1
|
Abdoul-Azize S, Zoubairi R, Boyer O. Opposing Calcium-Dependent Effects of GsMTx4 in Acute Lymphoblastic Leukemia: In Vitro Proliferation vs. In Vivo Survival Advantage. Int J Mol Sci 2025; 26:4822. [PMID: 40429963 PMCID: PMC12112700 DOI: 10.3390/ijms26104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Mechanogated (MG) ion channels play a crucial role in mechano-transduction and immune cell regulation, yet their impact on blood cancers, particularly acute lymphoblastic leukemia (ALL), remains poorly understood. This study investigates the pharmacological effects of GsMTx4, an MG channel inhibitor, in human ALL cells both in vitro and in vivo. Unexpectedly, we found that GsMTx4 remarkably increased basal calcium (Ca2+) levels in ALL cells through constitutive Ca2+ entry and enhanced store-operated Ca2⁺ influx upon thapsigargin stimulation. This increase in basal Ca2+ signaling promoted ALL cell viability and proliferation in vitro. Notably, chelating intracellular Ca2+ with BAPTA-AM reduces GsMTx4-mediated leukemia cell viability and proliferation. However, in vivo, GsMTx4 decreases cytosolic Ca2+ levels in Nalm-6 GFP⁺ cells isolated from mouse blood, effectively countering leukemia progression and significantly extending survival in NSG mice transplanted with leukemia cells (median survival: GsMTx4 vs. control, 37.5 days vs. 29 days, p = 0.0414). Our results highlight the different properties of GsMTx4 activity in in vitro and in vivo models. They also emphasize that Ca2+ signaling is a key vulnerability in leukemia, where its precise modulation dictates disease progression. Thus, targeting Ca2+ channels could offer a novel therapeutic strategy for leukemia by exploiting Ca2+ homeostasis.
Collapse
|
2
|
Fabiano AR, Newman MW, Dombroski JA, Rowland SJ, Knoblauch SV, Kusunose J, Gibson‐Corley KN, Kaufman BG, Ren L, Caskey CF, King MR. Applying Ultrasound to Mechanically and Noninvasively Sensitize Prostate Tumors to TRAIL-Mediated Apoptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412995. [PMID: 39976192 PMCID: PMC12005757 DOI: 10.1002/advs.202412995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Non-surgical and safe prostate cancer (PCa) therapies are in demand. Soluble tumor necrosis factor (TNF-α) related apoptosis inducing ligand (TRAIL), a cancer-specific drug, shows preclinical efficacy but has a short circulation half-life. This research has shown that physiological fluid shear stress activates mechanosensitive ion channels (MSCs), such as Piezo1, enhancing TRAIL-mediated apoptosis in cancer cells. Herein, noninvasive, focal ultrasound (FUS) is implemented to augment the pro-apoptotic effects of TRAIL. Using thermally safe FUS parameters, it is observed that TRAIL sensitivity increases with higher FUS pressure in PCa cells, mediated by Piezo1. This is confirmed by examining the effects of calcium chelation, MSC inhibitors, and PIEZO knockdown. In vivo, a multi-dose study with 10 min FUS exposure shows that 0 and 4-h intervals between TRAIL and FUS significantly reduce tumor burden, with an increase in apoptosis evident by enhanced cleaved-caspase 3 expression. This mechanotherapy offers a clinically translatable approach by utilizing widely available FUS technology, applicable to treat additional cancer types.
