1
|
Pan X, Zhang W, Wang L, Guo H, Zheng M, Wu H, Weng Q, He Q, Ding L, Yang B. KLF12 transcriptionally regulates PD-L1 expression in non-small cell lung cancer. Mol Oncol 2023; 17:2659-2674. [PMID: 37606530 DOI: 10.1002/1878-0261.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Recent studies have pointed to the role of Krüpple-like factor 12 (KLF12) in cancer-associated processes, including cancer proliferation, apoptosis, and metastasis. However, the role of KLF12 in tumor immunity remains obscure. Here, we found that KLF12 expression was significantly higher in non-small cell lung cancer (NSCLC) cells with higher programmed death-ligand 1 (PD-L1) expression. Additionally, a positive correlation between KLF12 and PD-L1 was observed in clinical patient tumor tissues. By chromatin immunoprecipitation (ChIP) analysis, KLF12 was identified to bind to the CACCC motif of the PD-L1 promoter. Overexpression of KLF12 promoted PD-L1 transcription, whereas silencing of KLF12 inhibited PD-L1 transcription. Furthermore, signal transducer and activator of transcription 1 (STAT1)- and STAT3-triggered PD-L1 transcription was abolished in the absence of KLF12, and KLF12 knockdown weakened the binding of STAT1 and STAT3 to the PD-L1 promoter. Mechanistically, KLF12 physically interacted with P300, a histone acetyltransferase. In addition, KLF12 silencing reduced P300 binding to the PD-L1 promoter, which subsequently caused decreased acetylation of histone H3. PD-L1 transcription driven by KLF12 overexpression was eliminated by EP300 silencing. In immunocompetent mice, KLF12 knockout inhibited tumor growth and promoted infiltration of CD8+ T cells. However, this phenomenon was not observed in immunodeficient mice. Overall, this study reveals KLF12-mediated transcriptional regulation of PD-L1 in NSCLC; targeting KLF12 may be a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Zeng C, Chen J, Cooke EW, Subuddhi A, Roodman ET, Chen FX, Cao K. Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition. Nat Commun 2023; 14:4944. [PMID: 37607921 PMCID: PMC10444793 DOI: 10.1038/s41467-023-40606-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
The major enhancer regulator lysine-specific histone demethylase 1A (LSD1) is required for mammalian embryogenesis and is implicated in human congenital diseases and multiple types of cancer; however, the underlying mechanisms remain enigmatic. Here, we dissect the role of LSD1 and its demethylase activity in gene regulation and cell fate transition. Surprisingly, the catalytic inactivation of LSD1 has a mild impact on gene expression and cellular differentiation whereas the loss of LSD1 protein de-represses enhancers globally and impairs cell fate transition. LSD1 deletion increases H3K27ac levels and P300 occupancy at LSD1-targeted enhancers. The gain of H3K27ac catalyzed by P300/CBP, not the loss of CoREST complex components from chromatin, contributes to the transcription de-repression of LSD1 targets and differentiation defects caused by LSD1 loss. Together, our study demonstrates a demethylase-independent role of LSD1 in regulating enhancers and cell fate transition, providing insight into treating diseases driven by LSD1 mutations and misregulation.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jiwei Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai, China
| | - Emmalee W Cooke
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Arijita Subuddhi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Eliana T Roodman
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai, China
| | - Kaixiang Cao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Zhu P, Liu HY, Liu FC, Gu FM, Yuan SX, Huang J, Pan ZY, Wang WJ. Circulating Tumor Cells Expressing Krüppel-Like Factor 8 and Vimentin as Predictors of Poor Prognosis in Pancreatic Cancer Patients. Cancer Control 2021; 28:10732748211027163. [PMID: 34378430 PMCID: PMC8361509 DOI: 10.1177/10732748211027163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) with an epithelial-mesenchymal transition phenotype in peripheral blood may be a useful marker of carcinomas with poor prognosis. The aim of this study was to determine the prognostic significance of CTCs expressing Krüppel-like factor 8 (KLF8) and vimentin in pancreatic cancer (PC). METHODS CTCs were isolated by immunomagnetic separation from the peripheral blood of 40 PC patients before undergoing surgical resection. Immunocytochemistry was performed to identify KLF8+ and vimentin+ CTCs. The associations between CTCs and time to recurrence (TTR), clinicopathologic factors, and survival were assessed. Univariate and multivariate analyzes were performed to identify risk factors. RESULTS Patients with CTCs (n = 30) had a higher relapse rate compared to those without (n = 10) (70.0% vs 20.0%; P < 0.01). The proportion of KLF8+/vimentin+ CTCs to total CTCs was inversely related to TTR (r = -0.646; P < 0.01); TTR was reduced in patients with > 50% of CTCs identified as KLF8+/vimentin+ (P < 0.01). Independent risk factors for recurrence were perineural invasion and > 50% KLF8+/vimentin+ CTCs (both P < 0.05). CONCLUSION Poor prognosis can be predicted in PC patients when > 50% of CTCs are positive for KLF8 and vimentin.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hui-Ying Liu
- Department of Biotherapy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fu-Chen Liu
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fang-Ming Gu
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Sheng-Xian Yuan
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jian Huang
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ze-Ya Pan
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wei-Jun Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Kumar S, Behera A, Saha P, Kumar Srivastava A. The role of Krüppel-like factor 8 in cancer biology: Current research and its clinical relevance. Biochem Pharmacol 2020; 183:114351. [PMID: 33253644 DOI: 10.1016/j.bcp.2020.114351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide, ranked second after heart disease. Despite recent advancements in diagnosis and treatment, there are still numerous problems associated with cancer progression, disease recurrence, and therapeutic resistance that are partially explored. Several studies have recently revealed that Krüppel-like factor 8 (KLF8) regulates transcription of genes linked with diverse biological processes, including proliferation, epithelial to mesenchymal transition (EMT), migration, invasion, and inflammation. KLF8 is expressed ubiquitously in mammalian cells, and its aberrant expression has been manifested with several cancer types. Earlier studies demonstrated the crucial role of KLF8 in DNA repair and resistance to apoptosis in numerous cancer types. Hence, studying the function of KLF8 from the perspective of cancer progression and therapy resistance would help develop a new therapeutic avenue. In this review, we summarize the clinical relevance of KLF8 expression in various malignancies, focusing on recent updates in EMT, cellular signaling, and cancer stem cells. We also address the contribution of KLF8 in development, DNA repair, chemoresistance, and its clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| |
Collapse
|
5
|
Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194609. [PMID: 32730897 DOI: 10.1016/j.bbagrm.2020.194609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
A wealth of biochemical and cellular data, accumulated over several years by multiple groups, has provided a great degree of insight into the molecular mechanisms of actions of GCN5 and PCAF in gene activation. Studies of these lysine acetyltransferases (KATs) in vitro, in cultured cells, have revealed general mechanisms for their recruitment by sequence-specific binding factors and their molecular functions as transcriptional co-activators. Genetic studies indicate that GCN5 and PCAF are involved in multiple developmental processes in vertebrates, yet our understanding of their molecular functions in these contexts remains somewhat rudimentary. Understanding the functions of GCN5/PCAF in developmental processes provides clues to the roles of these KATs in disease states. Here we will review what is currently known about the developmental roles of GCN5 and PCAF, as well as emerging role of these KATs in oncogenesis.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.
| |
Collapse
|
6
|
TRAF2 Knockdown in Nasopharyngeal Carcinoma Induced Cell Cycle Arrest and Enhanced the Sensitivity to Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1641340. [PMID: 32566659 PMCID: PMC7277071 DOI: 10.1155/2020/1641340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/04/2020] [Indexed: 12/14/2022]
Abstract
TRAF2 is a crucial adaptor protein involved in various signaling pathways. However, its biological functions in nasopharyngeal carcinoma (NPC) remain largely unknown. In the present study, we found that TRAF2 was overexpressed in nasopharyngeal carcinoma (NPC) cells. Knockdown of TRAF2 with shRNA significantly suppressed NPC cell proliferation and colony formation. The growth of xenograft tumor significantly reduced after TRAF2 was silenced. Conversely, the ectopic overexpression of TRAF2 significantly promoted cell proliferation and anchorage-independent growth. In TRAF2 knockdown cells, EGF-induced activation of transcriptional factors, including MSK1, CREB, and ATF2, markedly decreased. Accordingly, the transcriptional activity of AP-1 was substantially decreased in TRAF2-deficient cells. With the suppression of gene transcription, the expression of cyclin D1 was significantly impaired, which gave rise to the G0/G1 cell cycle arrest. Moreover, the overexpression of TRAF2 in NPC cells was associated with resistance to irradiation, and the potency of irradiation was substantially enhanced after TRAF2 was knocked down. Briefly, our studies demonstrated that TRAF2 had a crucial role in NPC development, and it might be of great potential to targeting TRAF2 for NPC prevention and treatment.
