1
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
2
|
Chatterjee A, Singh R. Extracellular vesicles: an emerging player in retinal homeostasis. Front Cell Dev Biol 2023; 11:1059141. [PMID: 37181750 PMCID: PMC10166895 DOI: 10.3389/fcell.2023.1059141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Extracellular vesicles (EVs) encompass secreted membrane vesicles of varied sizes, including exosomes (-30-200 nm) and microvesicles (MVs) that are ∼100-1,000 nm in size. EVs play an important role in autocrine, paracrine, and endocrine signaling and are implicated in myriad human disorders including prominent retinal degenerative diseases, like age related macular degeneration (AMD) and diabetic retinopathy (DR). Studies of EVs in vitro using transformed cell lines, primary cultures, and more recently, induced pluripotent stem cell derived retinal cell type(s) (e.g., retinal pigment epithelium) have provided insights into the composition and function of EVs in the retina. Furthermore, consistent with a causal role of EVs in retinal degenerative diseases, altering EV composition has promoted pro-retinopathy cellular and molecular events in both in vitro and in vivo models. In this review, we summarize the current understanding of the role of EVs in retinal (patho)physiology. Specifically, we will focus on disease-associated EV alterations in specific retinal diseases. Furthermore, we discuss the potential utility of EVs in diagnostic and therapeutic strategies for targeting retinal diseases.
Collapse
Affiliation(s)
- Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- UR Stem Cell and Regenerative Medicine Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
3
|
Resolution Potential of Necrotic Cell Death Pathways. Int J Mol Sci 2022; 24:ijms24010016. [PMID: 36613458 PMCID: PMC9819908 DOI: 10.3390/ijms24010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.
Collapse
|
4
|
Zhou H, Yan ZH, Yuan Y, Xing C, Jiang N. The Role of Exosomes in Viral Hepatitis and Its Associated Liver Diseases. Front Med (Lausanne) 2021; 8:782485. [PMID: 34881274 PMCID: PMC8645545 DOI: 10.3389/fmed.2021.782485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes, the important carriers between cells, can carry proteins, micro ribonucleic acids (miRNAs), long non-coding RNAs (lncRNAs) and other molecules to mediate cellular information transduction. They also play an important role in the pathogenesis, prognosis and treatment of viral hepatitis and its associated liver diseases. Several studies have reported that viral hepatitis and its associated liver diseases, including hepatitis A, B, C and E; hepatic fibrosis and hepatocellular carcinoma, were closely associated with exosomes. Exploring the role of exosomes in viral hepatitis and associated liver diseases will enhance our understanding of these diseases. Therefore, this review mainly summarised the role of exosomes in viral hepatitis and its associated liver diseases to identify new strategies for liver diseases in clinical practise.
Collapse
Affiliation(s)
- Hao Zhou
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Han Yan
- Department of Hepatology, Wuxi Fifth People's Hospital, Wuxi, China
| | - Yuan Yuan
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xing
- Department of Oncology, The Second People's Hospital of Yancheng City, Yancheng, China
| | - Nan Jiang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, China
| |
Collapse
|
5
|
Exosomes Mediate Hippocampal and Cortical Neuronal Injury Induced by Hepatic Ischemia-Reperfusion Injury through Activating Pyroptosis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3753485. [PMID: 31814872 PMCID: PMC6878784 DOI: 10.1155/2019/3753485] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
Background The neuronal injury and cognitive dysfunction after liver transplantation have severe effects on the prognosis and life quality of patients. Accumulating evidence suggests that both exosomes and pyroptosis could participate in hepatic ischemia-reperfusion injury (HIRI) and play key roles in neuronal death. However, the link between exosomes and neuronal pyroptosis in HIRI awaits further investigation. Methods After establishing the HIRI rat models, we primarily studied the role of pyroptosis in hippocampal and cortical neuron injury through detecting NOD-like receptor protein 3 (NLRP3), pro-caspase-1, cleaved-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), gasdermin D (GSDMD), interleukin-1beta (IL-1β), and interleukin-18 (IL-18) expressions with western blotting, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Then, we intravenously injected normal male rats with exosomes isolated from the sera of HIRI-challenged rats and pretreated rats with MCC950, a specific inhibitor of NLRP3, and carried out the same assay. We also detected the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in the hippocampal and cortical tissues. Results The results indicated that NLRP3 inflammasome and caspase-1-dependent pyroptosis were activated in the hippocampus and cortex of HIRI rats. Furthermore, serum-derived exosomes from HIRI-challenged rats not only had the ability to cross the blood-brain barrier (BBB) but also had the similar effects on neuronal pyroptosis. Moreover, ROS and MDA productions were induced in the HIRI and exosome-challenged groups. In addition, to some degree, MCC950 could alleviate HIRI-mediated hippocampal and cortical neuronal pyroptosis. Conclusion This study experimentally demonstrated that circulating exosomes play a critical role in HIRI-mediated hippocampal and cortical injury through regulating neuronal pyroptosis.