Collapse
Affiliation(s)
- Abigail R. Fabiano
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of BioengineeringRice UniversityHoustonTX77005USA
| | - Malachy W. Newman
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jenna A. Dombroski
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Schyler J. Rowland
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | | | - Jiro Kusunose
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTN37235USA
| | - Katherine N. Gibson‐Corley
- Department of PathologyMicrobiology and ImmunologyDivision of Comparative MedicineVanderbilt University Medical CenterNashvilleTN37235USA
| | | | - Liqin Ren
- Department of BioengineeringRice UniversityHoustonTX77005USA
| | - Charles F. Caskey
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTN37235USA
- Department of Radiology and Radiological SciencesVanderbilt UniversityNashvilleTN37235USA
| | - Michael R. King
- Department of BioengineeringRice UniversityHoustonTX77005USA
| |
Collapse
|
3
|
Ouyang L, Ma L, Feng Y. Protective effects of MET channels on aminoglycosides- and cisplatin-induced ototoxicity. Int J Med Sci 2025; 22:732-744. [PMID: 39898250 PMCID: PMC11783074 DOI: 10.7150/ijms.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Aminoglycosides and cisplatin drugs are extensively utilized for their high efficacy in treating various conditions in the clinic, however, their ototoxic side effects warrant significant attention. These drugs could penetrate the inner ear via specific channels or transporters, which not only affect the survival of hair cells but also induce the overproduction of reactive oxygen species. Currently, scientific research mainly addresses this issue through the downstream intervention of reactive oxygen species. However, recent studies have revealed that directly reducing the uptake of these drugs by hair cells can effectively avoid initial damage. In particular, the interactions between drugs and hair cells, as well as the specific functions of relevant channels and transporters, can be explored in detail through the use of molecular dynamics simulations. The swift advancement in the field of structural biology has shed light on the structural functions of various channels and transporters closely related to drug absorption, such as electromechanical transduction channels (MET) and organic cation transporter-2, etc., providing theoretical basis and potential targets for novel ear protection strategies. It is, therefore, imperative to investigate the regulatory role of the MET channel in the up-taking of ototoxic drugs, serving as a pivotal point for the development of preventative and therapeutic approaches. This review aims to highlight the mechanism of inhibition of ototoxic substances absorption by auditory hair cells, explore how to develop novel ear protection methods by targeting these channels and transporters, and provide a new perspective and strategy for addressing drug-induced ototoxicity. The approach to protecting hair cells by targeting these channels and transporters not only broadens our understanding of the underlying mechanisms of ototoxicity, but could also spur further research and progress in the field of auditory protection.
Collapse
Affiliation(s)
- Lile Ouyang
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410028, China
| | - Lu Ma
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha 410028, China
- MOE Key Lab of Rare Pediatric Diseases & Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Yong Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410028, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha 410028, China
- MOE Key Lab of Rare Pediatric Diseases & Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang 421000, China
| |
Collapse
|
4
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
5
|
Zhou Z, Ma X, Lin Y, Cheng D, Bavi N, Secker GA, Li JV, Janbandhu V, Sutton DL, Scott HS, Yao M, Harvey RP, Harvey NL, Corry B, Zhang Y, Cox CD. MyoD-family inhibitor proteins act as auxiliary subunits of Piezo channels. Science 2023; 381:799-804. [PMID: 37590348 DOI: 10.1126/science.adh8190] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.
Collapse
Affiliation(s)
- Zijing Zhou
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaonuo Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiechang Lin
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Navid Bavi
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Genevieve A Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Jinyuan Vero Li
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Drew L Sutton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | - Hamish S Scott
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Science, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Yixiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
6
|
Jäntti H, Sitnikova V, Ishchenko Y, Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita N, Ohtonen S, Belaya I, Fazaludeen F, Mikhailov N, Gotkiewicz M, Ketola K, Lehtonen Š, Koistinaho J, Kanninen KM, Hernández D, Pébay A, Giugno R, Korhonen P, Giniatullin R, Malm T. Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation 2022; 19:147. [PMID: 35706029 PMCID: PMC9199162 DOI: 10.1186/s12974-022-02486-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aβ) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aβ. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. Methods Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aβ pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. Results We show that PIEZO1 orchestrates Aβ clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aβ inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aβ clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. Conclusion These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aβ burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02486-y.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Yevheniia Ishchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Feroze Fazaludeen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Maria Gotkiewicz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Damian Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
