1
|
Stubbs T, Bingman JI, Besse J, Mykytyn K. Ciliary signaling proteins are mislocalized in the brains of Bardet-Biedl syndrome 1-null mice. Front Cell Dev Biol 2023; 10:1092161. [PMID: 36699005 PMCID: PMC9868275 DOI: 10.3389/fcell.2022.1092161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
In the brain, primary cilia are found on most, if not all, central neurons. The importance of neuronal cilia is underscored by the fact that human diseases caused by primary cilia dysfunction, which are known as ciliopathies, are associated with neuropathologies, including neuropsychiatric disorders and learning and memory deficits. Neuronal cilia are enriched for certain G protein-coupled receptors and their downstream effectors, suggesting they sense and respond to neuromodulators in the extracellular milieu. GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome, with GPCRs failing to localize to cilia, indicating the Bardet-Biedl syndrome proteins are required for trafficking of G protein-coupled receptors into neuronal cilia. Yet, dopamine receptor 1 accumulates in cilia in the absence of Bardet-Biedl syndrome proteins, suggesting Bardet-Biedl syndrome proteins are required for normal ciliary import and export. To further explore the roles of the Bardet-Biedl syndrome proteins in neuronal cilia, we examined localization of ciliary signaling proteins in a new constitutive Bbs1 knockout mouse model. Interestingly, we find that two additional ciliary G protein-coupled receptors (Gpr161 and Gpr19) abnormally accumulate in cilia on Bardet-Biedl syndrome neurons. In addition, we find that the GPCR signaling protein β-arrestin accumulates in a subset of cilia in the brain, suggesting the presence of additional unidentified ciliary G protein-coupled receptors. These results confirm the importance of the Bardet-Biedl syndrome proteins in establishing ciliary GPCR pathways and indicate that loss of Bbs1 leads to complex changes in the localization of signaling proteins in the brain.
Collapse
|
2
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
3
|
Bagheri-Mohammadi S. Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis. Int J Neurosci 2022; 132:1165-1177. [PMID: 33350876 DOI: 10.1080/00207454.2020.1865953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Molecular signalling pathways are an evolutionarily conserved multifaceted pathway that can control diverse cellular processes. The role of signalling pathways in regulating development and tissue homeostasis as well as hippocampal neurogenesis is needed to study in detail. In the adult brain, the Notch signalling pathway, in collaboration with the Wnt/β-catenin, bone morphogenetic proteins (BMPs), and sonic hedgehog (Shh) molecular signalling pathways, are involved in stem cell regulation in the hippocampal formation, and they also control the plasticity of the neural stem cells (NSCs) or neural progenitor cells (NPCs) which involved in neurogenesis processes. Here we discuss the distinctive roles of molecular signalling pathways involved in the generation of new neurons from a pool of NSCs in the adult brain. Our approach will facilitate the understanding of the molecular signalling mechanism of hippocampal neurogenesis during NSCs development in the adult brain using molecular aspects coupled with cell biological and physiological analysis.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Bostock MP, Prasad AR, Donoghue A, Fernandes VM. Photoreceptors generate neuronal diversity in their target field through a Hedgehog morphogen gradient in Drosophila. eLife 2022; 11:78093. [PMID: 36004721 PMCID: PMC9507128 DOI: 10.7554/elife.78093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Defining the origin of neuronal diversity is a major challenge in developmental neurobiology. The Drosophila visual system is an excellent paradigm to study how cellular diversity is generated. Photoreceptors from the eye disc grow their axons into the optic lobe and secrete Hedgehog (Hh) to induce the lamina, such that for every unit eye there is a corresponding lamina unit made up of post-mitotic precursors stacked into columns. Each differentiated column contains five lamina neuron types (L1-L5), making it the simplest neuropil in the optic lobe, yet how this diversity is generated was unknown. Here, we found that Hh pathway activity is graded along the distal-proximal axis of lamina columns and further determined that this gradient in pathway activity arises from a gradient of Hh ligand. We manipulated Hh pathway activity cell-autonomously in lamina precursors and non-cell autonomously by inactivating the Hh ligand, and by knocking it down in photoreceptors. These manipulations showed that different thresholds of activity specify unique cell identities, with more proximal cell types specified in response to progressively lower Hh levels. Thus, our data establish that Hh acts as a morphogen to pattern the lamina. Although, this is the first such report during Drosophila nervous system development, our work uncovers a remarkable similarity with the vertebrate neural tube, which is patterned by Sonic Hedgehog. Altogether, we show that differentiating neurons can regulate the neuronal diversity of their distant target fields through morphogen gradients.