Collapse
|
7
|
Sun A, Hao J, Yu L, Lahiri SK, Yang W, Lin Q, Zhao J. Regulation of Krüppel-like factor 8 by the NEDD4 E3 ubiquitin ligase. Am J Transl Res 2019; 11:1521-1530. [PMID: 30972179 PMCID: PMC6456509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Krüppel-like factor 8 (KLF8) plays many important roles in various diseases, especially cancer. Previous studies have shown that KLF8 is regulated by ubiquitylation. The molecular mechanism underlying this posttranslational modification of KLF8, however, has not been investigated. Reported here is our identification of the neural precursor cell expressed, developmentally down-regulated 4 (NEDD4) as the E3 ubiquitin ligase for this modification. By co-immunoprecipitation and ubiquitylation assays, we determined that KLF8 interacts with NEDD4 and is ubiquitylated by NEDD4. By site-directed mutagenesis and pharmacological inhibition of MEK, we found that the ubiquitylation of KLF8 by NEDD4 depends upon the phosphorylation of KLF8 at serine 48 by ERK. Cycloheximide chase analysis, target gene promoter reporter assay and fluorescent staining indicated that NEDD4 plays a critical role in promoting the stability and transcriptional activity of KLF8 in the nucleus. Taken together, this work identified NEDD4 as a novel E3 ubiquitin ligase for KLF8 that provides insights into targeting the KLF8-NEDD4 axis to treat various types of cancer associated with overexpression of both proteins.
Collapse
Affiliation(s)
- Aiqin Sun
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
- School of Medicine Jiangsu UniversityZhenjiang, China
| | - Jie Hao
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
| | - Satadru K Lahiri
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
- Cardiovascular Research Institute and Department of Molecular Physiology and Biophysics, Baylor College of MedicineHouston, TX 77030, USA
| | - Wannian Yang
- School of Medicine Jiangsu UniversityZhenjiang, China
| | - Qiong Lin
- School of Medicine Jiangsu UniversityZhenjiang, China
| | - Jihe Zhao
- Burnett School of Biomedical Sciences University of Central Florida College of MedicineOrlando, FL 32827, USA
| |
Collapse
|
8
|
Cheng S, Zhang X, Xu Y, Dai X, Li J, Zhang T, Chen X. Krüppel-like factor 8 regulates VEGFA expression and angiogenesis in hepatocellular carcinoma. Sci Rep 2018; 8:17415. [PMID: 30479372 PMCID: PMC6258679 DOI: 10.1038/s41598-018-35786-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/03/2018] [Indexed: 01/17/2023] Open
Abstract
Tumor angiogenesis plays a critical role in hepatocellular carcinoma (HCC) development and progression, but its mechanism is unclear. Krüppel-like factor 8 (KLF8) is a transcription factor that plays an important role in HCC progression. Here, we investigated the role of KLF8 in angiogenesis in HCC and its possible mechanism. Immunohistochemistry, quantitative RT-PCR, western blotting, promoter reporter assays, chromatin immunoprecipitation (ChIP), and chicken chorioallantoic membrane (CAM) and nude mouse tumor models were used to show that the mRNA and protein expression levels of KLF8 and VEGFA are highly correlated in HCC tissue samples. The up-regulation of KLF8 increased VEGFA protein levels and induced VEGFA promoter activity by binding to the CACCC region of the VEGFA promoter. In addition, KLF8 regulated HIF-1α and Focal adhesion kinase (FAK) expression. The PI3K/AKT inhibitor LY294002 inhibited KLF8-induced VEGFA expression, whereas PI3K/AKT signaling pathway proteins, such as P-PDK1(Ser241) and P-AKT(Thr308), were decreased significantly. KLF8-overexpressing HCC cells had a higher potential for inducing angiogenesis. Thus, our results indicate that KLF8 may induce angiogenesis in HCC by binding to the CACCC region of the VEGFA promoter to induce VEGFA promoter activity and through FAK to activate PI3K/AKT signaling to regulate HIF-1α expression levels.
Collapse
Affiliation(s)
- Sanuo Cheng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Clinical Medical College, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xingping Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yali Xu
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Xiaobo Dai
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiachu Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Tao Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaopin Chen
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Rovira-Rigau M, Raimondi G, Marín MÁ, Gironella M, Alemany R, Fillat C. Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Mol Ther 2018; 27:230-243. [PMID: 30341009 DOI: 10.1016/j.ymthe.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses are designed for cancer treatment. Cell-virus interactions are key determinants for successful viral replication. Therefore, the extensive reprogramming of gene expression that occurs in tumor cells might create a hurdle for viral propagation. We used a replication-based approach of a microRNA (miRNA) adenoviral library encoding up to 243 human miRNAs as a bioselection strategy to identify miRNAs that facilitate adenoviral oncolytic activity in pancreatic ductal adenocarcinoma. We identify two miRNAs, miR-99b and miR-485, that function as enhancers of adenoviral oncolysis by improving the intra- and extracellular yield of mature virions. An increased adenoviral activity is the consequence of enhanced E1A and late viral protein expression, which is probably mediated by the downregulation of the transcriptional repressors ELF4, MDM2, and KLF8, which we identify as miR-99b or miR-485 target genes. Arming the oncolytic adenovirus ICOVIR15 with miR-99b or miR-485 enhances its fitness and its antitumoral activity. Our results demonstrate the potential of this strategy to improve oncolytic adenovirus potency, and they highlight miR-99b and miR-485 as sensitizers of adenoviral replication.
Collapse
Affiliation(s)
- Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Giulia Raimondi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Miguel Ángel Marín
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Meritxell Gironella
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain
| | - Ramon Alemany
- Institut Català d'Oncologia-IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain.
