); CNRS UMR7284/INSERM U1081; Faculty of Medicine; Nice, 06107, France
| | - Yann-Vaï Le Bihan
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, UMR 9198 CNRS, Université Paris-Sud, Batiment 144, CEA Saclay, Gif-sur-Yvette, F-91191, France
| | - Carine Tellier-Lebègue
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, UMR 9198 CNRS, Université Paris-Sud, Batiment 144, CEA Saclay, Gif-sur-Yvette, F-91191, France
| | - Wala Messaoud
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, UMR 9198 CNRS, Université Paris-Sud, Batiment 144, CEA Saclay, Gif-sur-Yvette, F-91191, France
| | - Pierre Roblin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 GIF-SUR-YVETTE Cedex, France Institut National de la Recherche Agronomique, Unité Biopolymères, Interactions, Assemblages, 44316 Nantes, France
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 GIF-SUR-YVETTE Cedex, France
| | - Robert Thai
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France
| | - Marie-Josèphe Giraud-Panis
- Institute for Research on Cancer and Aging, Nice (IRCAN); CNRS UMR7284/INSERM U1081; Faculty of Medicine; Nice, 06107, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging, Nice (IRCAN); CNRS UMR7284/INSERM U1081; Faculty of Medicine; Nice, 06107, France Department of Genetics, CHU; Nice, 06107, France
| | - Marie-Hélène Le Du
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, UMR 9198 CNRS, Université Paris-Sud, Batiment 144, CEA Saclay, Gif-sur-Yvette, F-91191, France
| |
Collapse
|
21
|
Li X, Liu W, Wang H, Yang L, Li Y, Wen H, Ning H, Wang J, Zhang L, Li J, Fan D. Rap1 is indispensable for TRF2 function in etoposide-induced DNA damage response in gastric cancer cell line. Oncogenesis 2015; 4:e144. [PMID: 25821946 PMCID: PMC4491608 DOI: 10.1038/oncsis.2015.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
The telomeric protein TRF2, involving in telomeric and extratelomeric DNA damage response, has been previously reported to facilitate multidrug resistance (MDR) in gastric cancer cells by interfering ATM-dependent DNA damage response induced by anticancer drugs. Rap1 is the TRF2-interacting protein in the shelterin complex. Complex formation between Rap1 and TRF2 is essential for their function in telomere and end protection. Here we focus on the effects of Rap1 on TRF2 function in DNA damage response induced by anticancer drugs. Both Rap1 and TRF2 expression were upregulated in SGC7901 and its MDR variant SGC7901/VCR after etoposide treatment, which was more marked in SGC7901/VCR than in SGC7901. Rap1 silencing by siRNA in SGC7901/VCR partially reversed the etoposide resistance. And Rap1 silencing partially reversed the TRF2-mediated resistance to etoposide in SGC7901. Rap1 silencing did not affect the TRF2 upregulation induced by etoposide, but eliminated the inhibition effect of TRF2 on ATM expression and ATM phosphorylation at serine 1981 (ATM pS1981). Furthermore, phosphorylation of ATM targets, including γH2AX and serine 15 (S15) on p53, were increased in Rap1 silencing cells in response to etoposide. Thus, we confirm that Rap1, interacting with TRF2 in the shelterin complex, also has an important role in TRF2-mediated DNA damage response in gastric cancer cells treated by etoposide.
Collapse
Affiliation(s)
- X Li
- Department of Neurology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - W Liu
- Department V of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - H Wang
- Department V of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - L Yang
- Department V of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Li
- Department V of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - H Wen
- Department V of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - H Ning
- Department V of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - J Wang
- Department V of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - L Zhang
- Department II of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - J Li
- Department of Neurology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - D Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Janoušková E, Nečasová I, Pavloušková J, Zimmermann M, Hluchý M, Marini V, Nováková M, Hofr C. Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res 2015; 43:2691-700. [PMID: 25675958 PMCID: PMC4357705 DOI: 10.1093/nar/gkv097] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1–TRF2 complex is a critical part of shelterin as it suppresses homology-directed repair in Ku 70/80 heterodimer absence. To understand how Rap1 affects key functions of TRF2, we investigated full-length Rap1 binding to TRF2 and Rap1–TRF2 complex interactions with double-stranded DNA by quantitative biochemical approaches. We observed that Rap1 reduces the overall DNA duplex binding affinity of TRF2 but increases the selectivity of TRF2 to telomeric DNA. Additionally, we observed that Rap1 induces a partial release of TRF2 from DNA duplex. The improved TRF2 selectivity to telomeric DNA is caused by less pronounced electrostatic attractions between TRF2 and DNA in Rap1 presence. Thus, Rap1 prompts more accurate and selective TRF2 recognition of telomeric DNA and TRF2 localization on single/double-strand DNA junctions. These quantitative functional studies contribute to the understanding of the selective recognition of telomeric DNA by the whole shelterin complex.
