1
|
Bedsole CO, Vasselli JG, Shaw BD. Endocytosis in filamentous Fungi: Coordinating polarized hyphal growth and membrane recycling. Fungal Genet Biol 2025; 179:104000. [PMID: 40368173 DOI: 10.1016/j.fgb.2025.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Filamentous fungi rely on a finely tuned balance between exocytosis and endocytosis to maintain polarized growth. This review highlights the essential role of the subapical endocytic collar in recycling excess plasma membrane and key proteins, enabling sustained hyphal extension. It distinguishes between clathrin-mediated and AP-2-dependent clathrin-independent pathways, emphasizing their unique contributions to membrane homeostasis and cargo trafficking. The synthesis of quantitative imaging and genetic analyses provides a comprehensive framework for understanding vesicle dynamics, with implications for addressing fungal pathogenicity and industrial applications.
Collapse
Affiliation(s)
- Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Joseph G Vasselli
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA; (Current address) Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Zhang S, Yang L, Li L, Zhong K, Wang W, Liu M, Li Y, Liu X, Yu R, He J, Zhang H, Zheng X, Wang P, Zhang Z. System-Wide Characterization of MoArf GTPase Family Proteins and Adaptor Protein MoGga1 Involved in the Development and Pathogenicity of Magnaporthe oryzae. mBio 2019; 10:e02398-19. [PMID: 31615964 PMCID: PMC6794486 DOI: 10.1128/mbio.02398-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
ADP ribosylation factor (Arf) small GTPase family members are involved in vesicle trafficking and organelle maintenance in organisms ranging from Saccharomyces cerevisiae to humans. A previous study identified Magnaporthe oryzae Arf6 (MoArf6) as one of the Arf proteins that regulates growth and conidiation in the rice blast fungus M. oryzae, but the remaining family proteins remain unknown. Here, we identified six additional Arf proteins, including MoArf1, MoArl1, MoArl3, MoArl8, MoCin4, and MoSar1, as well as their sole adaptor protein, MoGga1, and determined their shared and specific functions. We showed that the majority of these proteins exhibit positive regulatory functions, most notably, in growth. Importantly, MoArl1, MoCin4, and MoGga1 are involved in pathogenicity through the regulation of host penetration and invasive hyphal growth. MoArl1 and MoCin4 also regulate normal vesicle trafficking, and MoCin4 further controls the formation of the biotrophic interfacial complex (BIC). Moreover, we showed that Golgi-cytoplasm cycling of MoArl1 is required for its function. Finally, we demonstrated that interactions between MoArf1 and MoArl1 with MoGga1 are important for Golgi localization and pathogenicity. Collectively, our findings revealed the shared and specific functions of Arf family members in M. oryzae and shed light on how these proteins function through conserved mechanisms to govern growth, transport, and virulence of the blast fungus.IMPORTANCEMagnaporthe oryzae is the causal agent of rice blast, representing the most devastating diseases of rice worldwide, which results in losses of amounts of rice that could feed more than 60 million people each year. Arf (ADP ribosylation factor) small GTPase family proteins are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. To investigate the function of Arf family proteins in M. oryzae, we systematically characterized all seven Arf proteins and found that they have shared and specific functions in governing the growth, development, and pathogenicity of the blast fungus. We have also identified the pathogenicity-related protein MoGga1 as the common adaptor of MoArf1 and MoArl1. Our findings are important because they provide the first comprehensive characterization of the Arf GTPase family proteins and their adaptor protein MoGga1 functioning in a plant-pathogenic fungus, which could help to reveal new fungicide targets to control this devastating disease.
Collapse
Affiliation(s)
- Shengpei Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lina Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Kaili Zhong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenhao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jialiang He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ping Wang
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
3
|
Yao X, Arst HN, Wang X, Xiang X. Discovery of a vezatin-like protein for dynein-mediated early endosome transport. Mol Biol Cell 2015; 26:3816-27. [PMID: 26378255 PMCID: PMC4626066 DOI: 10.1091/mbc.e15-08-0602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 11/11/2022] Open
Abstract
In filamentous fungi, dynein moves early endosomes away from the hyphal tip. Aspergillus genetics is used to identify a vezatin-like protein, VezA, which is critical for dynein-mediated transport of early endosomes. VezA localizes to the hyphal tip in an actin-dependent manner and regulates the interaction between dynein and early endosomes. Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo.