7
|
Vasilaki D, Bakopoulou A, Tsouknidas A, Johnstone E, Michalakis K. Biophysical interactions between components of the tumor microenvironment promote metastasis. Biophys Rev 2021; 13:339-357. [PMID: 34168685 PMCID: PMC8214652 DOI: 10.1007/s12551-021-00811-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
During metastasis, tumor cells need to adapt to their dynamic microenvironment and modify their mechanical properties in response to both chemical and mechanical stimulation. Physical interactions occur between cancer cells and the surrounding matrix including cell movements and cell shape alterations through the process of mechanotransduction. The latter describes the translation of external mechanical cues into intracellular biochemical signaling. Reorganization of both the cytoskeleton and the extracellular matrix (ECM) plays a critical role in these spreading steps. Migrating tumor cells show increased motility in order to cross the tumor microenvironment, migrate through ECM and reach the bloodstream to the metastatic site. There are specific factors affecting these processes, as well as the survival of circulating tumor cells (CTC) in the blood flow until they finally invade the secondary tissue to form metastasis. This review aims to study the mechanisms of metastasis from a biomechanical perspective and investigate cell migration, with a focus on the alterations in the cytoskeleton through this journey and the effect of biologic fluids on metastasis. Understanding of the biophysical mechanisms that promote tumor metastasis may contribute successful therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Dimitra Vasilaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Alexandros Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
| | | | - Konstantinos Michalakis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Division of Graduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA USA
- University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Yu JL, Liao HY. Piezo-type mechanosensitive ion channel component 1 (Piezo1) in human cancer. Biomed Pharmacother 2021; 140:111692. [PMID: 34004511 DOI: 10.1016/j.biopha.2021.111692] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 02/09/2023] Open
Abstract
Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a mechanosensitive ion channel protein that is evolutionarily conserved and multifunctional. It plays an important role as an oncogenic mediator in several malignant tumors. It mediates the proliferation, migration, and invasion of a variety of cancer cells through various mechanisms. Multiple studies have shown that the expression of Piezo1 is related to the clinical characteristics of senescence and cancer patients, making Piezo1 useful as a new biomarker for the diagnosis and prognosis of a variety of human cancers. Manipulating the expression or function of Piezo1 is a potential therapeutic strategy for different diseases. Piezo1 may be a promising tumor biomarker and therapeutic target. Here we review the biological function, mechanism of action, and potential clinical significance of Piezo1 in oncogenesis and progression.
Collapse
Affiliation(s)
- Jia-Lin Yu
- The 947th Army Hospital of the Chinese People's Liberation Army, 13 Kuona Bazha Road, XinJiang 844200, PR China
| | - Hai-Yang Liao
- The Fist Affiliated Hospital of Gannan Medical College, 23 Youth Road, Jiangxi 342800, PR China
| |
Collapse
|
9
|
Velasco-Estevez M, Rolle SO, Mampay M, Dev KK, Sheridan GK. Piezo1 regulates calcium oscillations and cytokine release from astrocytes. Glia 2019; 68:145-160. [PMID: 31433095 DOI: 10.1002/glia.23709] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Astrocytes are important for information processing in the brain and they achieve this by fine-tuning neuronal communication via continuous uptake and release of biochemical modulators of neurotransmission and synaptic plasticity. Often overlooked are their important functions in mechanosensation. Indeed, astrocytes can detect pathophysiological changes in the mechanical properties of injured, ageing, or degenerating brain tissue. We have recently shown that astrocytes surrounding mechanically-stiff amyloid plaques upregulate the mechanosensitive ion channel, Piezo1. Moreover, ageing transgenic Alzheimer's rats harboring a chronic peripheral bacterial infection displayed enhanced Piezo1 expression in amyloid plaque-reactive astrocytes of the hippocampus and cerebral cortex. Here, we have shown that the bacterial endotoxin, lipopolysaccharide (LPS), also upregulates Piezo1 in primary mouse cortical astrocyte cultures in vitro. Activation of Piezo1, via the small molecule agonist Yoda1, enhanced Ca2+ influx in both control and LPS-stimulated astrocytes. Moreover, Yoda1 augmented intracellular Ca2+ oscillations but decreased subsequent Ca2+ influx in response to adenosine triphosphate (ATP) stimulation. Neither blocking nor activating Piezo1 affected cell viability. However, LPS-stimulated astrocyte cultures exposed to the Piezo1 activator, Yoda1, migrated significantly slower than reactive astrocytes treated with the mechanosensitive channel-blocking peptide, GsMTx4. Furthermore, our data show that activating Piezo1 channels inhibits the release of cytokines and chemokines, such as IL-1β, TNFα, and fractalkine (CX3 CL1), from LPS-stimulated astrocyte cultures. Taken together, our results suggest that astrocytic Piezo1 upregulation may act to dampen neuroinflammation and could be a useful drug target for neuroinflammatory disorders of the brain.
