1
|
Orozco-Arias S, Dupeyron M, Gutiérrez-Duque D, Tabares-Soto R, Guyot R. High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Genome 2023; 66:51-61. [PMID: 36623262 DOI: 10.1139/gen-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TEs) are mobile elements found in the majority of eukaryotic genomes. TEs deeply impact the structure and evolution of chromosomes and can induce mutations affecting coding genes. In plants, the major group of TEs is long terminal repeat retrotransposons (LTR-RTs). They are classified into superfamilies (Gypsy, Copia) and subclassified into lineages. Horizontal transfer (HT), defined as the nonsexual transmission of genetic material between species, is a process allowing LTR-RTs to invade a new genome. Although this phenomenon was considered rare, recent studies demonstrate numerous transfers of LTR-RTs. This study aims to determine which LTR-RT lineages are shared with high similarity among 69 plant genomes. We identified and classified 88 450 LTR-RTs and determined 143 cases of high similarities between pairs of genomes. Most of them involved three Copia lineages (Oryco/Ivana, Retrofit/Ale, and Tork/Tar/Ikeros). A detailed analysis of three cases of high similarities involving Tork/Tar/Ikeros group shows an uneven distribution in the phylogeny of the elements and incongruence with between phylogenetic trees topologies, indicating they could be originated from HTs. Overall, our results suggest that LTR-RT Copia lineages share outstanding similarity between distant species and may likely be involved in HT mechanisms more frequent than initially estimated.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Sciences, Universidad Autónoma de Manizales, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Colombia
| | - Mathilde Dupeyron
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France
| | | | - Reinel Tabares-Soto
- Department of Systems and Informatics, Universidad de Caldas, Colombia.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| |
Collapse
|
2
|
Aubin E, El Baidouri M, Panaud O. Horizontal Gene Transfers in Plants. Life (Basel) 2021; 11:life11080857. [PMID: 34440601 PMCID: PMC8401529 DOI: 10.3390/life11080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants.
Collapse
|
3
|
A Global Landscape of Miniature Inverted-Repeat Transposable Elements in the Carrot Genome. Genes (Basel) 2021; 12:genes12060859. [PMID: 34205210 PMCID: PMC8227079 DOI: 10.3390/genes12060859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are the most abundant group of Class II mobile elements in plant genomes. Their presence in genic regions may alter gene structure and expression, providing a new source of functional diversity. Owing to their small size and lack of coding capacity, the identification of MITEs has been demanding. However, the increasing availability of reference genomes and bioinformatic tools provides better means for the genome-wide identification and analysis of MITEs and for the elucidation of their contribution to the evolution of plant genomes. We mined MITEs in the carrot reference genome DH1 using MITE-hunter and developed a curated carrot MITE repository comprising 428 families. Of the 31,025 MITE copies spanning 10.34 Mbp of the carrot genome, 54% were positioned in genic regions. Stowaways and Tourists were frequently present in the vicinity of genes, while Mutator-like MITEs were relatively more enriched in introns. hAT-like MITEs were relatively more frequently associated with transcribed regions, including untranslated regions (UTRs). Some carrot MITE families were shared with other Apiaceae species. We showed that hAT-like MITEs were involved in the formation of new splice variants of insertion-harboring genes. Thus, carrot MITEs contributed to the accretion of new diversity by altering transcripts and possibly affecting the regulation of many genes.
Collapse
|
4
|
Besse P. Guidelines for the Choice of Sequences for Molecular Plant Taxonomy. Methods Mol Biol 2021; 2222:39-55. [PMID: 33301086 DOI: 10.1007/978-1-0716-0997-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This chapter presents an overview of the major plant DNA sequences and molecular methods available for plant taxonomy. Guidelines are provided for the choice of sequences and methods to be used, based on the DNA compartment (nuclear, chloroplastic, mitochondrial), evolutionary mechanisms, and the level of taxonomic differentiation of the plants under survey.