| |
Collapse
|
10
|
Mukherjee D, Lu H, Yu L, He C, Lahiri SK, Li T, Zhao J. Krüppel-like factor 8 activates the transcription of C-X-C cytokine receptor type 4 to promote breast cancer cell invasion, transendothelial migration and metastasis. Oncotarget 2018; 7:23552-68. [PMID: 26993780 PMCID: PMC5029647 DOI: 10.18632/oncotarget.8083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/25/2016] [Indexed: 02/04/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) has been strongly implicated in breast cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we report a novel signaling from KLF8 to C-X-C cytokine receptor type 4 (CXCR4) in breast cancer. Overexpression of KLF8 in MCF-10A cells induced CXCR4 expression at both mRNA and protein levels, as determined by quantitative real-time PCR and immunoblotting. This induction was well correlated with increased Boyden chamber migration, matrigel invasion and transendothelial migration (TEM) of the cells towards the ligand CXCL12. On the other hand, knockdown of KLF8 in MDA-MB-231 cells reduced CXCR4 expression associated with decreased cell migration, invasion and TEM towards CXCL12. Histological and database mining analyses of independent cohorts of patient tissue microarrays revealed a correlation of aberrant co-elevation of KLF8 and CXCR4 with metastatic potential. Promoter analysis indicated that KLF8 directly binds and activates the human CXCR4 gene promoter. Interestingly, a CXCR4-dependent activation of focal adhesion kinase (FAK), a known upregulator of KLF8, was highly induced by CXCL12 treatment in KLF8-overexpressing, but not KLF8 deficient cells. This activation of FAK in turn induced a further increase in KLF8 expression. Xenograft studies showed that overexpression of CXCR4, but not a dominant-negative mutant of it, in the MDA-MB-231 cells prevented the invasive growth of primary tumor and lung metastasis from inhibition by knockdown of KLF8. These results collectively suggest a critical role for a previously unidentified feed-forward signaling wheel made of KLF8, CXCR4 and FAK in promoting breast cancer metastasis and shed new light on potentially more effective anti-cancer strategies.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Heng Lu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Chunjiang He
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Satadru K Lahiri
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| | - Tianshu Li
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA.,Current address: Cleveland Clinic, Cleveland, OH, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
11
|
Yi X, Zai H, Long X, Wang X, Li W, Li Y. Krüppel-like factor 8 induces epithelial-to-mesenchymal transition and promotes invasion of pancreatic cancer cells through transcriptional activation of four and a half LIM-only protein 2. Oncol Lett 2017; 14:4883-4889. [PMID: 28943967 DOI: 10.3892/ol.2017.6734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive types of cancer with an extremely poor prognosis. Invasive growth and early metastasis is one of the greatest challenges to overcome for the treatment of PC. Numerous previous studies have indicated that the transcription factor Krüppel-like factor 8 (KLF8) and nuclear cofactor four and a half LIM-only protein 2 (FHL2) serve important roles in tumorigenesis and tumor progression; however, their roles in PC remain elusive. The present study revealed that KLF8 and FHL2 expression is aberrantly co-overexpressed in PC tissue samples and associated with tumor metastasis. Furthermore, a positive correlation between the expression levels of KLF8 and FHL2 was observed. Subsequently, the present study identified KLF8 as a critical inducer of epithelial-to-mesenchymal transition (EMT) and invasion. Of note, the present study demonstrated that KLF8 overexpression induced a strong increase in FHL2 expression, and subsequent promoter reporter assays determined that KLF8 directly bound and activated the FHL2 gene promoter. Furthermore, FHL2 knockdown in KLF8-overexpressing cells partially reversed the EMT and invasive phenotypes. The present study identified KLF8-induced FHL2 activation as a novel and critical signaling mechanism underlying human PC invasion.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Postdoctoral Research Workstation of Pathology and Pathophysiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongyan Zai
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yixiong Li
- Department of General Surgery, Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
12
|
Choi HJ, Kwon S, Kim DW. A post-translational modification cascade employing HDAC9-PIASy-RNF4 axis regulates chondrocyte hypertrophy by modulating Nkx3.2 protein stability. Cell Signal 2016; 28:1336-1348. [DOI: 10.1016/j.cellsig.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022]
|
13
|
Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget 2016; 6:21428-42. [PMID: 26025929 PMCID: PMC4673276 DOI: 10.18632/oncotarget.4077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/14/2015] [Indexed: 01/22/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) is a dual transcriptional factor critical for breast cancer progression. Epidermal growth factor receptor (EGFR) is frequently overexpressed in aggressive such as triple-negative breast cancer and associated with poor clinical outcomes. Here we report a novel KLF8-EGFR signaling axis in breast cancer. We identified a highly correlated co-overexpression between KLF8 and EGFR in invasive breast cancer cells and patient tumor samples. Overexpression of KLF8 in the non-tumorigenic MCF-10A cells induced the expression of EGFR, whereas knockdown of KLF8 from the MDA-MB-231 cells decreased it. Promoter activation and binding assays indicated that KLF8 promotes the EGFR expression by directly binding its gene promoter. We also revealed that KLF8 directly represses the promoter of miR141 and miR141 targets the 3′-untranslational region of EGFR transcript to inhibit EGFR translation. Treatment with the EGFR inhibitor AG1478 or overexpression of miR141 blocked the activity of ERK downstream of EGFR and inhibited KLF8-depndent cell invasiveness, proliferation and viability in cell culture and invasive growth and lung metastasis in nude mice. Conversely, overexpression of an inhibitory sponge of miR141 led to the opposite phenotypes. Taken together, these findings demonstrate a novel KLF8 to miR141/EGFR signaling pathway potentially crucial for breast cancer malignancy.
Collapse
|
14
|
Lahiri SK, Lu H, Mukherjee D, Yu L, Zhao J. ERK2 phosphorylates Krüppel-like factor 8 protein at serine 48 to maintain its stability. Am J Cancer Res 2016; 6:910-923. [PMID: 27293988 PMCID: PMC4889709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 06/06/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) plays important roles in cancer and is strictly regulated by various post-translational modifications such as sumoylation, acetylation, ubiquitylation and PARylation. Here we report a novel phosphorylation of KLF8 by ERK2 responsible and critical for the stability of KLF8 protein. The full-length KLF8 protein displays a doublet in SDS-PAGE gel. The upper band of the doublet, however, disappeared when the N-terminal 50 amino acids were deleted. In its full-length the upper band disappeared upon phosphatase treatment or mutation of the serine 48 (S48) to alanine whereas the lower band was lost when the S48 was mutated to aspartic acid that mimics phosphorylated S48. These results suggest that S48 phosphorylation is responsible for the motility up-shift of KLF8 protein. Pharmacological and genetic manipulations of various potential kinases identified ERK2 as the likely one that phosphorylates KLF8 at S48. Functional studies indicated that this phosphorylation is crucial for protecting KLF8 protein from degradation in the nucleus and promoting cell migration. Taken together, this study identifies a novel mechanism of phosphorylation critical for KLF8 protein stabilization and function.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Heng Lu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Debarati Mukherjee
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Lin Yu
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| | - Jihe Zhao
- Burnett School of Biomedical Sciences University of Central Florida College of Medicine Orlando, Florida 32827
| |
Collapse
|
15
|
Liang K, Liu T, Chu N, Kang J, Zhang R, Yu Y, Li D, Lu D. KLF8 is required for bladder cancer cell proliferation and migration. Biotechnol Appl Biochem 2015; 62:628-33. [PMID: 25323066 DOI: 10.1002/bab.1310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022]
Abstract
Krüppel-like factor 8 (KLF8) belongs to the Sp/KLF family of transcription factors. Recently, it is affirmed that KLF8 plays an important role in the regulation of epithelial-mesenchymal transition, which is a key process that occurs during cancer metastasis. Although the overexpression of KLF8 has been observed in several types of human cancers, the functional role of KLF8 in human bladder cancer remains unknown. Here, we investigated the effects of KLF8 knockdown on bladder cancer cell proliferation and migration in vitro. Lentivirus-mediated small interfering RNA (siRNA) targeting KLF8 specifically downregulated its expression in T24 and BT5637 bladder cancer cells. Knockdown of KLF8 significantly inhibit cell proliferation and colony formation. Cell cycle analysis showed that knockdown of KLF8 arrested T24 cells in the G0/G1 phase. Moreover, cell migration was attenuated in T24 cells after KLF8 knockdown. Furthermore, knockdown of KLF8 resulted in a reduction in vimentin and N-cadherin expression and an increase in β-catenin expression. These results indicate that KLF8 plays a crucial role in proliferation and migration of bladder cancer cells, and inhibition of KLF8 by siRNA may provide a potential therapeutic approach for gene therapy in bladder cancer.