Collapse
Affiliation(s)
- Matthew P Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Anadika R Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alicia Donoghue
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
The Sonic Hedgehog Pathway Modulates Survival, Proliferation, and Differentiation of Neural Progenitor Cells under Inflammatory Stress In Vitro. Cells 2022; 11:cells11040736. [PMID: 35203385 PMCID: PMC8869809 DOI: 10.3390/cells11040736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its crucial role in early neurogenesis and endogenous stem cells of mature brains, as well as its recently described neuroprotective features, implicate further important effects on neuronal homeostasis. Here, we investigate its potential role in the survival, proliferation, and differentiation of neural precursors cells (NPCs) under inflammatory stress as a potential adjunct for NPC-transplantation strategies in spinal cord injury (SCI) treatment. To this end, we simulated an inflammatory environment in vitro using lipopolysaccharide (LPS) and induced the Shh-pathway using recombinant Shh or blocked it using Cyclopamine, a potent Smo inhibitor. We found that Shh mediates the proliferation and neuronal differentiation potential of NPCs in vitro, even in an inflammatory stress environment mimicking the subacute phase after SCI. At the same time, our results indicate that a reduction of the Shh-pathway activation by blockage with Cyclopamine is associated with reduced NPC-survival, reduced neuronal differentiation and increased astroglial differentiation. Shh might thus, play a role in endogenous NPC-mediated neuroregeneration or even be a potent conjunct to NPC-based therapies in the inflammatory environment after SCI.
Collapse
|
6
|
The presynaptic glycine transporter GlyT2 is regulated by the Hedgehog pathway in vitro and in vivo. Commun Biol 2021; 4:1197. [PMID: 34663888 PMCID: PMC8523746 DOI: 10.1038/s42003-021-02718-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability. By modulating the activation state of the Hedgehog pathway, de la Rocha-Muñoz et al demonstrate that Hedgehog signaling controls the expression and transport activity of the neuronal glycine transporter GlyT2. This work begins to reveal a potential link between the Hedgehog signaling pathway and presynaptic glycine availability.
Collapse
|
7
|
Ohgami N, Iizuka A, Hirai H, Yajima I, Iida M, Shimada A, Tsuzuki T, Jijiwa M, Asai N, Takahashi M, Kato M. Loss-of-function mutation of c-Ret causes cerebellar hypoplasia in mice with Hirschsprung disease and Down's syndrome. J Biol Chem 2021; 296:100389. [PMID: 33561442 PMCID: PMC7950328 DOI: 10.1016/j.jbc.2021.100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
The c-RET proto-oncogene encodes a receptor-tyrosine kinase. Loss-of-function mutations of RET have been shown to be associated with Hirschsprung disease and Down's syndrome (HSCR-DS) in humans. DS is known to involve cerebellar hypoplasia, which is characterized by reduced cerebellar size. Despite the fact that c-Ret has been shown to be associated with HSCR-DS in humans and to be expressed in Purkinje cells (PCs) in experimental animals, there is limited information about the role of activity of c-Ret/c-RET kinase in cerebellar hypoplasia. We found that a loss-of-function mutation of c-Ret Y1062 in PCs causes cerebellar hypoplasia in c-Ret mutant mice. Wild-type mice had increased phosphorylation of c-Ret in PCs during postnatal development, while c-Ret mutant mice had postnatal hypoplasia of the cerebellum with immature neurite outgrowth in PCs and granule cells (GCs). c-Ret mutant mice also showed decreased numbers of glial fibers and mitogenic sonic hedgehog (Shh)-positive vesicles in the external germinal layer of PCs. c-Ret-mediated cerebellar hypoplasia was rescued by subcutaneous injection of a smoothened agonist (SAG) as well as by reduced expression of Patched1, a negative regulator for Shh. Our results suggest that the loss-of-function mutation of c-Ret Y1062 results in the development of cerebellar hypoplasia via impairment of the Shh-mediated development of GCs and glial fibers in mice with HSCR-DS.
Collapse
Affiliation(s)
- Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Akira Iizuka
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsuyoshi Shimada
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Mayumi Jijiwa
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
8
|
Gonzalez-Reyes LE, Chiang CC, Zhang M, Johnson J, Arrillaga-Tamez M, Couturier NH, Reddy N, Starikov L, Capadona JR, Kottmann AH, Durand DM. Sonic Hedgehog is expressed by hilar mossy cells and regulates cellular survival and neurogenesis in the adult hippocampus. Sci Rep 2019; 9:17402. [PMID: 31758070 PMCID: PMC6874678 DOI: 10.1038/s41598-019-53192-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Sonic hedgehog (Shh) is a multifunctional signaling protein governing pattern formation, proliferation and cell survival during embryogenesis. In the adult brain, Shh has neurotrophic function and is implicated in hippocampal neurogenesis but the cellular source of Shh in the hippocampus remains ill defined. Here, we utilize a gene expression tracer allele of Shh (Shh-nlacZ) which allowed the identification of a subpopulation of hilar neurons known as mossy cells (MCs) as a prominent and dynamic source of Shh within the dentate gyrus. AAV-Cre mediated ablation of Shh in the adult dentate gyrus led to a marked degeneration of MCs. Conversely, chemical stimulation of hippocampal neurons using the epileptogenic agent kainic acid (KA) increased the number of Shh+ MCs indicating that the expression of Shh by MCs confers a survival advantage during the response to excitotoxic insults. In addition, ablation of Shh in the adult dentate gyrus led to increased neural precursor cell proliferation and their migration into the subgranular cell layer demonstrating that MCs-generated Shh is a key modulator of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Luis E Gonzalez-Reyes
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH, 44106, USA.
