1
|
Li E, Kool W, Woolschot L, van der Heyden MAG. Chronic Propafenone Application Increases Functional K IR2.1 Expression In Vitro. Pharmaceuticals (Basel) 2023; 16:ph16030404. [PMID: 36986503 PMCID: PMC10056987 DOI: 10.3390/ph16030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Expression and activity of inwardly rectifying potassium (KIR) channels within the heart are strictly regulated. KIR channels have an important role in shaping cardiac action potentials, having a limited conductance at depolarized potentials but contributing to the final stage of repolarization and resting membrane stability. Impaired KIR2.1 function causes Andersen-Tawil Syndrome (ATS) and is associated with heart failure. Restoring KIR2.1 function by agonists of KIR2.1 (AgoKirs) would be beneficial. The class 1c antiarrhythmic drug propafenone is identified as an AgoKir; however, its long-term effects on KIR2.1 protein expression, subcellular localization, and function are unknown. Propafenone's long-term effect on KIR2.1 expression and its underlying mechanisms in vitro were investigated. KIR2.1-carried currents were measured by single-cell patch-clamp electrophysiology. KIR2.1 protein expression levels were determined by Western blot analysis, whereas conventional immunofluorescence and advanced live-imaging microscopy were used to assess the subcellular localization of KIR2.1 proteins. Acute propafenone treatment at low concentrations supports the ability of propafenone to function as an AgoKir without disturbing KIR2.1 protein handling. Chronic propafenone treatment (at 25-100 times higher concentrations than in the acute treatment) increases KIR2.1 protein expression and KIR2.1 current densities in vitro, which are potentially associated with pre-lysosomal trafficking inhibition.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Willy Kool
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Liset Woolschot
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
2
|
Beverley KM, Pattnaik BR. Inward rectifier potassium (Kir) channels in the retina: living our vision. Am J Physiol Cell Physiol 2022; 323:C772-C782. [PMID: 35912989 PMCID: PMC9448332 DOI: 10.1152/ajpcell.00112.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
Channel proteins are vital for conducting ions throughout the body and are especially relevant to retina physiology. Inward rectifier potassium (Kir) channels are a class of K+ channels responsible for maintaining membrane potential and extracellular K+ concentrations. Studies of the KCNJ gene (that encodes Kir protein) expression identified the presence of all of the subclasses (Kir 1-7) of Kir channels in the retina or retinal-pigmented epithelium (RPE). However, functional studies have established the involvement of the Kir4.1 homotetramer and Kir4.1/5.1 heterotetramer in Müller glial cells, Kir2.1 in bipolar cells, and Kir7.1 in the RPE cell physiology. Here, we propose the potential roles of Kir channels in the retina based on the physiological contributions to the brain, pancreatic, and cardiac tissue functions. There are several open questions regarding the expressed KCNJ genes in the retina and RPE. For example, why does not the Kir channel subtype gene expression correspond with protein expression? Catching up with multiomics or functional "omics" approaches might shed light on posttranscriptional changes that might influence Kir subunit mRNA translation within the retina that guides our vision.
Collapse
Affiliation(s)
- Katie M Beverley
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Bikash R Pattnaik
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
3
|
Abstract
Embryogenesis, as well as regeneration, is increasingly recognized to be orchestrated by an interplay of transcriptional and bioelectric networks. Spatiotemporal patterns of resting potentials direct the size, shape, and locations of numerous organ primordia during patterning. These bioelectrical properties are established by the function of ion channels and pumps that set voltage potentials of individual cells, and gap junctions (electrical synapses) that enable physiological states to propagate across tissue networks. Functional experiments to probe the roles of bioelectrical states can be carried out by targeting endogenous ion channels during development. Here, we describe protocols, optimized for the highly tractable Xenopus laevis embryo, for molecular genetic targeting of ion channels and connexins based on CRISPR, and monitoring of resting potential states using voltage-sensing fluorescent dye. Similar strategies can be adapted to other model species.