Collapse
Affiliation(s)
- María Velasco-Estevez
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sara O Rolle
- Department of Bioengineering, Imperial College London, London, UK.,Francis Crick Institute, London, UK
| | - Myrthe Mampay
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Kumlesh K Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Graham K Sheridan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Wang J, La JH, Hamill OP. PIEZO1 Is Selectively Expressed in Small Diameter Mouse DRG Neurons Distinct From Neurons Strongly Expressing TRPV1. Front Mol Neurosci 2019; 12:178. [PMID: 31379500 PMCID: PMC6659173 DOI: 10.3389/fnmol.2019.00178] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Using a high resolution in situ hybridization technique we have measured PIEZO1, PIEZO2, and TRPV1 transcripts in mouse dorsal root ganglion (DRG) neurons. Consistent with previous studies, PIEZO2 transcripts were highly expressed in DRG neurons of all sizes, including most notably the largest diameter neurons implicated in mediating touch and proprioception. In contrast, PIEZO1 transcripts were selectively expressed in smaller DRG neurons, which are implicated in mediating nociception. Moreover, the small neurons expressing PIEZO1 were mostly distinct from those neurons that strongly expressed TRPV1, one of the channels implicated in heat-nociception. Interestingly, while PIEZO1- and TRPV1- expressing neurons form essentially non-overlapping populations, PIEZO2 showed co-expression in both populations. Using an in vivo functional test for the selective expression, we found that Yoda1, a PIEZO1-specific agonist, induced a mechanical hyperalgesia that displayed a significantly prolonged time course compared with that induced by capsaicin, a TRPV1-specific agonist. Taken together, our results indicate that PIEZO1 should be considered a potential candidate in forming the long sought channel mediating mechano-nociception.
Collapse
Affiliation(s)
- Jigong Wang
- Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Owen P Hamill
- Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Pethő Z, Najder K, Bulk E, Schwab A. Mechanosensitive ion channels push cancer progression. Cell Calcium 2019; 80:79-90. [PMID: 30991298 DOI: 10.1016/j.ceca.2019.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
In many cases, the mechanical properties of a tumor are different from those of the host tissue. Mechanical cues regulate cancer development by affecting both tumor cells and their microenvironment, by altering cell migration, proliferation, extracellular matrix remodeling and metastatic spread. Cancer cells sense mechanical stimuli such as tissue stiffness, shear stress, tissue pressure of the extracellular space (outside-in mechanosensation). These mechanical cues are transduced into a cellular response (e. g. cell migration and proliferation; inside-in mechanotransduction) or to a response affecting the microenvironment (e. g. inducing a fibrosis or building up growth-induced pressure; inside-out mechanotransduction). These processes heavily rely on mechanosensitive membrane proteins, prominently ion channels. Mechanosensitive ion channels are involved in the Ca2+-signaling of the tumor and stroma cells, both directly, by mediating Ca2+ influx (e. g. Piezo and TRP channels), or indirectly, by maintaining the electrochemical gradient necessary for Ca2+ influx (e. g. K2P, KCa channels). This review aims to discuss the diverse roles of mechanosenstive ion channels in cancer progression, especially those involved in Ca2+-signaling, by pinpointing their functional relevance in tumor pathophysiology.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Karolina Najder
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| |
Collapse
|
12
|
Wang JL, Chou CT, Liang WZ, Wu CJ, Kuo CC, Hao LJ, Shieh P, Jan CR. Effects of timolol on Ca2+ handling and viability in human prostate cancer cells. Toxicol Mech Methods 2019; 29:138-145. [DOI: 10.1080/15376516.2018.1540024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Cherng-Jer Wu
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Lyh-Jyh Hao
- Department of Metabolism, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Zhang J, Zhou Y, Huang T, Wu F, Liu L, Kwan JSH, Cheng ASL, Yu J, To KF, Kang W. PIEZO1 functions as a potential oncogene by promoting cell proliferation and migration in gastric carcinogenesis. Mol Carcinog 2018; 57:1144-1155. [DOI: 10.1002/mc.22831] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery; Shenzhen People's Hospital; Second Clinical Medical College of Jinan University; Shenzhen Guangdong Province PR China