Collapse
Affiliation(s)
- Kai Liang
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Tao Liu
- Department of Urology, the First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ning Chu
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Jian Kang
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Rui Zhang
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Yong Yu
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Dongqi Li
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| | - Dexiang Lu
- Department of Urology, Hospital of Heilongjiang Province, Harbin, People's Republic of China
| |
Collapse
|
16
|
Dobrivojević M, Habek N, Kapuralin K, Ćurlin M, Gajović S. Krüppel-like transcription factor 8 (Klf8) is expressed and active in the neurons of the mouse brain. Gene 2015; 570:132-40. [PMID: 26071188 DOI: 10.1016/j.gene.2015.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Krüppel-like transcription factor 8 (KLF8) is a transcription factor suggested to be involved in various cellular events, including malignant cell transformation, still its expression in the adult rodent brain remained unknown. To analyze Klf8 in the mouse brain and to identify cell types expressing it, a specific transgenic Klf8(Gt1Gaj) mouse was used. The resulting Klf8 gene-driven β-galactosidase activity was visualized by X-gal histochemical staining of the brain sections. The obtained results were complemented by in situ RNA hybridization and immunohistochemistry. Klf8 was highly expressed throughout the adult mouse brain gray matter including the cerebral cortex, hippocampus, olfactory bulb, hypothalamus, pallidum, and striatum, but not in the cerebellum. Immunofluorescent double-labeling revealed that KLF8-immunoreactive cells were neurons, and the staining was located in their nucleus. This was the first study showing that Klf8 was highly expressed in various regions of the mouse brain and in particular in the neurons, where it was localized in the cell nuclei.
Collapse
Affiliation(s)
- Marina Dobrivojević
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Nikola Habek
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Katarina Kapuralin
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Marija Ćurlin
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Srećko Gajović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia.
| |
Collapse
|
17
|
Wang J, Hu JL, Cao RB, Ding Q, Peng G, Fei SJ, Jiang Y, Li PC, Yang KY, Zhang WJ, Wu G, Wang RZ, Li PD. Small hairpin RNA-mediated Krüppel-like factor 8 gene knockdown inhibits invasion of nasopharyngeal carcinoma. Oncol Lett 2015; 9:2515-2519. [PMID: 26137099 DOI: 10.3892/ol.2015.3099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/29/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to characterize the expression of Krüppel-like factor 8 (KLF8) in nasopahryngeal carcinoma (NPC) cell lines and determine its effect on tumor development and invasion following KLF8 gene knockdown by small hairpin RNA (shRNA). KLF8 expression in four NPC cell lines was examined by quantitative polymerase chain reaction (qPCR) and western blotting. KLF8 was knocked down in the SUNE1-5-8F/Sh-KLF8 cell line using shRNA, and the resulting stable cell line SUNE1-5-8F-sh-KLF8 was transplanted into nude mice in order to observe tumor formation and invasion. The results obtained from qPCR and western blotting revealed that, of the four NPC cell lines, KLF8 expression was lowest in the CNE-1 cells and highest in the SUNE1-5-8F cells. The tumor xenograft mouse models revealed that SUNE1-5-8F/Sh-KLF8 cells had a reduced ability for tumor formation and invasion compared with the control group. These results demonstrated for the first time that KLF8 modulates the formation and invasive ability of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Jian Li Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Ru Bo Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Qian Ding
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Shi Jiang Fei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Yao Jiang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Peng Cheng Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Kun Yu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Wen Jie Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| | - Ruo Zheng Wang
- Department of Radiation Oncology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Pin Dong Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
| |
Collapse
|
18
|
Tsai MY, Lu YF, Liu YH, Lien HW, Huang CJ, Wu JL, Hwang SPL. Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development. Dev Neurobiol 2014; 75:908-26. [PMID: 25528982 DOI: 10.1002/dneu.22258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
Krüppel-like factor 8 (Klf8) is a zinc-finger transcription factor implicated in cell proliferation, and cancer cell survival and invasion; however, little is known about its role in normal embryonic development. Here, we show that Klf8 is required for normal cerebellar development in zebrafish embryos. Morpholino knockdown of klf8 resulted in abnormal cerebellar primordium morphology and the induction of p53 in the brain region at 24 hours post-fertilization (hpf). Both p53-dependent reduction of cell proliferation and augmentation of apoptosis were observed in the cerebellar anlage of 24 hpf-klf8 morphants. In klf8 morphants, expression of ptf1a in the ventricular zone was decreased from 48 to 72 hpf; on the other hand, expression of atohla in the upper rhombic lip was unaffected. Consistent with this finding, Purkinje cell development was perturbed and granule cell number was reduced in 72 hpf-klf8 morphants; co-injection of p53 MO(sp) or klf8 mRNA substantially rescued development of cerebellar Purkinje cells in klf8 morphants. Hepatocyte growth factor/Met signaling is known to regulate cerebellar development in zebrafish and mouse. We observed decreased met expression in the tectum and rhombomere 1 of 24 hpf-klf8 morphants, which was largely rescued by co-injection with klf8 mRNA. Moreover, co-injection of met mRNA substantially rescued formation of Purkinje cells in klf8 morphants at 72 hpf. Together, these results demonstrate that Klf8 modulates expression of p53 and met to maintain ptf1a-expressing neuronal progenitors, which are required for the appropriate development of cerebellar Purkinje and granule cells in zebrafish embryos.
Collapse
Affiliation(s)
- Ming-Yuan Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan, 114, Republic of China
| | - Yu-Fen Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Yu-Hsiu Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, 115, Republic of China.,Institute of Zoology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| | - Huang-Wei Lien
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Chang-Jen Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan, 114, Republic of China.,Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Sheng-Ping L Hwang
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan, 114, Republic of China.,Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, 115, Republic of China
| |
Collapse
|
19
|
Prosdocimo DA, Anand P, Liao X, Zhu H, Shelkay S, Artero-Calderon P, Zhang L, Kirsh J, Moore D, Rosca MG, Vazquez E, Kerner J, Akat KM, Williams Z, Zhao J, Fujioka H, Tuschl T, Bai X, Schulze PC, Hoppel CL, Jain MK, Haldar SM. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem 2014; 289:5914-24. [PMID: 24407292 DOI: 10.1074/jbc.m113.531384] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mammalian heart, the body's largest energy consumer, has evolved robust mechanisms to tightly couple fuel supply with energy demand across a wide range of physiologic and pathophysiologic states, yet, when compared with other organs, relatively little is known about the molecular machinery that directly governs metabolic plasticity in the heart. Although previous studies have defined Kruppel-like factor 15 (KLF15) as a transcriptional repressor of pathologic cardiac hypertrophy, a direct role for the KLF family in cardiac metabolism has not been previously established. We show in human heart samples that KLF15 is induced after birth and reduced in heart failure, a myocardial expression pattern that parallels reliance on lipid oxidation. Isolated working heart studies and unbiased transcriptomic profiling in Klf15-deficient hearts demonstrate that KLF15 is an essential regulator of lipid flux and metabolic homeostasis in the adult myocardium. An important mechanism by which KLF15 regulates its direct transcriptional targets is via interaction with p300 and recruitment of this critical co-activator to promoters. This study establishes KLF15 as a key regulator of myocardial lipid utilization and is the first to implicate the KLF transcription factor family in cardiac metabolism.
