1
|
Ghadirian F, Abbasi H, Bavi O, Naeimabadi A. How living cells are affected during the cold atmospheric pressure plasma treatment. Free Radic Biol Med 2023; 205:141-150. [PMID: 37295538 DOI: 10.1016/j.freeradbiomed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
When the electric discharge process is limited by high voltage electrodes shielding, the ionization measure would be controlled to less than one percent and the temperature to less than 37 °C even at atmospheric pressure, so-called cold atmospheric pressure plasma (CAP). CAP has been found to have profound medical applications in association with its reactive oxygen and nitrogen species (ROS/RNS). In this way that during plasma exposure, the subjected medium (e.g. cell cytoplasmic membrane in plasma therapy) interacts with ROS/RNS. Accordingly, a precise study of the mentioned interactions and their consequences on the cells' behavior changes, is necessary. The results lead to the reduction of possible risks and provide the opportunity of optimizing the efficacy of CAP before the development of CAP applications in the field of plasma medicine. In this report molecular dynamic (MD) simulation is used to investigate the mentioned interactions and a proper and compatible comparison with the experimental results is presented. Based on this, the effects of H2O2, NO and O2 on the living cell's membrane are investigated in biological conditions. Our results show that: i) The hydration of phospholipid polar heads would be enhanced associated with the H2O2 presence. ii) A new definition of the surface area assigned to each phospholipid (APL), more reliable and compatible with the physical expectations, is introduced. iii) The long-term behavior of NO and O2 is their penetration into the lipid bilayer and sometimes passing through the membrane into the cell. The latter would be an indication of internal cells' pathways activation leading to modification of cells' function.
Collapse
Affiliation(s)
- Fatemeh Ghadirian
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran
| | - Hossein Abbasi
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Aboutorab Naeimabadi
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran
| |
Collapse
|
2
|
Maymand VM, Bavi O, Karami A. Probing the mechanical properties of ORF3a protein, a transmembrane channel of SARS-CoV-2 virus: Molecular dynamics study. Chem Phys 2023; 569:111859. [PMID: 36852417 PMCID: PMC9946729 DOI: 10.1016/j.chemphys.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
SARS-CoV-2-encoded accessory protein ORF3a was found to be a conserved coronavirus protein that shows crucial roles in apoptosis in cells as well as in virus release and replications. To complete the knowledge and identify the unknown of this protein, further comprehensive research is needed to clarify the leading role of ORF3a in the functioning of the coronavirus. One of the efficient approaches to determining the functionality of this protein is to investigate the mechanical properties and study its structural dynamics in the presence of physical stimuli. Herein, performing all-atom steered molecular dynamics (SMD) simulations, the mechanical properties of the force-bearing components of the ORF3a channel are calculated in different physiological conditions. As variations occurring in ORF3a may lead to alteration in protein structure and function, the G49V mutation was also simulated to clarify the relationship between the mechanical properties and chemical stability of the protein by comparing the behavior of the wild-type and mutant Orf3a. From a physiological conditions point of view, it was observed that in the solvated system, the presence of water molecules reduces Young's modulus of TM1 by ∼30 %. Our results also show that by substitution of Gly49 with valine, Young's modulus of the whole helix increases from 1.61 ± 0.20 to 2.08 ± 0.15 GPa, which is consistent with the calculated difference in free energy of wild-type and mutant helices. In addition to finding a way to fight against Covid-19 disease, understanding the mechanical behavior of these biological nanochannels can lead to the development of the potential applications of the ORF3a protein channel, such as tunable nanovalves in smart drug delivery systems, nanofilters in the new generation of desalination systems, and promising applications in DNA sequencing.