Collapse
|
6
|
Ferreira JV, Rosa Soares A, Ramalho JS, Ribeiro-Rodrigues T, Máximo C, Zuzarte M, Girão H, Pereira P. Exosomes and STUB1/CHIP cooperate to maintain intracellular proteostasis. PLoS One 2019; 14:e0223790. [PMID: 31613922 PMCID: PMC6794069 DOI: 10.1371/journal.pone.0223790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023] Open
Abstract
Deregulation of proteostasis is a main feature of many age-related diseases, often leading to the accumulation of toxic oligomers and insoluble protein aggregates that accumulate intracellularly or in the extracellular space. To understand the mechanisms whereby toxic or otherwise unwanted proteins are secreted to the extracellular space, we inactivated the quality-control and proteostasis regulator ubiquitin ligase STUB1/CHIP. Data indicated that STUB1 deficiency leads both to the intracellular accumulation of protein aggregates and to an increase in the secretion of small extracellular vesicles (sEVs), including exosomes. Secreted sEVs are enriched in ubiquitinated and/or undegraded proteins and protein oligomers. Data also indicates that oxidative stress induces an increase in the release of sEVs in cells depleted from STUB1. Overall, the results presented here suggest that cells use exosomes to dispose of damaged and/or undegraded proteins as a means to reduce intracellular accumulation of proteotoxic material.
Collapse
Affiliation(s)
- Joao Vasco Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Ana Rosa Soares
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - José S. Ramalho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Catarina Máximo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Paulo Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
7
|
Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells. Int J Mol Sci 2018; 19:ijms19113659. [PMID: 30463298 PMCID: PMC6274958 DOI: 10.3390/ijms19113659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Human amylin is a 37-residue peptide hormone (hA1-37) secreted by β-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer’s disease, alone or co-deposited with β-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal “cross-talk”. We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17–29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17–29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17–29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17–29 (20 µM). We found a complete inhibition of hA17–29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.
Collapse
|
8
|
Anders F, Mann C, Liu A, Teister J, Funke S, Thanos S, Grus F, Pfeiffer N, Prokosch V. Correlation of Crystallin Expression and RGC Susceptibility in Experimental Glaucoma Rats of Different Ages. Curr Eye Res 2018; 43:1267-1273. [PMID: 29979889 DOI: 10.1080/02713683.2018.1485950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Glaucoma is one of the leading causes of blindness worldwide with age being an important risk factor. However, the pathogenesis remains poorly understood. Aim of this study was to focus on age-dependent molecular changes in an experimental animal model of glaucoma. METHODS Intraocular pressure was elevated in Sprague-Dawley rats aged 3, 14, and 47 weeks for a period of 7 weeks by episcleral vein cauterization. Ganglion cell loss was monitored by an immunohistochemical staining of the Brain-specific homeobox/POU (Pit-1, Oct-2, Unc-86) domain protein 3A positive cells in retinal flat-mounts and spectral-domain optical coherence tomography measuring the retinal nerve fiber layer thickness. Molecular protein alterations were analyzed using a comprehensive mass spectrometric proteomics approach of the retina and vitreous body. RESULTS While juvenile animals did not show a significant loss of retinal ganglion cells due to intraocular pressure elevation, adolescent animals showed a decrease up to 26% (p < 0.05). A shift of retinal crystallin protein expression levels within all protein-family subclasses (α, β, γ) could be observed in the youngest animal group (p < 0.05), while the upregulation of crystallin proteins in older animals was less striking. In addition, numerous crystallin proteins were also detected in the vitreous body. CONCLUSION These results provide insights of a potential correlation of age-related glaucomatous damage and the absence of crystallin proteins in the retina.