Collapse
Affiliation(s)
- Domenick A Prosdocimo
- From the Case Cardiovascular Research Institute and Harrington Heart and Vascular Institute
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li T, Lu H, Shen C, Lahiri SK, Wason MS, Mukherjee D, Yu L, Zhao J. Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis. Oncogene 2013; 33:4746-55. [PMID: 24096480 PMCID: PMC3979502 DOI: 10.1038/onc.2013.415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022]
Abstract
Krüppel-like factor 8 (KLF8) is a transcriptional factor critical for metastatic progression of breast cancer. Epithelial stromal interaction 1 (EPSTI1), a recently identified stromal fibroblast-induced gene in non-invasive breast cancer cells is highly overexpressed in invasive breast carcinomas. The function and regulation of EPSTI1, however, remain largely unknown. In this paper, we report a novel KLF8 to EPSTI1 signaling pathway in breast cancer. Using various expression analyses, we revealed a high co-overexpression of KLF8 and EPSTI1 in invasive human breast cancer cells and patient tumors. Ectopic overexpression of KLF8 in the non-invasive, MCF-10A cells induced the EPSTI1 expression, whereas KLF8 knockdown from the invasive, MDA-MB-231 cells decreased the EPSTI1 expression. Promoter activation and binding analyses indicated that KLF8 promoted the EPSTI1 expression by directly acting on the EPSTI1 gene promoter. EPSTI1 knockdown dramatically reduced the KLF8-promoted MCF-10A cell invasion and ectopic expression of EPSTI1 in the non-invasive, MCF-7 cells is sufficient to induce the cell invasion. Experiments using nude mice demonstrated that the ectopic EPSTI1 granted the MCF-7 cells capability of both invasive growth in the breasts and metastasis to the lungs. Using co-immunoprecipitation coupled with mass spectrometry, we discovered that EPSTI1 interacts with the valosin containing protein (VCP), resulting in the degradation of IκBα and subsequent activation of NF-κB in the nucleus. These findings suggest a novel KLF8 to EPSTI1 to VCP to NF-κB signaling mechanism potentially critical for breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- T Li
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - H Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - C Shen
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - S K Lahiri
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - M S Wason
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - D Mukherjee
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - L Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - J Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
21
|
Lu Y, Zhang L, Liao X, Sangwung P, Prosdocimo DA, Zhou G, Votruba AR, Brian L, Han YJ, Gao H, Wang Y, Shimizu K, Weinert-Stein K, Khrestian M, Simon DI, Freedman NJ, Jain MK. Kruppel-like factor 15 is critical for vascular inflammation. J Clin Invest 2013; 123:4232-41. [PMID: 23999430 DOI: 10.1172/jci68552] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/28/2013] [Indexed: 12/31/2022] Open
Abstract
Activation of cells intrinsic to the vessel wall is central to the initiation and progression of vascular inflammation. As the dominant cellular constituent of the vessel wall, vascular smooth muscle cells (VSMCs) and their functions are critical determinants of vascular disease. While factors that regulate VSMC proliferation and migration have been identified, the endogenous regulators of VSMC proinflammatory activation remain incompletely defined. The Kruppel-like family of transcription factors (KLFs) are important regulators of inflammation. In this study, we identified Kruppel-like factor 15 (KLF15) as an essential regulator of VSMC proinflammatory activation. KLF15 levels were markedly reduced in human atherosclerotic tissues. Mice with systemic and smooth muscle-specific deficiency of KLF15 exhibited an aggressive inflammatory vasculopathy in two distinct models of vascular disease: orthotopic carotid artery transplantation and diet-induced atherosclerosis. We demonstrated that KLF15 alters the acetylation status and activity of the proinflammatory factor NF-κB through direct interaction with the histone acetyltransferase p300. These studies identify a previously unrecognized KLF15-dependent pathway that regulates VSMC proinflammatory activation.
Collapse
|
22
|
Wang X, Lu H, Li T, Yu L, Liu G, Peng X, Zhao J. Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res 2013; 3:356-373. [PMID: 23977446 PMCID: PMC3744016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023] Open
Abstract
The properties of stem cells can be induced during the epithelial to mesenchymal transition (EMT). The responsible molecular mechanisms, however, remain largely undefined. Here we report the identification of the microRNA-146a (miR-146a) as a common target of Krüppel-like factor 8 (KLF8) and TGF-β, both of which are known EMT-inducers. Upon KLF8 overexpression or TGF-β treatment, a significant portion of the MCF-10A cells gained stem cell traits as demonstrated by an increased expression of CD44(high)/CD24low, activity of aldehyde dehydrogenase (ALDH), mammosphere formation and chemoresistance. Along with this change, the expression of miR-146a was highly upregulated in the cells. Importantly, we found that miR-146a was aberrantly co-overexpressed with KLF8 in a panel of invasive human breast cancer cell lines. Ectopic expression of KLF8 failed to induce the stem cell traits in the MCF-10A cells if the cells were pre-treated with miR-146a inhibitor, whereas overexpression of miR-146a in the MCF-10A cells alone was sufficient to induce the stem cell traits. Co-staining and luciferase reporter analyses indicated that miR-146a targets the 3'-UTR of the Notch signaling inhibitor NUMB for translational inhibition. Overexpression of KLF8 dramatically potentiated the tumorigenecity of MCF-10A cells expressing the H-Ras oncogene, which was accompanied by a loss of NUMB expression in the tumors. Taken together, this study identifies a novel role and mechanism for KLF8 in inducing pro-tumorigenic mammary stem cells via miR-146a potentially by activating Notch signaling. This mechanism could be exploited as a therapeutic target against drug resistance of breast cancer.
Collapse
Affiliation(s)
- Xianhui Wang
- Burnett School of Biomedical Sciences, University of Central Florida, College of MedicineOrlando, FL
| | - Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida, College of MedicineOrlando, FL
| | - Tianshu Li
- Burnett School of Biomedical Sciences, University of Central Florida, College of MedicineOrlando, FL
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida, College of MedicineOrlando, FL
| | - Gang Liu
- Center for Cell Biology & Cancer Research, Albany Medical CollegeAlbany, NY
| | - Xu Peng
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science CenterTemple, TX
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida, College of MedicineOrlando, FL
| |
Collapse
|
23
|
Wang WF, Li J, Du LT, Wang LL, Yang YM, Liu YM, Liu H, Zhang X, Dong ZG, Zheng GX, Wang CX. Krüppel-like factor 8 overexpression is correlated with angiogenesis and poor prognosis in gastric cancer. World J Gastroenterol 2013; 19:4309-4315. [PMID: 23885141 PMCID: PMC3718898 DOI: 10.3748/wjg.v19.i27.4309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/30/2013] [Accepted: 06/20/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate Krüppel-like factor 8 (KLF8) expression in gastric cancer and its relationship with angiogenesis and prognosis of gastric cancer.
METHODS: One hundred and fifty-four patients with gastric cancer who underwent successful curative resection were retrospectively enrolled in the study. Fifty tumor-adjacent healthy gastric tissues (≥ 5 cm from the tumor margin) obtained during the original resection were randomly selected for comparative analysis. In situ expression of KLF8 and CD34 proteins were examined by immunohistochemistry. The intratumoral microvessel density (MVD) was determined by manually counting the immunostained CD34-positive endothelial cells in three consecutive high-magnification fields (× 200). The relationship between differential KLF8 expression and MVD was assessed using Spearman’s correlation coefficient test. χ2 test was performed to evaluate the effects of differential KLF8 expression on clinicopathologic factors. Kaplan-Meier and multivariate Cox survival analyses were used to assess the prognostic value of differential KLF8 expression in gastric cancer.
RESULTS: Significantly higher levels of KLF8 protein were detected in gastric cancer tissues than in the adjacent non-cancerous tissues (54.5% vs 34.0%, P < 0.05). KLF8 expression was associated with tumor size (P < 0.001), local invasion (P = 0.005), regional lymph node metastasis (P = 0.029), distant metastasis (P = 0.023), and tumor node metastasis (TNM) stage (P = 0.002), as well as the MVD (r = 0.392, P < 0.001). Patients with KLF8 positive expression had poorer overall survival (P < 0.001) and cancer-specific survival (P < 0.001) than those with negative expression. Multivariate analysis demonstrated that KLF8 expression independently affected both overall and cancer-specific survival of gastric cancer patients (P = 0.035 and 0.042, respectively).