Collapse
Affiliation(s)
- Pascale Besse
- UMR PVBMT, Universite de la Reunion, St Pierre, Réunion, France.
| |
Collapse
|
5
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Hou F, Ma B, Xin Y, Kuang L, He N. Horizontal transfers of LTR retrotransposons in seven species of Rosales. Genome 2018; 61:587-594. [PMID: 29958091 DOI: 10.1139/gen-2017-0208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Horizontal transposable element transfer (HTT) events have occurred among a large number of species and play important roles in the composition and evolution of eukaryotic genomes. HTTs are also regarded as effective forces in promoting genomic variation and biological innovation. In the present study, HTT events were identified and analyzed in seven sequenced species of Rosales using bioinformatics methods by comparing sequence conservation and Ka/Ks value of reverse transcriptase (RT) with 20 conserved genes, estimating the dating of HTTs, and analyzing the phylogenetic relationships. Seven HTT events involving long terminal repeat (LTR) retrotransposons, two HTTs between Morus notabilis and Ziziphus jujuba, and five between Malus domestica and Pyrus bretschneideri were identified. Further analysis revealed that these LTR retrotransposons had functional structures, and the copy insertion times were lower than the dating of HTTs, particularly in Mn.Zj.1 and Md.Pb.3. Altogether, the results demonstrate that LTR retrotransposons still have potential transposition activity in host genomes. These results indicate that HTT events are another strategy for exchanging genetic material among species and are important for the evolution of genomes.
Collapse
Affiliation(s)
- Fei Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Lulu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
8
|
Palazzo A, Caizzi R, Viggiano L, Marsano RM. Does the Promoter Constitute a Barrier in the Horizontal Transposon Transfer Process? Insight from Bari Transposons. Genome Biol Evol 2018; 9:1637-1645. [PMID: 28854630 PMCID: PMC5570127 DOI: 10.1093/gbe/evx122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
The contribution of the transposons’ promoter in the horizontal transfer process is quite overlooked in the scientific literature. To shed light on this aspect we have mimicked the horizontal transfer process in laboratory and assayed in a wide range of hosts (fly, human, yeast and bacteria) the promoter activity of the 5′ terminal sequences in Bari1 and Bari3, two Drosophila transposons belonging to the Tc1-mariner superfamily. These sequences are able to drive the transcription of a reporter gene even in distantly related organisms at least at the episomal level. By combining bioinformatics and experimental approaches, we define two distinct promoter sequences for each terminal sequence analyzed, which allow transcriptional activity in prokaryotes and eukaryotes, respectively. We propose that the Bari family of transposons, and possibly other members of the Tc1-mariner superfamily, might have evolved “blurry promoters,” which have facilitated their diffusion in many living organisms through horizontal transfer.
Collapse
Affiliation(s)
- Antonio Palazzo
- Department of Biology, University of Bari "Aldo Moro," Italy
| | - Ruggiero Caizzi
- Department of Biology, University of Bari "Aldo Moro," Italy
| | - Luigi Viggiano
- Department of Biology, University of Bari "Aldo Moro," Italy
| | | |
Collapse
|
9
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. SUSTAINABILITY 2016. [DOI: 10.3390/su8050495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Lin X, Faridi N, Casola C. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers. Genome Biol Evol 2016; 8:1252-66. [PMID: 27190138 PMCID: PMC4860704 DOI: 10.1093/gbe/evw076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants.
Collapse
Affiliation(s)
- Xuan Lin
- Department of Ecosystem Science and Management, Texas A&M University
| | - Nurul Faridi
- Department of Ecosystem Science and Management, Texas A&M University Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi
| | - Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University
| |
Collapse
|
12
|
Zhu J, Wang G, Pelosi P. Plant transcriptomes reveal hidden guests. Biochem Biophys Res Commun 2016; 474:497-502. [PMID: 27130825 DOI: 10.1016/j.bbrc.2016.04.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022]
Abstract
With the wide adoption of transcriptome sequencing an ever increasing amount of information is becoming available, together with spurious data originating from contamination. We show that sometimes errors and inaccuracy can turn beneficial, revealing insect and arthropod pests when analysing plant transcriptomes. We have found a large number of soluble olfactory proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), in plant databases, likely due to contamination by guest insects. In fact, both classes of proteins are only expressed in insects, with few CSPs also present in other arthropods. In addition, we found many sequences of the Niemann-Pick (Npc2) family, proteins dedicated to cholesterol transport in vertebrates and hypothesised to be involved in chemical communication in insects, but absent in plants. In several cases we were able to trace down members of the three classes of proteins to the insect or arthopod species responsible for contamination. Our work suggests that genes found in plants and recognised as contaminants can be turned into useful information to investigate plant-insect relationships or to identify new sequences from insects species not yet investigated.