| | - Johnny S. H. Kwan
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
| | - Alfred S. L. Cheng
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
- School of Biomedical Sciences; The Chinese University of Hong Kong; Hong Kong PR China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
- Department of Medicine and Therapeutics; The Chinese University of Hong Kong; Hong Kong PR China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology; State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong; Hong Kong SAR PR China
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Li Ka Shing Institute of Health Science; Sir Y.K. Pao Cancer Center; The Chinese University of Hong Kong; Hong Kong SAR PR China
- Shenzhen Research Institute; The Chinese University of Hong Kong; Shenzhen PR China
| |
Collapse
|
14
|
Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling Stress: The Mechanics of Cancer Progression and Aggression. Front Cell Dev Biol 2018. [PMID: 29541636 PMCID: PMC5835517 DOI: 10.3389/fcell.2018.00017] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to a number of different mechanical inputs including cell–cell and cell-ECM tension, compression stress, interstitial fluid pressure and shear stress. Oncogenes engage signaling pathways that are activated in response to mechanical stress, thereby reworking the cell's intrinsic response to exogenous mechanical stimuli, enhancing intracellular tension via elevated actomyosin contraction, and influencing ECM stiffness and tissue morphology. In addition to altering their intracellular tension and remodeling the microenvironment, cells actively respond to these mechanical perturbations phenotypically through modification of gene expression. Herein, we present a description of the physical changes that promote tumor progression and aggression, discuss their interrelationship and highlight emerging therapeutic strategies to alleviate the mechanical stresses driving cancer to malignancy.
Collapse
Affiliation(s)
- Josette M Northcott
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Ivory S Dean
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Janna K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Sachs F. Mechanical Transduction and the Dark Energy of Biology. Biophys J 2018; 114:3-9. [PMID: 29320693 PMCID: PMC5984904 DOI: 10.1016/j.bpj.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
16
|
Suchyna TM. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:244-253. [PMID: 28778608 DOI: 10.1016/j.pbiomolbio.2017.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K+ selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy.
Collapse
Affiliation(s)
- Thomas M Suchyna
- University of Buffalo, Dept. of Physiology and Biophysics, Buffalo, NY, USA.
| |
Collapse
|
17
|
|
18
|
Nikolaev YA, Dosen PJ, Laver DR, van Helden DF, Hamill OP. Single mechanically-gated cation channel currents can trigger action potentials in neocortical and hippocampal pyramidal neurons. Brain Res 2015; 1608:1-13. [PMID: 25765154 DOI: 10.1016/j.brainres.2015.02.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/26/2015] [Indexed: 02/04/2023]
Abstract
The mammalian brain is a mechanosensitive organ that responds to different mechanical forces ranging from intrinsic forces implicated in brain morphogenesis to extrinsic forces that can cause concussion and traumatic brain injury. However, little is known of the mechanosensors that transduce these forces. In this study we use cell-attached patch recording to measure single mechanically-gated (MG) channel currents and their affects on spike activity in identified neurons in neonatal mouse brain slices. We demonstrate that both neocortical and hippocampal pyramidal neurons express stretch-activated MG cation channels that are activated by suctions of ~25mm Hg, have a single channel conductance for inward current of 50-70pS and show weak selectivity for alkali metal cations (i.e., Na(+)<K(+)<Cs(+)). Significantly, single MG channel currents activated on the soma trigger spiking/action potentials in both neocortical and hippocampal pyramidal neurons. Not all neuron types studied here expressed MG channel currents. In particular, locus coeruleus and cerebellar Purkinje neurons showed no detectable MG channel activity. Moreover their robust rhythmic spike activity was resistant to mechanical modulation. Our observation that a single MG channel current can trigger spiking predicates the need for reassessment of the long held view that the impulse output of central neurons depends only upon their intrinsic voltage-gated channels and/or their integrated synaptic input.