Collapse
Affiliation(s)
- Fabian Anders
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Carolina Mann
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Aiwei Liu
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Julia Teister
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Sebastian Funke
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Solon Thanos
- b Department of Experimental Ophthalmology, School of Medicine , University of Münster , Münster , Germany
| | - Franz Grus
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Verena Prokosch
- a Experimental Ophthalmology, Department of Ophthalmology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| |
Collapse
|
9
|
Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones 2018; 23:441-454. [PMID: 29086335 PMCID: PMC5904088 DOI: 10.1007/s12192-017-0856-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
10
|
Zhu Z, Reiser G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int 2018; 115:69-79. [PMID: 29425965 DOI: 10.1016/j.neuint.2018.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Small heat shock proteins (sHsps) are a group of proteins with molecular mass between 12 and 43 kDa. Currently, 11 members of this family have been classified, namely HspB1 to HspB11. HspB1, HspB2, HspB5, HspB6, HspB7, and HspB8, which are expressed in brain have been observed to be related to the pathology of neurodegenerative diseases, including Parkinson's, Alzheimer's, Alexander's disease, multiple sclerosis, and human immunodeficiency virus-associated dementia. Specifically, sHsps interact with misfolding and damaging protein aggregates, like Glial fibrillary acidic protein in AxD, β-amyloid peptides aggregates in Alzheimer's disease, Superoxide dismutase 1 in Amyotrophic lateral sclerosis and cytosine-adenine-guanine/polyglutamine (CAG/PolyQ) in Huntington's disease, Spinocerebellar ataxia type 3, Spinal-bulbar muscular atrophy, to reduce the toxicity or increase the clearance of these protein aggregates. The degree of HspB4 expression in brain is still debated. For neuroprotective mechanisms, sHsps attenuate mitochondrial dysfunctions, reduce accumulation of misfolded proteins, block oxidative/nitrosative stress, and minimize neuronal apoptosis and neuroinflammation, which are molecular mechanisms commonly accepted to mirror the progression and development of neurodegenerative diseases. The increasing incidence of the neurodegenerative diseases enhanced search for effective approaches to rescue neural tissue from degeneration with minimal side effects. sHsps have been found to exert neuroprotective functions. HspB5 has been emphasized to reduce the paralysis in a mouse model of experimental autoimmune encephalomyelitis, providing a therapeutic basis for the disease. In this review, we discuss the current understanding of the properties and the mechanisms of protection orchestrated by sHsps in the nervous system, highlighting the promising therapeutic role of sHsps in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhihui Zhu
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany; College of Medicine, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
11
|
Epigenetic modifications in hyperhomocysteinemia: potential role in diabetic retinopathy and age-related macular degeneration. Oncotarget 2018; 9:12562-12590. [PMID: 29560091 PMCID: PMC5849155 DOI: 10.18632/oncotarget.24333] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/24/2018] [Indexed: 02/03/2023] Open
Abstract
To study Hyperhomocysteinemia (HHcy)-induced epigenetic modifications as potential mechanisms of blood retinal barrier (BRB) dysfunction, retinas isolated from three- week-old mice with elevated level of Homocysteine (Hcy) due to lack of the enzyme cystathionine β-synthase (cbs-/- , cbs+/- and cbs+/+ ), human retinal endothelial cells (HRECs), and human retinal pigmented epithelial cells (ARPE-19) treated with or without Hcy were evaluated for (1) histone deacetylases (HDAC), (2) DNA methylation (DNMT), and (3) miRNA analysis. Differentially expressed miRNAs in mice with HHcy were further compared with miRNA analysis of diabetic mice retinas (STZ) and miRNAs within the exosomes released from Hcy-treated RPEs. Differentially expressed miRNAs were further evaluated for predicted target genes and associated pathways using Ingenuity Pathway Analysis. HHcy significantly increased HDAC and DNMT activity in HRECs, ARPE-19, and cbs mice retinas, whereas inhibition of HDAC and DNMT decreased Hcy-induced BRB dysfunction. MiRNA profiling detected 127 miRNAs in cbs+/- and 39 miRNAs in cbs-/- mice retinas, which were significantly differentially expressed compared to cbs+/+ . MiRNA pathway analysis showed their involvement in HDAC and DNMT activation, endoplasmic reticulum (ER), and oxidative stresses, inflammation, hypoxia, and angiogenesis pathways. Hcy-induced epigenetic modifications may be involved in retinopathies associated with HHcy, such as age-related macular degeneration and diabetic retinopathy.