Collapse
Affiliation(s)
- Vasilios Nanos
- Department of Biology, and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, and Allen Discovery Center, Tufts University, Medford, MA, USA.
| |
Collapse
|
4
|
Handklo-Jamal R, Meisel E, Yakubovich D, Vysochek L, Beinart R, Glikson M, McMullen JR, Dascal N, Nof E, Oz S. Andersen-Tawil Syndrome Is Associated With Impaired PIP 2 Regulation of the Potassium Channel Kir2.1. Front Pharmacol 2020; 11:672. [PMID: 32499698 PMCID: PMC7243181 DOI: 10.3389/fphar.2020.00672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) type-1 is associated with loss-of-function mutations in KCNJ2 gene. KCNJ2 encodes the tetrameric inward-rectifier potassium channel Kir2.1, important to the resting phase of the cardiac action potential. Kir-channels' activity requires interaction with the agonist phosphatidylinositol-4,5-bisphosphate (PIP2). Two mutations were identified in ATS patients, V77E in the cytosolic N-terminal "slide helix" and M307V in the C-terminal cytoplasmic gate structure "G-loop." Current recordings in Kir2.1-expressing HEK cells showed that each of the two mutations caused Kir2.1 loss-of-function. Biotinylation and immunostaining showed that protein expression and trafficking of Kir2.1 to the plasma membrane were not affected by the mutations. To test the functional effect of the mutants in a heterozygote set, Kir2.1 dimers were prepared. Each dimer was composed of two Kir2.1 subunits joined with a flexible linker (i.e. WT-WT, WT dimer; WT-V77E and WT-M307V, mutant dimer). A tetrameric assembly of Kir2.1 is expected to include two dimers. The protein expression and the current density of WT dimer were equally reduced to ~25% of the WT monomer. Measurements from HEK cells and Xenopus oocytes showed that the expression of either WT-V77E or WT-M307V yielded currents of only about 20% compared to the WT dimer, supporting a dominant-negative effect of the mutants. Kir2.1 sensitivity to PIP2 was examined by activating the PIP2 specific voltage-sensitive phosphatase (VSP) that induced PIP2 depletion during current recordings, in HEK cells and Xenopus oocytes. PIP2 depletion induced a stronger and faster decay in Kir2.1 mutant dimers current compared to the WT dimer. BGP-15, a drug that has been demonstrated to have an anti-arrhythmic effect in mice, stabilized the Kir2.1 current amplitude following VSP-induced PIP2 depletion in cells expressing WT or mutant dimers. This study underlines the implication of mutations in cytoplasmic regions of Kir2.1. A newly developed calibrated VSP activation protocol enabled a quantitative assessment of changes in PIP2 regulation caused by the mutations. The results suggest an impaired function and a dominant-negative effect of the Kir2.1 variants that involve an impaired regulation by PIP2. This study also demonstrates that BGP-15 may be beneficial in restoring impaired Kir2.1 function and possibly in treating ATS symptoms.