CONCLUSION: KLF8 is closely associated with gastric tumor progression, angiogenesis and poor prognosis, suggesting it may represent a novel prognostic biomarker and therapeutic target for gastric cancer.
Collapse
|
24
|
Lu H, Hu L, Yu L, Wang X, Urvalek AM, Li T, Shen C, Mukherjee D, Lahiri SK, Wason MS, Zhao J. KLF8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer. Oncogene 2013; 33:2909-17. [PMID: 23812425 PMCID: PMC3929536 DOI: 10.1038/onc.2013.247] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/24/2013] [Accepted: 05/19/2013] [Indexed: 12/13/2022]
Abstract
Krüppel-like factor 8 (KLF8) regulates critical gene transcription associated with cancer. The underlying mechanisms, however, remain largely unidentified. We have recently demonstrated that KLF8 expression enhances the activity but not expression of matrix metalloproteinase-2 (MMP2), the target substrate of MMP14. Here, we report a novel KLF8 to MMP14 signaling that promotes human breast cancer invasion and metastasis. Using cell lines for inducible expression and knockdown of KLF8, we demonstrate that KLF8 promotes MMP14 expression at the transcriptional level. Knocking down KLF8 expression inhibited the breast cancer cell invasion both in vitro and in vivo as well as the lung metastasis in mice, which could be rescued by ectopic expression of MMP14. Promoter reporter assays and oligonucleotide and chromatin immunoprecipitations determined that KLF8 activates the human MMP14 gene promoter by both directly acting on the promoter and indirectly via promoting the nuclear translocation of β-catenin, the expression of T-cell factor-1 (TCF1) and subsequent activation of the promoter by the β-catenin/TCF1 complex. Inhibition of focal adhesion kinase (FAK) using pharmacological inhibitor, RNA interference or knockout showed that the cell surface presentation of active MMP14 downstream of KLF8 depends on FAK expression and activity. Taken together, this work identified novel signaling mechanisms by which KLF8 and FAK work together to promote the extracellular activity of MMP14 critical for breast cancer metastasis.
Collapse
Affiliation(s)
- H Lu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - L Hu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - L Yu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - X Wang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - A M Urvalek
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - T Li
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - C Shen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - D Mukherjee
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - S K Lahiri
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - M S Wason
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - J Zhao
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
25
|
Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. Mol Cell Biol 2013; 33:2976-87. [PMID: 23716600 DOI: 10.1128/mcb.00074-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.
Collapse
|
26
|
Yang Z, Bai B, Luo X, Xiao X, Liu X, Ding Y, Zhang H, Gao L, Li J, Qi H. Downregulated Krüppel-like factor 8 is involved in decreased trophoblast invasion under hypoxia-reoxygenation conditions. Reprod Sci 2013; 21:72-81. [PMID: 23703536 DOI: 10.1177/1933719113488448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Krüppel-like factor 8 (KLF8) is a pivotal transcription factor expressed in the human placenta that can regulate cell invasion. The objective of this study was to assess whether a hypoxia-reoxygenation (H/R) environment affects placental KLF8 expression levels and subcellular localization and to evaluate the relationship between KLF8 levels and trophoblast invasion activity. Human first trimester villous tissues from normal pregnancies and third trimester placentas from pregnancies with or without preeclampsia (PE) were used for the detection of KLF8 expression and correlating its levels with metalloproteinase 9 (MMP-9) expression. In addition, HTR8/SVneo cells were used to mimic the effects of an H/R environment on placentas to study KLF8 expression and trophoblast invasion. The KLF8 levels, MMP-9 levels, and trophoblast invasion were similarly altered; the levels peaked at 8 to 10 weeks of gestation and declined thereafter along with oxygen tension increased from hypoxia to normoxia during early pregnancy, decreased in third trimester placentas from PE pregnancies featured by repeated H/R and HTR8/SVneo cells exposed to H/R compared with the control. Moreover, a visible reduction in KLF8 immunoreactivity was present in the nuclei of cytotrophoblast cells in human villous tissues at 11 weeks, and partial cytoplasmic accumulation of KLF8 was observed in HTR8/SVneo cells treated with H/R. In conclusion, these findings strongly suggest that H/R reduces the expression and nuclear localization of KLF8 to inhibit the trophoblast invasion by downregulating MMP-9 levels. The KLF8 may play a vital role in the pathogenesis of PE as a novel oxygen tension sensor.
Collapse
Affiliation(s)
- Zhongmei Yang
- 1Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
AIM Krüppel-like factor 8 (KLF8) plays important roles in cell cycle and oncogenic transformation. On other hand, androgen receptor (AR) is crucial in development of both androgen-dependent and independent prostatic malignancies. The aim of this study is to investigate the role of KLF8 in prostate cancer (PCa) and the relationship between KLF8 and AR. METHODS Eight human PCa cell lines, including androgen-dependent LNCap cells and androgen-independent 22Rv1 cells, as well as human PCa samples were studied. LNCap cells and 22Rv1 cells were transfected with plasmids encoding full-length wild-type KLF8 or KLF8 shRNA. The expression of KLF8 protein was detected using Western blotting or immunohistochemical staining. Cell proliferation in vitro was measured with MTT assay, and in vivo in a xenograft nude mouse model. Yeast two-hybrid screening, co-immunoprecipitation and pull down assays were used to examine the binding of KLF8 to AR. Luciferase reporter gene assay was used to measure the transcriptional activity of the genes targeted by AR. RESULTS In 133 human PCa samples, KLF8 protein staining was observed in 92.65% (63/68) of high-grade PCa, 66.15% (43/65) of low-grade PCa, and 6.82% (3/44) of adjacent normal tissues. The expression of KLF8 was significantly associated with poorer overall survival. Overexpression of KLF8 enhanced the proliferation of both LNCap and 22Rv1 cells, while knockdown of endogenous KLF8 suppressed the proliferation. These manipulations exerted similar effects on the tumor volumes in the xenograft nude mouse model. Yeast two-hybrid screening revealed that KLF8 was a novel AR-interacting protein. With pull down assay and co-immunoprecipitation assay, we demonstrated that KLF8 bound directly to AR, and KLF8 enhanced AR target gene transcription. CONCLUSION The results demonstrate that KLF8 is a novel AR transcriptional co-activator that is overexpressed in PCa and may play a role in progression of hormone-refractory PCa.
Collapse
|
28
|
Lee H, Kim HJ, Lee YJ, Lee MY, Choi H, Lee H, Kim JW. Krüppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS One 2012; 7:e52474. [PMID: 23285057 PMCID: PMC3528641 DOI: 10.1371/journal.pone.0052474] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
KLF8 (Krüppel-like factor 8) is a zinc-finger transcription factor known to play an essential role in the regulation of the cell cycle, apoptosis, and differentiation. However, its physiological roles and functions in adipogenesis remain unclear. In the present study, we show that KLF8 acts as a key regulator controlling adipocyte differentiation. In 3T3-L1 preadipocytes, we found that KLF8 expression was induced during differentiation, which was followed by expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Adipocyte differentiation was significantly attenuated by the addition of siRNA against KLF8, whereas overexpression of KLF8 resulted in enhanced differentiation. Furthermore, luciferase reporter assays demonstrated that overexpression of KLF8 induced PPARγ2 and C/EBPα promoter activity, suggesting that KLF8 is an upstream regulator of PPARγ and C/EBPα. The KLF8 binding sites were localized by site mutation analysis to −191 region in C/EBPα promoter and −303 region in PPARγ promoter, respectively. Taken together, these data reveal that KLF8 is a key component of the transcription factor network that controls terminal differentiation during adipogenesis.