Collapse
Affiliation(s)
- Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Arya P, Acharya V. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants. PLoS One 2016; 11:e0150634. [PMID: 26930396 PMCID: PMC4773052 DOI: 10.1371/journal.pone.0150634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.
Collapse
Affiliation(s)
- Preeti Arya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur- 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur- 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
- * E-mail: ;
| |
Collapse
|
14
|
Dias ES, Hatt C, Hamon S, Hamon P, Rigoreau M, Crouzillat D, Carareto CMA, de Kochko A, Guyot R. Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families. PLANT MOLECULAR BIOLOGY 2015; 89:83-97. [PMID: 26245353 DOI: 10.1007/s11103-015-0352-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Retrotransposons are the main component of plant genomes. Recent studies have revealed the complexity of their evolutionary dynamics. Here, we have identified Copia25 in Coffea canephora, a new plant retrotransposon belonging to the Ty1-Copia superfamily. In the Coffea genomes analyzed, Copia25 is present in relatively low copy numbers and transcribed. Similarity sequence searches and PCR analyses show that this retrotransposon with LTRs (Long Terminal Repeats) is widely distributed among the Rubiaceae family and that it is also present in other distantly related species belonging to Asterids, Rosids and monocots. A particular situation is the high sequence identity found between the Copia25 sequences of Musa, a monocot, and Ixora, a dicot species (Rubiaceae). Our results reveal the complexity of the evolutionary dynamics of the ancient element Copia25 in angiosperm, involving several processes including sequence conservation, rapid turnover, stochastic losses and horizontal transfer.
Collapse
Affiliation(s)
- Elaine Silva Dias
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
- Department of Biology, UNESP-Univ. Estadual Paulista, São José do Rio Preto, Araraquara, SP, Brazil.
| | - Clémence Hatt
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Serge Hamon
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Perla Hamon
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Michel Rigoreau
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097, Tours, Cedex 2, France.
| | - Dominique Crouzillat
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097, Tours, Cedex 2, France.
| | | | | | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR IPME, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
15
|
Chaparro C, Gayraud T, de Souza RF, Domingues DS, Akaffou S, Laforga Vanzela AL, Kochko AD, Rigoreau M, Crouzillat D, Hamon S, Hamon P, Guyot R. Terminal-repeat retrotransposons with GAG domain in plant genomes: a new testimony on the complex world of transposable elements. Genome Biol Evol 2015; 7:493-504. [PMID: 25573958 PMCID: PMC4350172 DOI: 10.1093/gbe/evv001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (<4 kb) showing the typical features of LTR-retrotransposons. However, they carry only one open reading frame coding for the GAG precursor protein involved for instance in transposition, the assembly, and the packaging of the element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes.
Collapse
Affiliation(s)
- Cristian Chaparro
- 2EI UMR5244 Université de Perpignan Via Domitia, UMR 5244 CNRS Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Thomas Gayraud
- Institut de Recherche pour le Développement (IRD), UMR DIADE (CIRAD, IRD, UM2), Montpellier, France
| | | | - Douglas Silva Domingues
- Departamento de Botanica, Instituto de Biociencias, Univ Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | | | | | - Alexandre de Kochko
- Institut de Recherche pour le Développement (IRD), UMR DIADE (CIRAD, IRD, UM2), Montpellier, France
| | | | | | - Serge Hamon
- Institut de Recherche pour le Développement (IRD), UMR DIADE (CIRAD, IRD, UM2), Montpellier, France
| | - Perla Hamon
- Institut de Recherche pour le Développement (IRD), UMR DIADE (CIRAD, IRD, UM2), Montpellier, France
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR IPME, Montpellier, France
| |
Collapse
|
16
|
Parisot N, Pelin A, Gasc C, Polonais V, Belkorchia A, Panek J, El Alaoui H, Biron DG, Brasset E, Vaury C, Peyret P, Corradi N, Peyretaillade É, Lerat E. Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans. Genome Biol Evol 2014; 6:2289-300. [PMID: 25172905 PMCID: PMC4202319 DOI: 10.1093/gbe/evu178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microsporidian genomes are the leading models to understand the streamlining in response to a pathogenic lifestyle; they are gene-poor and often possess small genomes. In this study, we show a feature of microsporidian genomes that contrasts this pattern of genome reduction. Specifically, genome investigations targeted at Anncaliia algerae, a human pathogen with a genome size of 23 Mb, revealed the presence of a hitherto undetected diversity in transposable elements (TEs). A total of 240 TE families per genome were identified, exceeding that found in many free-living fungi, and searches of microsporidian species revealed that these mobile elements represent a significant portion of their coding repertoire. Their phylogenetic analysis revealed that many cases of ancestry involve recent and bidirectional horizontal transfers with metazoans. The abundance and horizontal transfer origin of microsporidian TEs highlight a novel dimension of genome evolution in these intracellular pathogens, demonstrating that factors beyond reduction are at play in their diversification.