Collapse
Affiliation(s)
| | - Eshcar Meisel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Daniel Yakubovich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neonatology Department, Schneider Children's Medical Center, Petah-Tikva, Israel
| | | | - Roy Beinart
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Glikson
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Nathan Dascal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Nof
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Shimrit Oz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
5
|
Alrashed NA, Al-Manea WM, Tulbah SA, Al-Hassnan ZN. Phenotypic variability in a series of four pediatric patients with Andersen-Tawil syndrome: A Saudi experience. Int J Pediatr Adolesc Med 2019; 6:158-164. [PMID: 31890843 PMCID: PMC6926230 DOI: 10.1016/j.ijpam.2019.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/13/2019] [Indexed: 11/30/2022]
Abstract
Andersen-Tawil syndrome (ATS) is a rare genetic disorder characterized by periodic paralysis, ventricular arrhythmia, and dysmorphic features. However, the classical features are not always seen in the syndrome; therefore, the diagnosis can be challenging. We describe our experience with ATS in Riyadh, Saudi Arabia, by presenting a case series involving four patients in the pediatric cardiology clinic confirmed to have ATS. Despite the diversity in phenotypes and clinical course among the four cases, all patients had bidirectional ventricular tachycardia and were confirmed to have ATS by performing genetic testing. In this case series, we identified one novel and three previously described KCNJ2 mutations. We also confirmed the beneficial effect of AAI pacing in one of our patients, together with medical therapy with β-blockers and flecainide. In Saudi Arabia, there is a distinct genetic pool and a high incidence of inherited diseases. Raising awareness about these diseases is crucial, especially in a country such as Saudi Arabia, wherein consanguinity remains a significant factor leading to an increased incidence of inherited diseases. Furthermore, because of the limited information available regarding this rare syndrome, we believe that this case series would offer an opportunity to provide a better understanding of ATS in our local region and worldwide.
Collapse
Affiliation(s)
- Norah A Alrashed
- Princess Nourah Bint Abdulrahman University - College of Medicine, Riyadh, Saudi Arabia
| | - Waleed M Al-Manea
- Division of Pediatric Cardiology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Sahar A Tulbah
- Cardiovascular Genetics Program, Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Cardiovascular Genetics Program, Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Jensen L, Neri E, Bassaneze V, De Almeida Oliveira NC, Dariolli R, Turaça LT, Levy D, Veronez D, Ferraz MSA, Alencar AM, Bydlowski SP, Cestari IA, Krieger JE. Integrated molecular, biochemical, and physiological assessment unravels key extraction method mediated influences on rat neonatal cardiomyocytes. J Cell Physiol 2018; 233:5420-5430. [PMID: 29219187 DOI: 10.1002/jcp.26380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Abstract
Neonatal cardiomyocytes are instrumental for disease modeling, but the effects of different cell extraction methods on basic cell biological processes remain poorly understood. We assessed the influence of two popular methods to extract rat neonatal cardiomyocytes, Pre-plating (PP), and Percoll (PC) on cell structure, metabolism, and function. Cardiomyocytes obtained from PP showed higher gene expression for troponins, titin, and potassium and sodium channels compared to PC. Also, PP cells displayed higher levels of troponin I protein. Cells obtained from PC displayed higher lactate dehydrogenase activity and lactate production than PP cells, indicating higher anaerobic metabolism after 8 days of culture. In contrast, reactive oxygen species levels were higher in PP cells as indicated by ethidium and hydroxyethidium production. Consistent with these data, protein nitration was higher in PP cells, as well as nitrite accumulation in cell medium. Moreover, PP cells showed higher global intracellular calcium under basal and 1 mM isoprenaline conditions. In a calcium-transient assessment under electrical stimulation (0.5 Hz), PP cells displayed higher calcium amplitude than cardiomyocytes obtained from PC and using a traction force microscope technique we observed that PP cardiomyocytes showed the highest relaxation. Collectively, we demonstrated that extraction methods influence parameters related to cell structure, metabolism, and function. Overall, PP derived cells are more active and mature than PC cells, displaying higher contractile function and generating more reactive oxygen species. On the other hand, PC derived cells display higher anaerobic metabolism, despite comparable high yields from both protocols.