Collapse
Affiliation(s)
- Haemi Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hyo Jung Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Jeong Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
| | - Min-Young Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hyeonjin Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hyemin Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Integrated OMICS for Biomedical Sciences, WCU Program of Graduate School, Yonsei University, Seoul, Korea
| | - Jae-woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, Korea
- Department of Integrated OMICS for Biomedical Sciences, WCU Program of Graduate School, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
29
|
Transformation of human ovarian surface epithelial cells by Krüppel-like factor 8. Oncogene 2012; 33:10-8. [PMID: 23222713 PMCID: PMC3975924 DOI: 10.1038/onc.2012.545] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/07/2012] [Accepted: 10/23/2012] [Indexed: 12/30/2022]
Abstract
Previously we demonstrated that Krüppel-like factor 8 (KLF8) participates in oncogenic transformation of mouse fibroblasts and is highly overexpressed in human ovarian cancer. In this work, we first correlated KLF8 overexpression with the aggressiveness of ovarian patient tumors and then tested if KLF8 could transform human ovarian epithelial cells. Using the immortalized non-tumorigenic human ovarian surface epithelial cell line T80 and retroviral infection, we generated cell lines that constitutively overexpress KLF8 alone or its combination with the known ovarian oncogenes c-Myc, Stat3c and/or Akt and examined the cell lines for anchorage-independent growth and tumorigenesis. The soft agar clonogenic assay showed that T80/KLF8 cells formed significantly more colonies than the mock cells. Interestingly, the cells expressing both KLF8 and c-Myc formed the largest amounts of colonies greater than the sum of colonies formed by the cells expressing KLF8 and c-Myc alone. These results suggested that KLF8 might be a weak oncogene that works cooperatively with c-Myc to transform ovarian cells. Surprisingly, overexpression of KLF8 alone was sufficient to induce tumorigenesis in nude mice resulting in short life span whether the T80/KLF8 cells were injected subcutaneously, intraperitoneally or orthotopically into the ovarian bursa. Histopathological studies confirmed that the T80/KLF8 tumors were characteristic of human serous ovarian carcinomas. Comparative expression profiling and functional studies identified the cell cycle regulators cyclin D1 and USP44 as primary KLF8 targets and effectors for the T80 transformation. Overall, we identified KLF8 overexpression as an important factor in human ovarian carcinoma pathogenesis.
Collapse
|
30
|
Lu H, Hu L, Li T, Lahiri S, Shen C, Wason MS, Mukherjee D, Xie H, Yu L, Zhao J. A novel role of Krüppel-like factor 8 in DNA repair in breast cancer cells. J Biol Chem 2012; 287:43720-9. [PMID: 23105099 DOI: 10.1074/jbc.m112.418053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, the role of KLF8 in cancer remains largely unknown. Here, we report a surprisingly novel role for KLF8 in DNA repair in breast cancer cells. Comet, clonogenic, and WST-1 assays showed that KLF8 expression is required for protecting human breast cancer cells from doxorubicin-induced DNA damage and cell death. Western blotting indicated that overexpression of ectopic KLF8 attenuated the levels of the DNA damage marker γH2A.X in doxorubicin-treated PARP-1(+/+) but not PARP-1(-/-) mouse embryonic fibroblasts, whereas the PARP-1-binding-defective KLF8 mutant failed to do so. Interestingly, in response to the DNA damage, KLF8 was phosphorylated by the DNA-dependent protein kinase catalytic subunit and, subsequently, SUMOylated by SUMO E3 ligases protein inhibitors of activated STAT (PIASs), which depends upon the interaction of KLF8 with DNA-dependent protein kinase catalytic subunit, PIASs, and PARP-1 as well as their enzymatic activities. Lastly, we show evidence that KLF8 was recruited to the DNA damage site. These results suggest a novel role and mechanism for KLF8 in the regulation of DNA repair and therapeutic resistance in breast cancer cells.
Collapse
Affiliation(s)
- Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lahiri SK, Zhao J. Krüppel-like factor 8 emerges as an important regulator of cancer. Am J Transl Res 2012; 4:357-363. [PMID: 22937212 PMCID: PMC3426389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
Krüppel-like factor 8 (KLF8) is a young member of the KLF transcription factor family proteins. It is highly overexpressed in several types of human cancers and regulates various cellular processes important for tumor progression. Increasing evidence has made KLF8 a new focus in cancer research and a potential target for cancer therapy. This review highlights the role of KLF8 in cancer by summarizing the up-to-date studies into its structure, function as a dual transcription factor, target genes and mechanisms of expression and modifications.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineOrlando
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineOrlando
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando
| |
Collapse
|
32
|
Yang T, Cai SY, Zhang J, Lu JH, Lin C, Zhai J, Wu MC, Shen F. Krüppel-like factor 8 is a new Wnt/beta-catenin signaling target gene and regulator in hepatocellular carcinoma. PLoS One 2012; 7:e39668. [PMID: 22761862 PMCID: PMC3384617 DOI: 10.1371/journal.pone.0039668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022] Open
Abstract
Krüppel-like factor 8 (KLF8) plays important role in cell cycle and oncogenic transformation. Here we report the mechanisms by which KLF8 crosstalks with Wnt/β-catenin signaling pathway and regulates hepatocellular carcinoma (HCC) cells proliferation. We show that overexpression of KLF8 and nucleus accumulation of β-catenin in the human HCC samples are positively correlated. More importantly, KLF8 protein levels plus nucleus accumulation of β-catenin levels were significantly elevated in high-grade HCC compared to low-grade HCC. Using HCC HepG2 cells we find that, on the one hand both protein and mRNA of KLF8 are up-regulated under Wnt3a stimulation, on the other hand overexpression of KLF8 increases the cytoplasm and nucleus accumulation of β-catenin, recruits p300 to β-catenin/T-cell factor 4 (TCF4) transcription complex, enhances TOP flash report gene transcription, and induces Wnt/β-catenin signaling target genes c-Myc, cyclin D1 and Axin1 expression. Knockdown of KLF8 using shRNA inhibits Wnt3a induced transcription of TOP flash report gene and expression of c-Myc, cyclin D1 and Axin1. Knockdown of β-catenin by shRNA rescues the enhanced HepG2 and Hep3B cells proliferation ability induced by overexpression of KLF8.
Collapse
Affiliation(s)
- Tian Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sheng-Yun Cai
- Department of Gynaecology and Obstetrics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Hua Lu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chuan Lin
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian Zhai
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
33
|
Grunewald M, Johnson S, Lu D, Wang Z, Lomberk G, Albert PR, Stockmeier CA, Meyer JH, Urrutia R, Miczek KA, Austin MC, Wang J, Paul IA, Woolverton WL, Seo S, Sittman DB, Ou XM. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem 2012; 287:24195-206. [PMID: 22628545 DOI: 10.1074/jbc.m112.373936] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders.
Collapse
Affiliation(s)
- Matthew Grunewald
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Krüppel-like factor 8 (KLF8) is expressed in gliomas of different WHO grades and is essential for tumor cell proliferation. PLoS One 2012; 7:e30429. [PMID: 22276196 PMCID: PMC3261906 DOI: 10.1371/journal.pone.0030429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
Krüppel-like factor 8 (KLF8) has only recently been identified to be involved in tumor cell proliferation and invasion of several different tumor entities like renal cell carcinoma, hepatocellular carcinoma and breast cancer. In the present study, we show for the first time the expression of KLF8 in gliomas of different WHO grades and its functional impact on glioma cell proliferation. In order to get information about KLF8-mRNA regulation qPCR was performed and did not reveal any significant difference in samples (n = 10 each) of non-neoplastic brain (NNB), low-grade gliomas (LGG, WHO°II) and glioblastomas (GBM, WHO°IV). Immunohistochemistry of tissue samples (n = 7 LGG, 11 AA and 12 GBM) did not show any significant difference in the fraction of KLF8-immunopositive cells of all analyzed cells in LGG (87%), AA (80%) or GBM (89%). Tissue samples from cerebral breast cancer metastasis, meningiomas but also non-neoplastic brain demonstrated comparable relative cell counts as well. Moreover, there was no correlation between KLF8 expression and the expression pattern of the assumed proliferation marker Ki67, which showed high variability between different tumor grade (9% (LGG), 6% (AA) and 15% (GBM) of Ki67-immunopositive cells). Densitometric analysis of Western blotting revealed that the relative amount of KLF8-protein did also not differ between the highly aggressive and proliferative GBM (1.05) compared to LGG (0.93; p<0.05, studens t-test). As demonstrated for some other non-glial cancer entities, KLF8-knockdown by shRNA in U87-MG cells confirmed its functional relevance, leading to an almost complete loss of tumor cell proliferation. Selective blocking of KLF8 might represent a novel anti-proliferative treatment strategy for malignant gliomas. Yet, its simultaneous expression in non-proliferating tissues could hamper this approach.