Collapse
Affiliation(s)
- Nicolas Parisot
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France CNRS, UMR 6023, LMGE, Aubière, France
| | - Adrian Pelin
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ontario, Canada
| | - Cyrielle Gasc
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - Valérie Polonais
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Abdel Belkorchia
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Johan Panek
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Hicham El Alaoui
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - David G Biron
- CNRS, UMR 6023, LMGE, Aubière, France Clermont Université, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement," Clermont-Ferrand, France
| | - Emilie Brasset
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm; U 1103, Clermont-Ferrand, France, CNRS; UMR 6293, Clermont-Ferrand, France
| | - Chantal Vaury
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm; U 1103, Clermont-Ferrand, France, CNRS; UMR 6293, Clermont-Ferrand, France
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ontario, Canada
| | - Éric Peyretaillade
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - Emmanuelle Lerat
- Université de Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622 Villeurbanne, France
| |
Collapse
|
17
|
Moisy C, Schulman AH, Kalendar R, Buchmann JP, Pelsy F. The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1223-35. [PMID: 24590356 DOI: 10.1007/s00122-014-2293-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/21/2014] [Indexed: 05/18/2023]
Abstract
Combining several different approaches, we have examined the structure, variability, and distribution of Tvv1 retrotransposons. Tvv1 is an unusual example of a low-copy retrotransposon metapopulation dispersed unevenly among very distant species and is promising for the development of molecular markers. Retrotransposons are ubiquitous throughout the genomes of the vascular plants, but individual retrotransposon families tend to be confined to the level of plant genus or at most family. This restricts the general applicability of a family as molecular markers. Here, we characterize a new plant retrotransposon named Tvv1_Sdem, a member of the Copia superfamily of LTR retrotransposons, from the genome of the wild potato Solanum demissum. Comparative analyses based on structure and sequence showed a high level of similarity of Tvv1_Sdem with Tvv1-VB, a retrotransposon previously described in the grapevine genome Vitis vinifera. Extending the analysis to other species by in silico and in vitro approaches revealed the presence of Tvv1 family members in potato, tomato, and poplar genomes, and led to the identification of full-length copies of Tvv1 in these species. We were also able to identify polymorphism in UTL sequences between Tvv1_Sdem copies from wild and cultivated potatoes that are useful as molecular markers. Combining different approaches, our results suggest that the Tvv1 family of retrotransposons has a monophyletic origin and has been maintained in both the rosids and the asterids, the major clades of dicotyledonous plants, since their divergence about 100 MYA. To our knowledge, Tvv1 represents an unusual plant retrotransposon metapopulation comprising highly similar members disjointedly dispersed among very distant species. The twin features of Tvv1 presence in evolutionarily distant genomes and the diversity of its UTL region in each species make it useful as a source of robust molecular markers for diversity studies and breeding.
Collapse
Affiliation(s)
- Cédric Moisy
- MTT/BI Plant Genomics Lab, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Biocenter 3, Viikinkaari 1, 00014, Helsinki, Finland,
| | | | | | | | | |
Collapse
|
18
|
Abstract
The development of rigorous molecular taxonomy pioneered by Carl Woese has freed evolution science to explore numerous cellular activities that lead to genome change in evolution. These activities include symbiogenesis, inter- and intracellular horizontal DNA transfer, incorporation of DNA from infectious agents, and natural genetic engineering, especially the activity of mobile elements. This article reviews documented examples of all these processes and proposes experiments to extend our understanding of cell-mediated genome change.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology; University of Chicago; Chicago, IL USA
| |
Collapse
|
19
|
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:505-30. [PMID: 24579996 DOI: 10.1146/annurev-arplant-050213-035811] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Transposable elements (TEs) are the key players in generating genomic novelty by a combination of the chromosome rearrangements they cause and the genes that come under their regulatory sway. Genome size, gene content, gene order, centromere function, and numerous other aspects of nuclear biology are driven by TE activity. Although the origins and attitudes of TEs have the hallmarks of selfish DNA, there are numerous cases where TE components have been co-opted by the host to create new genes or modify gene regulation. In particular, epigenetic regulation has been transformed from a process to silence invading TEs and viruses into a key strategy for regulating plant genes. Most, perhaps all, of this epigenetic regulation is derived from TE insertions near genes or TE-encoded factors that act in trans. Enormous pools of genome data and new technologies for reverse genetics will lead to a powerful new era of TE analysis in plants.