Collapse
Affiliation(s)
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Abbas Karami
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
3
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Immadisetty K, Polasa A, Shelton R, Moradi M. Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel. Comput Struct Biotechnol J 2022; 20:2539-2550. [PMID: 35685356 PMCID: PMC9156883 DOI: 10.1016/j.csbj.2022.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Reid Shelton
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
5
|
Aizawa T, Shiratori T, Yoshino T, Suzuki Y, Dohda K. Quantitative Characterization of the Affected Zones in a Single Crystal Fe-6Si Steel Sheet by Fine Piercing. MICROMACHINES 2022; 13:mi13040562. [PMID: 35457867 PMCID: PMC9029499 DOI: 10.3390/mi13040562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
An iron loss in the motor core was often enhanced by formation of plastically affected zones in piercing the electrical steel sheets. A platform methodology to carry out quantitative evaluation of these affected zones in the pierced electrical steel sheets was proposed to search for the way to minimize the affected zone widths. A coarse-grained electrical steel sheet was employed as a work material for a fine piercing experiment under the narrowed clearance between the plasma-nitrided SKD11 punch and core-die. The shearing behavior by the applied loading for piercing was described by in situ measurement of the load-stroke relationship. The plastic straining in the single-crystal electrical steel sheet was characterized by SEM (scanning electron microscopy) and EBSD (electron back-scattering diffraction) to define the affected zone size and to analyze the rotation of crystallographic orientations by the induced plastic distortion during piercing. Integral and differentiation of spin rotation measured the affected zones. The effect of punch edge sharpness on these spin-rotation measures was also discussed using the nitrided and ion-milled SKD11 punch and core-die.
Collapse
Affiliation(s)
- Tatsuhiko Aizawa
- Surface Engineering Design Laboratory, SIT, Tokyo 144-0045, Japan
- Correspondence: ; Tel.: +81-3-6424-8615
| | - Tomomi Shiratori
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan;
| | - Tomoaki Yoshino
- Komatsu-Seiki Kosakusho, Co., Ltd., Suwa 392-0012, Japan; (T.Y.); (Y.S.)
| | - Yohei Suzuki
- Komatsu-Seiki Kosakusho, Co., Ltd., Suwa 392-0012, Japan; (T.Y.); (Y.S.)
| | - Kuniaki Dohda
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA;
| |
Collapse
|
6
|
Cox CD, Bavi N, Martinac B. Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Rep 2020; 29:1-12. [PMID: 31577940 DOI: 10.1016/j.celrep.2019.08.075] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Recent rapid progress in the field of mechanobiology has been driven by novel emerging tools and methodologies and growing interest from different scientific disciplines. Specific progress has been made toward understanding how cell mechanics is linked to intracellular signaling and the regulation of gene expression in response to a variety of mechanical stimuli. There is a direct link between the mechanoreceptors at the cell surface and intracellular biochemical signaling, which in turn controls downstream effector molecules. Among the mechanoreceptors in the cell membrane, mechanosensitive (MS) ion channels are essential for the ultra-rapid (millisecond) transduction of mechanical stimuli into biologically relevant signals. The three decades of research on mechanosensitive channels resulted in the formulation of two basic principles of mechanosensitive channel gating: force-from-lipids and force-from-filament. In this review, we revisit the biophysical principles that underlie the innate force-sensing ability of mechanosensitive channels as contributors to the force-dependent evolution of life forms.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
7
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Schmidt A, Alsop RJ, Rimal R, Lenzig P, Joussen S, Gervasi NN, Khondker A, Gründer S, Rheinstädter MC, Wiemuth D. Modulation of DEG/ENaCs by Amphiphiles Suggests Sensitivity to Membrane Alterations. Biophys J 2019; 114:1321-1335. [PMID: 29590590 DOI: 10.1016/j.bpj.2018.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
The bile acid-sensitive ion channel is activated by amphiphilic substances such as bile acids or artificial detergents via membrane alterations; however, the mechanism of membrane sensitivity of the bile acid-sensitive ion channel is not known. It has also not been systematically investigated whether other members of the degenerin/epithelial Na+ channel (DEG/ENaC) gene family are affected by amphiphilic compounds. Here, we show that DEG/ENaCs ASIC1a, ASIC3, ENaC, and the purinergic receptor P2X2 are modulated by a large number of different, structurally unrelated amphiphilic substances, namely the detergents N-lauroylsarcosine, Triton X-100, and β-octylglucoside; the fenamate flufenamic acid; the antipsychotic drug chlorpromazine; the natural phenol resveratrol; the chili pepper compound capsaicin; the loop diuretic furosemide; and the antiarrythmic agent verapamil. We determined the modification of membrane properties using large-angle x-ray diffraction experiments on model lipid bilayers, revealing that the amphiphilic compounds are positioned in a characteristic fashion either in the lipid tail group region or in the lipid head group region, demonstrating that they perturbed the membrane structure. Collectively, our results show that DEG/ENaCs and structurally related P2X receptors are modulated by diverse amphiphilic molecules. Furthermore, they suggest alterations of membrane properties by amphiphilic compounds as a mechanism contributing to modulation.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Rick J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Rahul Rimal