Collapse
Affiliation(s)
- Xuanli Yao
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| | - Herbert N Arst
- Microbiology Section, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| |
Collapse
|
4
|
Fang W, Robinson DA, Raimi OG, Blair DE, Harrison JR, Lockhart DEA, Torrie LS, Ruda GF, Wyatt PG, Gilbert IH, van Aalten DMF. N-myristoyltransferase is a cell wall target in Aspergillus fumigatus. ACS Chem Biol 2015; 10:1425-34. [PMID: 25706802 PMCID: PMC4477619 DOI: 10.1021/cb5008647] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of filamentous fungal infections relies on a limited repertoire of antifungal agents. Compounds possessing novel modes of action are urgently required. N-myristoylation is a ubiquitous modification of eukaryotic proteins. The enzyme N-myristoyltransferase (NMT) has been considered a potential therapeutic target in protozoa and yeasts. Here, we show that the filamentous fungal pathogen Aspergillus fumigatus possesses an active NMT enzyme that is essential for survival. Surprisingly, partial repression of the gene revealed downstream effects of N-myristoylation on cell wall morphology. Screening a library of inhibitors led to the discovery of a pyrazole sulphonamide compound that inhibits the enzyme and is fungicidal under partially repressive nmt conditions. Together with a crystallographic complex showing the inhibitor binding in the peptide substrate pocket, we provide evidence of NMT being a potential drug target in A. fumigatus.
Collapse
Affiliation(s)
- Wenxia Fang
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - David A. Robinson
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Olawale G. Raimi
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - David E. Blair
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Justin R. Harrison
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Deborah E. A. Lockhart
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Leah S. Torrie
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Gian Filippo Ruda
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Paul G. Wyatt
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Ian H. Gilbert
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology, ‡Division of Biological
Chemistry and Drug Discovery, §MRC Protein Phosphorylation and Ubiquitylation
Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
5
|
Renna L, Stefano G, Majeran W, Micalella C, Meinnel T, Giglione C, Brandizzi F. Golgi traffic and integrity depend on N-myristoyl transferase-1 in Arabidopsis. THE PLANT CELL 2013; 25:1756-73. [PMID: 23673980 PMCID: PMC3694704 DOI: 10.1105/tpc.113.111393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific membrane compartments. Eukaryotes have conserved N-myristoylation enzymes, involving one or two N-myristoyltransferases (NMT1 and NMT2), among which NMT1 is the major enzyme. In the postembryonic developmental stages, defects in NMT1 lead to aberrant cell polarity, flower differentiation, fruit maturation, and innate immunity; however, no specific NMT1 target responsible for such deficiencies has hitherto been identified. Using a confocal microscopy forward genetics screen for the identification of Arabidopsis thaliana secretory mutants, we isolated STINGY, a recessive mutant with defective Golgi traffic and integrity. We mapped STINGY to a substitution at position 160 of Arabidopsis NMT1 (NMT1A160T). In vitro kinetic studies with purified NMT1A160T enzyme revealed a significant reduction in its activity due to a remarkable decrease in affinity for both myristoyl-CoA and peptide substrates. We show here that this recessive mutation is responsible for the alteration of Golgi traffic and integrity by predominantly affecting the Golgi membrane/cytosol partitioning of ADP-ribosylation factor proteins. Our results provide important functional insight into N-myristoylation in plants by ascribing postembryonic functions of Arabidopsis NMT1 that involve regulation of the functional and morphological integrity of the plant endomembranes.
Collapse
Affiliation(s)
- Luciana Renna
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Giovanni Stefano
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Wojciech Majeran
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Chiara Micalella
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Federica Brandizzi
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
6
|
Shaw BD, Chung DW, Wang CL, Quintanilla LA, Upadhyay S. A role for endocytic recycling in hyphal growth. Fungal Biol 2011; 115:541-6. [PMID: 21640317 DOI: 10.1016/j.funbio.2011.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/24/2022]
Abstract
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.
Collapse
Affiliation(s)
- Brian D Shaw
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 2132, USA.
| | | | | | | | | |
Collapse
|