Collapse
Affiliation(s)
- Eliška Janoušková
- Chromatin Molecular Complexes, CEITEC and Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ivona Nečasová
- Chromatin Molecular Complexes, CEITEC and Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Jana Pavloušková
- Chromatin Molecular Complexes, CEITEC and Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Michal Zimmermann
- Chromatin Molecular Complexes, CEITEC and Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Milan Hluchý
- Chromatin Molecular Complexes, CEITEC and Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Brno CZ-62500, Czech Republic
| | - Monika Nováková
- Chromatin Molecular Complexes, CEITEC and Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ctirad Hofr
- Chromatin Molecular Complexes, CEITEC and Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| |
Collapse
|
23
|
Lin J, Kaur P, Countryman P, Opresko PL, Wang H. Unraveling secrets of telomeres: one molecule at a time. DNA Repair (Amst) 2014; 20:142-153. [PMID: 24569170 DOI: 10.1016/j.dnarep.2014.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/03/2014] [Accepted: 01/13/2014] [Indexed: 01/23/2023]
Abstract
Telomeres play important roles in maintaining the stability of linear chromosomes. Telomere maintenance involves dynamic actions of multiple proteins interacting with long repetitive sequences and complex dynamic DNA structures, such as G-quadruplexes, T-loops and t-circles. Given the heterogeneity and complexity of telomeres, single-molecule approaches are essential to fully understand the structure-function relationships that govern telomere maintenance. In this review, we present a brief overview of the principles of single-molecule imaging and manipulation techniques. We then highlight results obtained from applying these single-molecule techniques for studying structure, dynamics and functions of G-quadruplexes, telomerase, and shelterin proteins.
Collapse
Affiliation(s)
- Jiangguo Lin
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Preston Countryman
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
24
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|
25
|
Panero J, Stanganelli C, Arbelbide J, Fantl DB, Kohan D, García Rivello H, Rabinovich GA, Slavutsky I. Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression. Blood Cells Mol Dis 2013; 52:134-9. [PMID: 24239198 DOI: 10.1016/j.bcmd.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 02/08/2023]
Abstract
The core complex of telomere-associated proteins, named the shelterin complex, plays a critical role in telomere protection and telomere length (TL) homeostasis. In this study, we have explored changes in the expression of telomere-associated genes POT1, TIN2, RAP1 and TPP1, in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). A total of 154 patients: 70 with MGUS and 84 with MM were studied. Real-time quantitative PCR was used to quantify gene expression. TL was evaluated by Terminal Restriction Fragments. Our data showed increased expression of POT1, TPP1, TIN2 and RAP1 in MM with respect to MGUS patients, with significant differences for POT1 gene (p=0.002). In MM, the correlation of gene expression profiles with clinical characteristics highlighted POT1 for its significant association with advanced clinical stages, high calcium and β2-microglobulin levels (p=0.02) and bone lesions (p=0.009). In multivariate analysis, POT1 expression (p=0.04) was a significant independent prognostic factor for overall survival as well as the staging system (ISS) (p<0.02). Our findings suggest for the first time the participation of POT1 in the transformation process from MGUS to MM, and provide evidence of this gene as a useful prognostic factor in MM as well as a possible molecular target to design new therapeutic strategies.