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Pia Lenzig
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Natalie N Gervasi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
9
|
Abstract
Bacteria represent one of the most evolutionarily successful groups of organisms to inhabit Earth. Their world is awash with mechanical cues, probably the most ancient form of which are osmotic forces. As a result, they have developed highly robust mechanosensors in the form of bacterial mechanosensitive (MS) channels. These channels are essential in osmoregulation, and in this setting, provide one of the simplest paradigms for the study of mechanosensory transduction. We explore the past, present, and future of bacterial MS channels, including the alternate mechanosensory roles that they may play in complex microbial communities. Central to all of these functions is their ability to change conformation in response to mechanical stimuli. We discuss their gating according to the force-from-lipids principle and its applicability to eukaryotic MS channels. This includes the new paradigms emerging for bilayer-mediated channel mechanosensitivity and how this molecular detail may provide advances in both industry and medicine.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Navid Bavi
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
10
|
Zheng L, Lin Y, Lu S, Zhang J, Bogdanov M. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1404-1413. [PMID: 27956138 PMCID: PMC6162059 DOI: 10.1016/j.bbalip.2016.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022]
Abstract
Lysophospholipids (LPLs) are metabolic intermediates in bacterial phospholipid turnover. Distinct from their diacyl counterparts, these inverted cone-shaped molecules share physical characteristics of detergents, enabling modification of local membrane properties such as curvature. The functions of LPLs as cellular growth factors or potent lipid mediators have been extensively demonstrated in eukaryotic cells but are still undefined in bacteria. In the envelope of Gram-negative bacteria, LPLs are derived from multiple endogenous and exogenous sources. Although several flippases that move non-glycerophospholipids across the bacterial inner membrane were characterized, lysophospholipid transporter LplT appears to be the first example of a bacterial protein capable of facilitating rapid retrograde translocation of lyso forms of glycerophospholipids across the cytoplasmic membrane in Gram-negative bacteria. LplT transports lyso forms of the three bacterial membrane phospholipids with comparable efficiency, but excludes other lysolipid species. Once a LPL is flipped by LplT to the cytoplasmic side of the inner membrane, its diacyl form is effectively regenerated by the action of a peripheral enzyme, acyl-ACP synthetase/LPL acyltransferase (Aas). LplT-Aas also mediates a novel cardiolipin remodeling by converting its two lyso derivatives, diacyl or deacylated cardiolipin, to a triacyl form. This coupled remodeling system provides a unique bacterial membrane phospholipid repair mechanism. Strict selectivity of LplT for lyso lipids allows this system to fulfill efficient lipid repair in an environment containing mostly diacyl phospholipids. A rocker-switch model engaged by a pair of symmetric ion-locks may facilitate alternating substrate access to drive LPL flipping into bacterial cells. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Lei Zheng
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | - Yibin Lin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuo Lu
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiazhe Zhang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
11
|
Nag S, Resnick A. Biophysics and biofluid dynamics of primary cilia: evidence for and against the flow-sensing function. Am J Physiol Renal Physiol 2017. [DOI: 10.1152/ajprenal.00172.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary cilia have been called “the forgotten organelle” for over 20 yr. As cilia now have their own journal and several books devoted to their study, perhaps it is time to reconsider the moniker “forgotten organelle.” In fact, during the drafting of this review, 12 relevant publications have been issued; we therefore apologize in advance for any relevant work we inadvertently omitted. What purpose is yet another ciliary review? The primary goal of this review is to specifically examine the evidence for and against the hypothesized flow-sensing function of primary cilia expressed by differentiated epithelia within a kidney tubule, bringing together differing disciplines and their respective conceptual and experimental approaches. We will show that understanding the biophysics/biomechanics of primary cilia provides essential information for understanding any potential role of ciliary function in disease. We will summarize experimental and mathematical models used to characterize renal fluid flow and incident force on primary cilia and to characterize the mechanical response of cilia to an externally applied force and discuss possible ciliary-mediated cell signaling pathways triggered by flow. Throughout, we stress the importance of separating the effects of fluid shear and stretch from the action of hydrodynamic drag.