Collapse
Affiliation(s)
- Jeffrey L Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | |
Collapse
|
20
|
Gao C, Ren X, Mason AS, Liu H, Xiao M, Li J, Fu D. Horizontal gene transfer in plants. Funct Integr Genomics 2013; 14:23-9. [PMID: 24132513 DOI: 10.1007/s10142-013-0345-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/12/2023]
Abstract
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.
Collapse
Affiliation(s)
- Caihua Gao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Wallau GL, Ortiz MF, Loreto ELS. Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol Evol 2012; 4:689-99. [PMID: 22798449 PMCID: PMC3516303 DOI: 10.1093/gbe/evs055] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic similarity observed among species is normally attributed to the existence of
a common ancestor. However, a growing body of evidence suggests that the exchange of
genetic material is not limited to the transfer from parent to offspring but can also
occur through horizontal transfer (HT). Transposable elements (TEs) are DNA fragments with
an innate propensity for HT; they are mobile and possess parasitic characteristics that
allow them to exist and proliferate within host genomes. However, horizontal transposon
transfer (HTT) is not easily detected, primarily because the complex TE life cycle can
generate phylogenetic patterns similar to those expected for HTT events. The increasingly
large number of new genome projects, in all branches of life, has provided an
unprecedented opportunity to evaluate the TE content and HTT events in these species,
although a standardized method of HTT detection is required before trends in the HTT rates
can be evaluated in a wide range of eukaryotic taxa and predictions about these events can
be made. Thus, we propose a straightforward hypothesis test that can be used by TE
specialists and nonspecialists alike to discriminate between HTT events and natural TE
life cycle patterns. We also discuss several plausible explanations and predictions for
the distribution and frequency of HTT and for the inherent biases of HTT detection.
Finally, we discuss some of the methodological concerns for HTT detection that may result
in the underestimation and overestimation of HTT rates during eukaryotic genome
evolution.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Brazil.
| | | | | |
Collapse
|
22
|
Zhou MB, Zhong H, Tang DQ. Isolation and characterization of seventy-nine full-length mariner-like transposase genes in the Bambusoideae subfamily. JOURNAL OF PLANT RESEARCH 2011; 124:607-617. [PMID: 21165667 DOI: 10.1007/s10265-010-0396-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
Mariner-like elements (MLEs) are the most diverse and widespread transposable elements, with members of the MLE superfamily found in fungi, plants, ciliates and animals. In a previous study, we characterized 82 MLE transposase gene fragments (average length 383 bp) in 44 bamboo species, indicating that MLEs are widespread, abundant and diverse in the Bambusoideae subfamily. In this study, we isolated 79 full-length MLE transposase genes from 63 bamboo species representing 38 genera in six subtribes mainly found in China. The transposases were highly conserved, mostly uniform in length and contained intact DNA-binding motifs and DD39D catalytic domains with few notable frameshift, indel and nonsense mutations. This suggested the MLEs are probably still mobile, not yet affected by vertical inactivation. A phylogenetic tree of the Bambusoideae subfamily established using ribosomal DNA internal transcribed spacer sequences was incongruent with a second tree based on the MLE transposase genes. This evidence, together with the presence of near-identical MLEs in distantly related species and diverse MLEs in closely related species, indicates that MLEs have evolved in a distinct manner, probably independently of speciation events in the subfamily. The evolution and diversity of MLE transposase genes in the Bambusoideae subfamily is discussed.