Collapse
Affiliation(s)
- Leonardo Jensen
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Elida Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Vinicius Bassaneze
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Nathalia C De Almeida Oliveira
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Lauro T Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Débora Levy
- Laboratory of Genetics and Molecular Hematology/LIM 31, Clinics Hospital (HC), University of São Paulo Medical School, São Paulo, Brazil
| | - Douglas Veronez
- Bioengineering Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Mariana S A Ferraz
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Adriano M Alencar
- Laboratory of Microrheology and Molecular Physiology, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Sérgio P Bydlowski
- Laboratory of Genetics and Molecular Hematology/LIM 31, Clinics Hospital (HC), University of São Paulo Medical School, São Paulo, Brazil
| | - Idágene A Cestari
- Bioengineering Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
7
|
Pai VP, Martyniuk CJ, Echeverri K, Sundelacruz S, Kaplan DL, Levin M. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation. ACTA ACUST UNITED AC 2015; 3:3-25. [PMID: 27499876 PMCID: PMC4857752 DOI: 10.1002/reg2.48] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Endogenous bioelectric signaling via changes in cellular resting potential (Vmem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of Vmem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to Vmem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to Vmem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of Vmem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that Vmem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences UF Genetics Institute, University of Florida Gainesville Florida 32611 USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development University of Minnesota Minneapolis Minnesota 55455 USA
| | - Sarah Sundelacruz
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University Medford Massachusetts 02155 USA
| | - Michael Levin
- Biology Department and Center for Regenerative and Developmental Biology Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
8
|
Law R, Levin M. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells. Theor Biol Med Model 2015; 12:22. [PMID: 26472354 PMCID: PMC4608135 DOI: 10.1186/s12976-015-0019-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. Method To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. Results We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Conclusion Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts. Electronic supplementary material The online version of this article (doi:10.1186/s12976-015-0019-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Law
- Department of Neuroscience, Brown University, Box G, Providence, RI, 02912, USA.
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Bigelow AM, Khalifa MM, Clark JM. Imipramine for incessant ventricular arrhythmias in 2 unrelated patients with Andersen-Tawil syndrome. Heart Rhythm 2015; 12:1654-7. [DOI: 10.1016/j.hrthm.2015.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/25/2022]
|
10
|
Márquez MF, Totomoch-Serra A, Vargas-Alarcón G, Cruz-Robles D, Pellizzon OA, Cárdenas M. [Andersen-Tawil syndrome: a review of its clinical and genetic diagnosis with emphasis on cardiac manifestations]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2014; 84:278-85. [PMID: 25270337 DOI: 10.1016/j.acmx.2013.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 10/24/2022] Open
Abstract
The Andersen-Tawil syndrome is a cardiac ion channel disease that is inherited in an autosomal dominant way and is classified as type 7 of the congenital long QT syndromes. Affected gene is KCNJ2, which forms the inward rectifier potassium channel designated Kir2.1. This protein is involved in stabilizing the resting membrane potential and controls the duration of the action potential in skeletal muscle and heart. It also participates in the terminal repolarization phase of the action potential in ventricular myocytes and is a major component responsible for the correction in the potassium current during phase 3 of the action potential repolarization. Kir 2.1 channel has a predominant role in skeletal muscle, heart and brain. Alterations in this channel produce flaccid paralysis, arrhythmias, impaired skeletal development primarily in extremities and facial area. In this review we address the disease from the point of view of clinical and molecular diagnosis with emphasis on cardiac manifestations.
Collapse
Affiliation(s)
- Manlio F Márquez
- Departamento de Electrofisiología, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., México.