Collapse
Affiliation(s)
- Subhra Nag
- Department of Biology, Geology, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
| | - Andrew Resnick
- Department of Biology, Geology, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- Department of Physics, Cleveland State University, Cleveland, Ohio; and
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
12
|
Martinac AD, Bavi N, Bavi O, Martinac B. Pulling MscL open via N-terminal and TM1 helices: A computational study towards engineering an MscL nanovalve. PLoS One 2017; 12:e0183822. [PMID: 28859093 PMCID: PMC5578686 DOI: 10.1371/journal.pone.0183822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
There are great opportunities in the manipulation of bacterial mechanosensitive (MS) ion channels for specific and targeted drug delivery purposes. Recent research has shown that these ion channels have the potential to be converted into nanovalves through clever use of magnetic nanoparticles and magnetic fields. Using a combination of molecular dynamics (MD) simulations and the finite element (FE) modelling, this study investigates the theoretical feasibility of opening the MscL channel (MS channel of large conductance of E. coli) by applying mechanical force directly to its N-terminus. This region has already been reported to function as a major mechanosensor in this channel. The stress-strain behaviour of each MscL helix was obtained using all atom MD simulations. Using the same method, we simulated two models, the wild-type (WT) MscL and the G22N mutant MscL, both embedded in a POPE lipid bilayer. In addition to indicating the main interacting residues at the hydrophobic pore, their pairwise interaction energies were monitored during the channel gating. We implemented these inputs into our FE model of MscL using curve-fitting codes and continuum mechanics equations. In the FE model, the channel could be fully opened via pulling directly on the N-terminus and bottom of TM1 by mutating dominant van der Waals interactions in the channel pore; otherwise the stress generated on the channel protein can irreversibly unravel the N-secondary structure. This is a significant finding suggesting that applying force in this manner is sufficient to open an MscL nanovalve delivering various drugs used, for example, in cancer chemotherapy. More importantly, the FE model indicates that to fully operate an MscL nanovalve by pulling directly on the N-terminus and bottom of TM1, gain-of-function (GOF) mutants (e.g., G22N MscL) would have to be employed rather than the WT MscL channel.
Collapse
Affiliation(s)
- Adam D. Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Navid Bavi
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Omid Bavi
- Department of Physics, University of Tehran, Tehran, Iran
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Bavi N, Bavi O, Vossoughi M, Naghdabadi R, Hill AP, Martinac B, Jamali Y. Nanomechanical properties of MscL α helices: A steered molecular dynamics study. Channels (Austin) 2016; 11:209-223. [PMID: 27753526 DOI: 10.1080/19336950.2016.1249077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during stretching and high dependency of the elastic properties on the pulling rate. We estimated Young's moduli of the α-helices of MscL to vary between 0.2 and 12.5 GPa with TM2 helix being the stiffest. We also studied the effect of water on the properties of the pore-lining TM1 helix. In the absence of water, this helix exhibited a much stiffer response. By monitoring the number of hydrogen bonds, it appears that water acts like a 'lubricant' (softener) during TM1 helix elongation. These data shed light on another physical aspect underlying hydrophobic gating of MS channels, in particular MscL.