Collapse
Affiliation(s)
- Yury A Nikolaev
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales 2308, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Peter J Dosen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Owen P Hamill
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales 2308, Australia; Department of Neuroscience and Cell Biology, UTMB, Galveston, TX 77555, USA.
| |
Collapse
|
19
|
Sun T, Song ZG, Jiang DQ, Nie HG, Han DY. Docetaxel Modulates the Delayed Rectifier Potassium Current (I K) and ATP-Sensitive Potassium Current (I KATP) in Human Breast Cancer Cells. J Membr Biol 2014; 248:197-204. [DOI: 10.1007/s00232-014-9757-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
|
20
|
Chubinskiy-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. Functional coupling of ion channels in cellular mechanotransduction. Biochem Biophys Res Commun 2014; 451:421-4. [DOI: 10.1016/j.bbrc.2014.07.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
21
|
Han H, Yi F. New insights into TRP channels: Interaction with pattern recognition receptors. Channels (Austin) 2013; 8:13-9. [PMID: 24299922 DOI: 10.4161/chan.27178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have implicated that the activation of innate immune system and inflammatory mechanisms are of importance in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms in response to pathogens or tissue injury, which is performed via germ-line encoded pattern-recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) or dangers-associated molecular patterns (DAMPs). Intracellular pathways linking immune and inflammatory response to ion channel expression and function have been recently identified. Among ion channels, transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge about classifications, functions, and interactions of TRP channels and PRRs, which may provide new insights into their roles in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Huirong Han
- Department of Pharmacology; Shandong University School of Medicine; Jinan, PR China; Department of Pharmacology; Weifang Medical University; Weifang, PR China
| | - Fan Yi
- Department of Pharmacology; Shandong University School of Medicine; Jinan, PR China
| |
Collapse
|
22
|
Martinac B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:682-91. [PMID: 23886913 DOI: 10.1016/j.bbamem.2013.07.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/05/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
As biological force-sensing systems mechanosensitive (MS) ion channels present the best example of coupling molecular dynamics of membrane proteins to the mechanics of the surrounding cell membrane. In animal cells MS channels have over the past two decades been very much in focus of mechanotransduction research. In recent years this helped to raise awareness of basic and medical researchers about the role that abnormal MS channels may play in the pathophysiology of diseases, such as cardiac hypertrophy, atrial fibrillation, muscular dystrophy or polycystic kidney disease. To date a large number of MS channels from organisms of diverse phylogenetic origins have been identified at the molecular level; however, the structure of only few of them has been determined. Although their function has extensively been studied in a great variety of cells and tissues by different experimental approaches it is, with exception of bacterial MS channels, very little known about how these channels sense mechanical force and which cellular components may contribute to their function. By focusing on MS channels found in animal cells this article discusses the ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Single Mechanosensitive and Ca2+-Sensitive Channel Currents Recorded from Mouse and Human Embryonic Stem Cells. J Membr Biol 2012. [DOI: 10.1007/s00232-012-9523-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Martinac B. Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology. Channels (Austin) 2012; 6:211-3. [PMID: 22940794 PMCID: PMC3508899 DOI: 10.4161/chan.22047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division; Victor Chang Cardiac Research Institute; Darlinghurst, NSW Australia
| |
Collapse
|