| | - Armando Totomoch-Serra
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., México; Maestría en Investigación Clínica Experimental en Salud, Universidad Nacional Autónoma de México, México D.F., México
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., México
| | - David Cruz-Robles
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., México
| | - Oscar A Pellizzon
- Centro de Arritmias Cardíacas, Hospital Universitario del Centenario, Rosario (Santa Fe), Argentina
| | - Manuel Cárdenas
- Departamento de Electrofisiología, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., México
| |
Collapse
|
11
|
Ambrosini E, Sicca F, Brignone MS, D'Adamo MC, Napolitano C, Servettini I, Moro F, Ruan Y, Guglielmi L, Pieroni S, Servillo G, Lanciotti A, Valvo G, Catacuzzeno L, Franciolini F, Molinari P, Marchese M, Grottesi A, Guerrini R, Santorelli FM, Priori S, Pessia M. Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype. Hum Mol Genet 2014; 23:4875-86. [PMID: 24794859 PMCID: PMC4140467 DOI: 10.1093/hmg/ddu201] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Short QT3 syndrome (SQT3S) is a cardiac disorder characterized by a high risk of mortality and associated with mutations in Kir2.1 (KCNJ2) channels. The molecular mechanisms leading to channel dysfunction, cardiac rhythm disturbances and neurodevelopmental disorders, potentially associated with SQT3S, remain incompletely understood. Here, we report on monozygotic twins displaying a short QT interval on electrocardiogram recordings and autism-epilepsy phenotype. Genetic screening identified a novel KCNJ2 variant in Kir2.1 that (i) enhanced the channel's surface expression and stability at the plasma membrane, (ii) reduced protein ubiquitylation and degradation, (iii) altered protein compartmentalization in lipid rafts by targeting more channels to cholesterol-poor domains and (iv) reduced interactions with caveolin 2. Importantly, our study reveals novel physiological mechanisms concerning wild-type Kir2.1 channel processing by the cell, such as binding to both caveolin 1 and 2, protein degradation through the ubiquitin-proteasome pathway; in addition, it uncovers a potential multifunctional site that controls Kir2.1 surface expression, protein half-life and partitioning to lipid rafts. The reported mechanisms emerge as crucial also for proper astrocyte function, suggesting the need for a neuropsychiatric evaluation in patients with SQT3S and offering new opportunities for disease management.
Collapse
Affiliation(s)
- Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy,
| | - Federico Sicca
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and
| | - Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Maria C D'Adamo
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| | - Carlo Napolitano
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| | - Ilenio Servettini
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| | - Francesca Moro
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and
| | - Yanfei Ruan
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| | - Luca Guglielmi
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| | | | | | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Giulia Valvo
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Marchese
- Molecular Medicine Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | | | - Renzo Guerrini
- Clinical Neurophysiology Laboratory, Department of Developmental Neuroscience and Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | | | - Silvia Priori
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy
| | - Mauro Pessia
- Faculty of Medicine, Section of Physiology & Biochemistry, Department of Experimental Medicine
| |
Collapse
|
12
|
Marquis-Nicholson R, Prosser DO, Love JM, Zhang L, Hayes I, George AM, Crawford JR, Skinner JR, Love DR. Array comparative genomic hybridization identifies a heterozygous deletion of the entire KCNJ2 gene as a cause of sudden cardiac death. ACTA ACUST UNITED AC 2014; 7:17-22. [PMID: 24395924 DOI: 10.1161/circgenetics.113.000415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Large gene rearrangements, not detectable by standard molecular genetic sequencing techniques, are present in a minority of patients with long QT syndrome. We aimed to screen for large rearrangements in genes responsible for long QT syndrome as part of the molecular autopsy of a 36-year-old woman who died suddenly and had a negative autopsy. A retrospective analysis of an ECG identified a long QT interval, but sequencing of known LQT genes was uninformative. METHODS AND RESULTS Array comparative genomic hybridization was used to screen for deletions and duplications in 101 genes implicated in cardiac disorders and sudden death using a postmortem blood sample. A 542 kb deletion encompassing the entire KCNJ2 gene was identified in the decedent. The mother had electrocardiographic U-wave changes consistent with Andersen-Tawil syndrome and exaggerated by exercise but none of the characteristic noncardiac features. Fluorescence in situ hybridization confirmed the deletion in the decedent and established its presence in the mother. CONCLUSIONS A novel application of array comparative genomic hybridization and fluorescence in situ hybridization has identified that long QT syndrome and sudden cardiac death may occur as a result of a deletion of an entire gene. The case also supports recent research suggesting that noncardiac features of Andersen-Tawil syndrome occur only with missense or minor gene rearrangements in the KCNJ2 gene, resulting in a dominant negative effect on Kir2.x channels.
Collapse
|
13
|
|