Collapse
|
12
|
Márkus B, Pató Z, Sarang Z, Albert R, Tőzsér J, Petrovski G, Csősz É. The proteomic profile of a mouse model of proliferative vitreoretinopathy. FEBS Open Bio 2017; 7:1166-1177. [PMID: 28781956 PMCID: PMC5537063 DOI: 10.1002/2211-5463.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/02/2017] [Accepted: 05/27/2017] [Indexed: 11/24/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) develops as a complication of retinal detachment surgery and represents a devastating condition leading to serious vision loss. A good animal model that permits extensive functional studies and drug testing is crucial in finding better therapeutic modalities for PVR. A previously established mouse model, using dispase injection, was analyzed from the proteomic point of view, examining global protein profile changes by 2D electrophoresis, image analysis and HPLC–tandem mass spectrometry‐based protein identification. The easy applicability of the mouse model was used to study the role of transglutaminase 2 (TG2) in PVR formation by proteomic examination of dispase‐induced TG2 knockout vitreous samples. Our data demonstrate that, despite the altered appearance of crystallin proteins, the lack of TG2 did not prevent the development of PVR.
Collapse
Affiliation(s)
- Bernadett Márkus
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsuzsanna Pató
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Réka Albert
- Department of Ophthalmology Faculty of Medicine University of Szeged Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Goran Petrovski
- Department of Ophthalmology Faculty of Medicine University of Szeged Hungary.,Department of Ophthalmology Oslo University Hospital and University of Oslo Norway
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| |
Collapse
|
13
|
Unconventional Secretion of Heat Shock Proteins in Cancer. Int J Mol Sci 2017; 18:ijms18050946. [PMID: 28468249 PMCID: PMC5454859 DOI: 10.3390/ijms18050946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (HSPs) are abundant cellular proteins involved with protein homeostasis. They have both constitutive and inducible isoforms, whose expression levels are further increased by stress conditions, such as temperature elevation, reduced oxygen levels, infection, inflammation and exposure to toxic substances. In these situations, HSPs exert a pivotal role in offering protection, preventing cell death and promoting cell recovery. Although the majority of HSPs functions are exerted in the cytoplasm and organelles, several lines of evidence reveal that HSPs are able to induce cell responses in the extracellular milieu. HSPs do not possess secretion signal peptides, and their secretion was subject to widespread skepticism until the demonstration of the role of unconventional secretion forms such as exosomes. Secretion of HSPs may confer immune system modulation and be a cell-to-cell mediated form of increasing stress resistance. Thus, there is a wide potential for secreted HSPs in resistance of cancer therapy and in the development new therapeutic strategies.
Collapse
|
14
|
Gangalum RK, Bhat AM, Kohan SA, Bhat SP. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture. J Biol Chem 2016; 291:12930-42. [PMID: 27129211 DOI: 10.1074/jbc.m115.698530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/15/2023] Open
Abstract
Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes.
Collapse
Affiliation(s)
| | - Ankur M Bhat
- From the Jules Stein Eye Institute, Geffen School of Medicine
| | - Sirus A Kohan
- Brain Research Institute, UCLA, Los Angeles, California 90095
| | - Suraj P Bhat
- From the Jules Stein Eye Institute, Geffen School of Medicine, Brain Research Institute, UCLA, Los Angeles, California 90095 Molecular Biology Institute and
| |
Collapse
|
15
|
Muraleva NA, Kozhevnikova OS, Zhdankina AA, Stefanova NA, Karamysheva TV, Fursova AZ, Kolosova NG. The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMD-like retinopathy in OXYS rats. Cell Cycle 2015; 13:3499-505. [PMID: 25483086 DOI: 10.4161/15384101.2014.958393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Age-related macular degeneration (AMD), a neurodegenerative and vascular retinal disease, is the leading cause of blindness in the developed world. Accumulating evidence suggests that alterations in the expression of a small heat shock protein (αB-crystallin) are involved in the pathogeneses of AMD. Here we demonstrate that senescence-accelerated OXYS rats-an animal model of the dry form of AMD-develop spontaneous retinopathy against the background of reduced expression of αB-crystallin in the retina at the early preclinical stages of retinopathy (age 20 days) as well as at 4 and 24 months of age, during the progressive stage of the disease. The level of αA-crystallin expression in the retina of OXYS rats at all the ages examined was no different from that in disease-free Wistar rats. Treatment with the mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) from 1.5 to 4 months of age, 250 nmol/kg, increased the level of αB-crystallin expression in the retina of OXYS rats. SkQ1 slowed the development of retinopathy and reduced histological aberrations in retinal pigment epithelium cells. SkQ1 also attenuated neurodegenerative changes in the photoreceptors and facilitated circulation in choroid blood vessels in the retina of OXYS rats; this improvement was probably linked with the restoration of αB-crystallin expression.