Collapse
Affiliation(s)
- N Bavi
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - O Bavi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran
| | - M Vossoughi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,d Biochemical & Bioenvironmental Research Center (BBRC) , Tehran , Iran
| | - R Naghdabadi
- c Institute for Nanoscience and Nanotechnology, Sharif University of Technology , Tehran , Iran.,e Department of Mechanical Engineering , Sharif University of Technology , Tehran , Iran
| | - A P Hill
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - B Martinac
- a Division of Molecular Cardiology and Biophysics , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW , Australia
| | - Y Jamali
- f Department of Mathematics , Tarbiat Modares University , Tehran , Iran.,g Computational Physical Sciences Research Laboratory , School of Nanoscience, Institute for Research in Fundamental Sciences (IPM) , Tehran , Iran
| |
Collapse
|
15
|
Bavi O, Vossoughi M, Naghdabadi R, Jamali Y. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels. PLoS One 2016; 11:e0150578. [PMID: 26958847 PMCID: PMC4784931 DOI: 10.1371/journal.pone.0150578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/17/2016] [Indexed: 12/03/2022] Open
Abstract
The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature.
Collapse
Affiliation(s)
- Omid Bavi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Biochemical & Bioenvironmental Research Center (BBRC), Tehran, Iran
| | - Reza Naghdabadi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Yousef Jamali
- Department of Mathematics, Tarbiat Modares University, Tehran, Iran
- Computational physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- * E-mail:
| |
Collapse
|
16
|
Bavi O, Cox CD, Vossoughi M, Naghdabadi R, Jamali Y, Martinac B. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach. MEMBRANES 2016; 6:membranes6010014. [PMID: 26861405 PMCID: PMC4812420 DOI: 10.3390/membranes6010014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022]
Abstract
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.
Collapse
Affiliation(s)
- Omid Bavi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Manouchehr Vossoughi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Biochemical & Bioenvironmental Research Center (BBRC), 89694-14588 Tehran, Iran.
| | - Reza Naghdabadi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588 Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588 Tehran, Iran.
| | - Yousef Jamali
- Department of Mathematics and Bioscience, Tarbiat Modares University, Jalal Ale Ahmad Highway, 14115-111 Tehran, Iran.
- Computational physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran, Iran.
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
17
|
Nomura T, Cox CD, Bavi N, Sokabe M, Martinac B. Unidirectional incorporation of a bacterial mechanosensitive channel into liposomal membranes. FASEB J 2015; 29:4334-45. [PMID: 26116700 DOI: 10.1096/fj.15-275198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/22/2015] [Indexed: 11/11/2022]
Abstract
The bacterial mechanosensitive channel of small conductance (MscS) plays a crucial role in the protection of bacterial cells against hypo-osmotic shock. The functional characteristics of MscS have been extensively studied using liposomal reconstitution. This is a widely used experimental paradigm and is particularly important for mechanosensitive channels as channel activity can be probed free from cytoskeletal influence. A perpetual issue encountered using this paradigm is unknown channel orientation. Here we examine the orientation of MscS in liposomes formed using 2 ion channel reconstitution methods employing the powerful combination of patch clamp electrophysiology, confocal microscopy, and continuum mechanics simulation. Using the previously determined electrophysiological and pharmacological properties of MscS, we were able to determine that in liposomes, independent of lipid composition, MscS adopts the same orientation seen in native membranes. These results strongly support the idea that these specific methods result in uniform incorporation of membrane ion channels and caution against making assumptions about mechanosensitive channel orientation using the stimulus type alone.
Collapse
Affiliation(s)
- Takeshi Nomura
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Charles D Cox
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Navid Bavi
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Boris Martinac
- *Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Department of Physical Therapy, Faculty of Rehabilitation, Graduate School of Health Sciences, Kyushu Nutrition Welfare University, Kitakyushu, Japan; St. Vincent's Clinical School, The University of New South Wales, Sydney, New South Wales, Australia; and Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|