Collapse
Affiliation(s)
- Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jorge Arbelbide
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dorotea Beatriz Fantl
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dana Kohan
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Argentina
| | | | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Yeung F, Ramírez CM, Mateos-Gomez PA, Pinzaru A, Ceccarini G, Kabir S, Fernández-Hernando C, Sfeir A. Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity. Cell Rep 2013; 3:1847-56. [PMID: 23791522 DOI: 10.1016/j.celrep.2013.05.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/16/2013] [Accepted: 05/21/2013] [Indexed: 11/15/2022] Open
Abstract
The mammalian telomere-binding protein Rap1 was recently found to have additional nontelomeric functions, acting as a transcriptional cofactor and a regulator of the NF-κB pathway. Here, we assess the effect of disrupting mouse Rap1 in vivo and report on its unanticipated role in metabolic regulation and body-weight homeostasis. Rap1 inhibition causes dysregulation in hepatic as well as adipose function, leading to glucose intolerance, insulin resistance, liver steatosis, and excess fat accumulation. Furthermore, Rap1 appears to play a pivotal role in the transcriptional cascade that controls adipocyte differentiation in vitro. Using a separation-of-function allele, we show that the metabolic function of Rap1 is independent of its recruitment to TTAGGG binding elements found at telomeres and at other interstitial loci. In conclusion, our study underscores an additional function for the most conserved telomere-binding protein, forging a link between telomere biology and metabolic signaling.
Collapse
Affiliation(s)
- Frank Yeung
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Miller AS, Balakrishnan L, Buncher NA, Opresko PL, Bambara RA. Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro. Cell Cycle 2012; 11:998-1007. [PMID: 22336916 PMCID: PMC3323798 DOI: 10.4161/cc.11.5.19483] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/13/2022] Open
Abstract
Human telomeres consist of multiple tandem hexameric repeats, each containing a guanine triplet. Guanosine-rich clusters are highly susceptible to oxidative base damage, necessitating base excision repair (BER). Previous demonstration of enhanced strand displacement synthesis by the BER component DNA polymerase β in the presence of telomere protein TRF2 suggests that telomeres employ long-patch (LP) BER. Earlier analyses in vitro showed that efficiency of BER reactions is reduced in the DNA-histone environment of chromatin. Evidence presented here indicates that BER is promoted at telomeres. We found that the three proteins that contact telomere DNA, POT1, TRF1 and TRF2, enhance the rate of individual steps of LP-BER and stimulate the complete reconstituted LP-BER pathway. Thought to protect telomere DNA from degradation, these proteins still apparently evolved to allow selective access of repair proteins.
Collapse
Affiliation(s)
- Adam S Miller
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
28
|
Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics 2012; 99:132-7. [PMID: 22234326 DOI: 10.1016/j.ygeno.2011.12.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 12/16/2011] [Accepted: 12/22/2011] [Indexed: 11/23/2022]
Abstract
Variants of the FTO gene show strong association with obesity, but the mechanisms behind this association remain unclear. We determined the genome wide DNA methylation profile in blood from 47 female preadolescents. We identified sites associated with the genes KARS, TERF2IP, DEXI, MSI1, STON1 and BCAS3 that had a significant differential methylation level in the carriers of the FTO risk allele (rs9939609). In addition, we identified 20 differentially methylated sites associated with obesity. Our findings suggest that the effect of the FTO obesity risk allele may be mediated through epigenetic changes. Further, these sites might prove to be valuable biomarkers for the understanding of obesity and its comorbidites.
Collapse
|
29
|
Sheppard SA, Savinova T, Loayza D. TRIP6 and LPP, but not Zyxin, are present at a subset of telomeres in human cells. Cell Cycle 2011; 10:1726-30. [PMID: 21519191 DOI: 10.4161/cc.10.11.15676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The protection of chromosome ends requires the inhibition of DNA damage responses at telomeres. This inhibition is exerted in great part by the shelterin complex, known to prevent inappropriate ATM and ATR activation. The molecular mechanisms by which shelterin protects telomeres are incompletely understood. Recently, we have implicated for the first time a class of molecules, LIM domain proteins, in telomere protection. This protection occurred through interaction with shelterin, possibly through POT1, and required the pair of LIM proteins TRIP6 and LPP, themselves part of the Zyxin family. The domain similarity between TRIP6, LPP and Zyxin led us to ask whether the latter also interacted with telomeres. Here, we show that there is specificity in the association of LIM proteins with telomeres: Zyxin, despite a high degree of similarity with TRIP6 and LPP, was not detected at telomeres, nor found in a complex with shelterin. TRIP6 and LPP, however, were detected by immunofluorescence at a small subset of telomeres, perhaps those that are critically short. We speculate that specific LIM proteins are part of complex events occurring in the context of the telomere dysfunction response, and possibly at play during the induction of senescence.
Collapse
|