Collapse
|
35
|
Lu H, Wang X, Li T, Urvalek AM, Yu L, Li J, Zhu J, Lin Q, Peng X, Zhao J. Identification of poly (ADP-ribose) polymerase-1 (PARP-1) as a novel Kruppel-like factor 8-interacting and -regulating protein. J Biol Chem 2011; 286:20335-44. [PMID: 21518760 PMCID: PMC3121510 DOI: 10.1074/jbc.m110.215632] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/21/2011] [Indexed: 01/28/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, KLF8-interacting proteins remain largely unidentified. Using co-immunoprecipitation (co-IP), mass spectrometry, and GST pulldown assays, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel KLF8-interacting protein. Co-IP and Western blotting indicated that KLF8 is also a PARP-1 substrate. Mutation of the cysteines in the zinc finger domain of KLF8 abolished PARP-1 interaction. Surprisingly, immunofluorescent staining revealed a cytoplasmic mislocalization of KLF8 in PARP-1(-/-) cells or when the interaction was disrupted. This mislocalization was prevented by either PARP-1 re-expression or inhibition of CRM1-dependent nuclear export. Interestingly, co-IP indicated competition between PARP-1 and CRM1 for KLF8 binding. Cycloheximide chase assay showed a decrease in the half-life of KLF8 protein when PARP-1 expression was suppressed or KLF8-PARP-1 interaction was disrupted. Ubiquitination assays implicated KLF8 as a target of ubiquitination that was significantly higher in PARP-1(-/-) cells. Promoter reporter assays and chromatin immunoprecipitation assays showed that KLF8 activation on the cyclin D1 promoter was markedly reduced when PARP-1 was deleted or inhibited or when KLF8-PARP-1 interaction was disrupted. Overall, this work has identified PARP-1 as a novel KLF8-binding and -regulating protein and provided new insights into the mechanisms underlying the regulation of KLF8 nuclear localization, stability, and functions.
Collapse
Affiliation(s)
- Heng Lu
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Xianhui Wang
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Tianshu Li
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Alison M. Urvalek
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Lin Yu
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Jieli Li
- the Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504-7105
| | - Jinghua Zhu
- the Center for Functional Genomics, University at Albany, Rensselaer, New York 12144, and
| | - Qishan Lin
- the Center for Functional Genomics, University at Albany, Rensselaer, New York 12144, and
| | - Xu Peng
- the Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504-7105
| | - Jihe Zhao
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| |
Collapse
|
36
|
Urvalek AM, Lu H, Wang X, Li T, Yu L, Zhu J, Lin Q, Zhao J. Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation. Am J Transl Res 2011; 3:121-132. [PMID: 21416054 PMCID: PMC3056558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/20/2010] [Indexed: 05/30/2023]
Abstract
KLF8 regulates target genes by recruiting the p300 and PCAF co-activators via glutamines (Q) 118 and 248, the CtBP co-repressor to 86PVDLS90 or SUMO to lysine (K) 67. Here we examined how these interactions coordinate to regulate KLF8 transactivity. Mass spectrometry and immunoprecipitations determined that p300 and/or PCAF promoted KLF8 acetylation at K67, K93, and K95 and this acetylation was abolished in lysine-to-arginine (R) mutants. Treatment with HDAC inhibitors or expression of co-activators inhibited sumoylation at K67. K93R or K95R mutation exerted high levels of sumoylation while the acetylation mimetic mutations K93Q and K95Q blocked the sumoylation. Interestingly, CtBP promoted sumoylation at K67 of wild-type but not AVALF mutant KLF8, and KLF8 interaction with CtBP was inhibited by treatment with the HDAC inhibitors, ectopic expression of the co-activators, or K93Q or K95Q mutation. Promoter reporter assays showed that CtBP inhibited KLF8 transactivity which was rescued by PCAF or p300 expresson. Finally, KLF8-mediated cyclin D1 protein expression and cell cycle progression were significantly decreased in the K93R and K95R but increased in the K93Q, K95Q, K67R or K67Q mutant. Taken together, these results identified a novel mechanism by which co-activators promote KLF8 transactivity by competing with SUMO for K67 modification and by acetylating K93 and K95 to inhibit CtBP-induced K67 sumoylation.
Collapse
Affiliation(s)
- Alison M Urvalek
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
- Current address: Department of Pharmacology, Weill Medical College of Cornell UniversityNew York, NY 10065,USA
| | - Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Xianhui Wang
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
- Current address: Ge*NY*sis Center for Excellence in Cancer Genomics, University at AlbanyRensselaer, NY 1214, USA
| | - Tianshu Li
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Jinghua Zhu
- Center for Functional Genomics, University at AlbanyRensselaer, NY 12144, USA
| | - Qishan Lin
- Center for Functional Genomics, University at AlbanyRensselaer, NY 12144, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| |
Collapse
|
37
|
Mehta KR, Yang CY, Montclare JK. Modulating substrate specificity of histone acetyltransferase with unnatural amino acids. MOLECULAR BIOSYSTEMS 2011; 7:3050-5. [DOI: 10.1039/c1mb05148b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Abstract
Epithelial to mesenchymal transition (EMT) and extracellular matrix degradation are critical for the initiation and progression of tumor invasion. We have recently identified Krüppel-like factor 8 (KLF8) as a critical inducer of EMT and invasion. KLF8 induces EMT primarily by repressing E-cadherin transcription. However, how KLF8 promotes invasion is unknown. Here we report a novel KLF8-to-MMP9 signaling that promotes human breast cancer invasion. To identify the potential KLF8 regulation of MMPs in breast cancer, we established two inducible cell lines that allow either KLF8 overexpression in MCF-10A or knockdown in MDA-MB-231 cells. KLF8 overexpression induced a strong increase in MMP9 expression and activity as determined by quantitative real-time PCR and zymography. This induction was well correlated with the MMP inhibitor-sensitive Matrigel invasion. Conversely, KLF8 knockdown caused the opposite changes that could be partially prevented by MMP9 overexpression. Promoter-reporter assays and chromatin and oligonucleotide precipitations determined that KLF8 directly bound and activated the human MMP9 gene promoter. Three-dimensional (3D) glandular culture showed that KLF8 expression disrupted the normal acinus formation which could be prevented by the MMP inhibitor, whereas KLF8 knockdown corrected the abnormal 3D architecture which could be protected by MMP9 overexpression. KLF8 knockdown promoted MDA-MB-231 cell aggregation in suspension culture which could be prevented by MMP9 overexpression. KLF8 knockdown inhibited the lung metastasis of MDA-MB-231 cells in nude mice. Immunohistochemical staining strongly correlated the co-expression of KLF8 and MMP9 with the patient tumor invasion, metastasis and poor survival. Taken together, this work identified the KLF8 activation of MMP9 as a novel and critical signaling mechanism underlying human breast cancer invasion and metastasis.
Collapse
|