Collapse
Affiliation(s)
- Ming-Bing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | | | | |
Collapse
|
23
|
Diversity and evolution of Ty1-copia retroelements in representative tribes of Bambusoideae subfamily. Genetica 2010; 138:861-8. [PMID: 20577895 DOI: 10.1007/s10709-010-9469-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 06/14/2010] [Indexed: 02/06/2023]
Abstract
Ty1-copia retroelements have been found in all major plants and are largely responsible for the huge differences in the genome size. In this study we isolated and sequenced Ty1-copia reverse transcriptase (rt) gene fragments from 44 representative species of bamboo and nine cultivars or forms of Phyllostachys pubescens. Phylogenetic analysis of 72 distinct Ty1-copia rt sequences showed that Ty1-copia retroelements were widespread, diverse and abundant in these species of Bambusoideae subfamily. In addition, a molecular phylogeny of the species of the Bambusoideae subfamily was established by using the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS) sequences. The comparison between ITS- and Ty1-copia rt- based trees is obviously incongruent. The results suggested either the existence of horizontal transfer events between phylogenetically distant species, or an ancestral Ty1-copia retroelement polymorphism followed by different evolution and stochastic losses.
Collapse
|
24
|
Sanyal A, Ammiraju JSS, Lu F, Yu Y, Rambo T, Currie J, Kollura K, Kim HR, Chen J, Ma J, San Miguel P, Mingsheng C, Wing RA, Jackson SA. Orthologous comparisons of the Hd1 region across genera reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in Sorghum. Mol Biol Evol 2010; 27:2487-506. [PMID: 20522726 DOI: 10.1093/molbev/msq133] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heading date is one of the most important quantitative traits responsible for the domestication of rice. We compared a 155-kb reference segment of the Oryza sativa ssp. japonica cv. Nipponbare genome surrounding Hd1, a major heading date gene in rice, with orthologous regions from nine diploid Oryza species that diverged over a relatively short time frame (∼16 My) to study sequence evolution around a domestication locus. The orthologous Hd1 region from Sorghum bicolor was included to compare and contrast the evolution in a more distant relative of rice. Consistent with other observations at the adh1/adh2, monoculm1, and sh2/a1 loci in grass species, we found high gene colinearity in the Hd1 region amidst size differences that were lineage specific and long terminal repeat retrotransposon driven. Unexpectedly, the Hd1 gene was deleted in O. glaberrima, whereas the O. rufipogon and O. punctata copies had degenerative mutations, suggesting that other heading date loci might compensate for the loss or nonfunctionality of Hd1 in these species. Compared with the japonica Hd1 region, the orthologous region in sorghum exhibited micro-rearrangements including gene translocations, seven additional genes, and a gene triplication and truncation event predating the divergence from Oryza.
Collapse
|
25
|
Roulin A, Piegu B, Fortune PM, Sabot F, D'Hont A, Manicacci D, Panaud O. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae. BMC Evol Biol 2009; 9:58. [PMID: 19291296 PMCID: PMC2664808 DOI: 10.1186/1471-2148-9-58] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/16/2009] [Indexed: 02/04/2023] Open
Abstract
Background Horizontal transfers (HTs) refer to the transmission of genetic material between phylogenetically distant species. Although most of the cases of HTs described so far concern genes, there is increasing evidence that some involve transposable elements (TEs) in Eukaryotes. The availability of the full genome sequence of two cereal species, (i.e. rice and Sorghum), as well as the partial genome sequence of maize, provides the opportunity to carry out genome-wide searches for TE-HTs in Poaceae. Results We have identified an LTR-retrotransposon, that we named Route66, with more than 95% sequence identity between rice and Sorghum. Using a combination of in silico and molecular approaches, we are able to present a substantial phylogenetic evidence that Route66 has been transferred horizontally between Panicoideae and several species of the genus Oryza. In addition, we show that it has remained active after these transfers. Conclusion This study constitutes a new case of HTs for an LTR-retrotransposon and we strongly believe that this mechanism could play a major role in the life cycle of transposable elements. We therefore propose to integrate classe I elements into the previous model of transposable element evolution through horizontal transfers.
Collapse
Affiliation(s)
- Anne Roulin
- Laboratoire Génome et Développement des Plantes, UMR CNRS/IRD/UPVD, Université de Perpignan, 52, avenue Paul Alduy, 66860 Perpignan, cedex, France.
| | | | | | | | | | | | | |
Collapse
|