Collapse
|
16
|
Aboul Naga SH, Dithmer M, Chitadze G, Kabelitz D, Lucius R, Roider J, Klettner A. Intracellular pathways following uptake of bevacizumab in RPE cells. Exp Eye Res 2015; 131:29-41. [DOI: 10.1016/j.exer.2014.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/11/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022]
|
17
|
Controlled exosome release from the retinal pigment epithelium in situ. Exp Eye Res 2014; 129:1-4. [DOI: 10.1016/j.exer.2014.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/23/2014] [Accepted: 10/09/2014] [Indexed: 01/01/2023]
|
18
|
Thanos S, Böhm MR, Meyer zu Hörste M, Prokosch-Willing V, Hennig M, Bauer D, Heiligenhaus A. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 2014; 42:145-61. [DOI: 10.1016/j.preteyeres.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
19
|
Xiao W, Dong W, Zhang C, Saren G, Geng P, Zhao H, Li Q, Zhu J, Li G, Zhang S, Ye M. Effects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells. Eur J Med Res 2013; 18:61. [PMID: 24359553 PMCID: PMC3881022 DOI: 10.1186/2047-783x-18-61] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Tumor-derived exosomes have been viewed as a source of tumor antigens that can be used to induce anti-tumor immune responses. In the current study, we aim to investigate the regulatory effect of the epigenetic drug MS-275 on hepatoma G2 (HepG2) cell-derived exosomes, especially for their immunostimulatory properties and alteration of some non-specific immune protein expression, such as heat shock protein (HSP) 70, major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) and MICB. Methods MS-275 was used to modulate the secretion of exosomes in human HepG2 cells, and exosomes from untreated HepG2 cells served as negative controls. RT-PCR was used to test the expression of HSP70, MICA and MICB in HepG2 cells. Immunogold labeling of exosomes and western blotting analysis were carried out to compare the expression of HSP70, MICA and MICB proteins in exosomes with or without MS-275 treatment. A natural killer (NK) cell cytotoxicity assay and peripheral blood mononuclear cell (PBMC) proliferation assay were used to evaluate the effect of MS-275 on the immunostimulatory ability of exosomes. Results Immunogold labeling and western blot analysis showed that modification of MS-275 increased the expression of HSP70 and MICB in exosomes. RT-PCR showed the mRNA levels of HSP70 and MICB were upregulated in HepG2 cells and were consistent with their protein levels in exosomes. The exosomes modified by MS-275 could significantly increase the cytotoxicity of NK cells and proliferation of PBMC (P < 0.05). Conclusions The non-specific immune response of exosomes derived from HepG2 cells could be enhanced with treatment by the histone deacetylase inhibitor (HDACi) drug MS-275; this could provide a potential tumor vaccine strategy against liver cancer.
Collapse
Affiliation(s)
- Wenhua Xiao
- The First Affiliated Hospital, PLA General Hospital, Fucheng Road 51, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nahomi RB, Huang R, Nandi SK, Wang B, Padmanabha S, Santhoshkumar P, Filipek S, Biswas A, Nagaraj RH. Acetylation of lysine 92 improves the chaperone and anti-apoptotic activities of human αB-crystallin. Biochemistry 2013; 52:8126-38. [PMID: 24128140 DOI: 10.1021/bi400638s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
αB-Crystallin is a chaperone and an anti-apoptotic protein that is strongly expressed in many tissues, including the lens, retina, heart, and kidney. In the human lens, several lysine residues in αB-crystallin are acetylated. We have previously shown that such acetylation is predominant at lysine 92 (K92) and lysine 166 (K166). We have investigated the effect of lysine acetylation on the structure and functions of αB-crystallin by the specific introduction of an N(ε)-acetyllysine (AcK) mimic at K92. The introduction of AcK slightly altered the secondary and tertiary structures of the protein. The introduction of AcK also resulted in an increase in the molar mass and hydrodynamic radius of the protein, and the protein became structurally more open and more stable than the native protein. The acetyl protein acquired higher surface hydrophobicity and exhibited 25-55% higher chaperone activity than the native protein. The acetyl protein had more client protein binding per subunit of the protein and higher binding affinity relative to that of the native protein. The acetyl protein was at least 20% more effective in inhibiting chemically induced apoptosis than the native protein. Molecular modeling suggests that acetylation of K92 makes the "α-crystallin domain" more hydrophobic. Together, our results reveal that the acetylation of a single lysine residue in αB-crystallin makes the protein structurally more stable and improves its chaperone and anti-apoptotic activities. Our findings suggest that lysine acetylation of αB-crystallin is an important chemical modification for enhancing αB-crystallin's protective functions in the eye.
Collapse
Affiliation(s)
- Rooban B Nahomi
- Department of Ophthalmology and Visual Sciences and ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|