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mingming Zhang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Joshua Johnson
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Manuel Arrillaga-Tamez
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Nicholas H Couturier
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Neha Reddy
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Lev Starikov
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York and Graduate Center, City University of New York, New York, NY, 10031, USA
| | - Jeffrey R Capadona
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH, 44106, USA
| | - Andreas H Kottmann
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York and Graduate Center, City University of New York, New York, NY, 10031, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
9
|
Adachi C, Kakinuma N, Jo SH, Ishii T, Arai Y, Arai S, Kitaguchi T, Takeda S, Inoue T. Sonic hedgehog enhances calcium oscillations in hippocampal astrocytes. J Biol Chem 2019; 294:16034-16048. [PMID: 31506300 DOI: 10.1074/jbc.ra119.007883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Sonic hedgehog (SHH) is important for organogenesis during development. Recent studies have indicated that SHH is also involved in the proliferation and transformation of astrocytes to the reactive phenotype. However, the mechanisms underlying these are unknown. Involvement of SHH signaling in calcium (Ca) signaling has not been extensively studied. Here, we report that SHH and Smoothened agonist (SAG), an activator of the signaling receptor Smoothened (SMO) in the SHH pathway, activate Ca oscillations in cultured murine hippocampal astrocytes. The response was rapid, on a minute time scale, indicating a noncanonical pathway activity. Pertussis toxin blocked the SAG effect, indicating an involvement of a Gi coupled to SMO. Depletion of extracellular ATP by apyrase, an ATP-degrading enzyme, inhibited the SAG-mediated activation of Ca oscillations. These results indicate that SAG increases extracellular ATP levels by activating ATP release from astrocytes, resulting in Ca oscillation activation. We hypothesize that SHH activates SMO-coupled Gi in astrocytes, causing ATP release and activation of Gq/11-coupled P2 receptors on the same cell or surrounding astrocytes. Transcription factor activities are often modulated by Ca patterns; therefore, SHH signaling may trigger changes in astrocytes by activating Ca oscillations. This enhancement of Ca oscillations by SHH signaling may occur in astrocytes in the brain in vivo because we also observed it in hippocampal brain slices. In summary, SHH and SAG enhance Ca oscillations in hippocampal astrocytes, Gi mediates SAG-induced Ca oscillations downstream of SMO, and ATP-permeable channels may promote the ATP release that activates Ca oscillations in astrocytes.
Collapse
Affiliation(s)
- Chihiro Adachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Naoto Kakinuma
- Department of Anatomy and Cell Biology, Interdisciplinary School of Medicine & Engineering, University of Yamanashi, Yamanashi 4093898, Japan
| | - Soo Hyun Jo
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Takayuki Ishii
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Yusuke Arai
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| | - Satoshi Arai
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667.,Research Institute for Science and Engineering, Waseda University, Tokyo 1698555, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 2268503, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary School of Medicine & Engineering, University of Yamanashi, Yamanashi 4093898, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 1628480, Japan
| |
Collapse
|
10
|
Qin S, Sun D, Zhang C, Tang Y, Zhou F, Zheng K, Tang R, Zheng Y. Downregulation of sonic hedgehog signaling in the hippocampus leads to neuronal apoptosis in high-fat diet-fed mice. Behav Brain Res 2019; 367:91-100. [DOI: 10.1016/j.bbr.2019.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022]
|
11
|
Rivell A, Petralia RS, Wang YX, Clawson E, Moehl K, Mattson MP, Yao PJ. Sonic hedgehog expression in the postnatal brain. Biol Open 2019; 8:bio.040592. [PMID: 30837226 PMCID: PMC6451348 DOI: 10.1242/bio.040592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Beyond its role in patterning the neural tube during embryogenesis, additional functions of Sonic hedgehog (Shh) in post-embryonic and mature brains have been coming into focus. However, the question of the abundance of endogenous Shh - the ligand of the signaling pathway - and its changes over time in post-embryonic and mature brains are less well understood. Here we find that while the amounts of Shh transcript and protein in rat brains are nearly undetectable at birth, they increase continuously during postnatal development and remain at readily detectable levels in young adults. This developmental age-associated increase in Shh levels is also seen in hippocampal neurons grown in culture, in which very young neurons produce minimal amounts of Shh protein but, as neurons grow and form synapses, the amounts of Shh increase significantly. Using immunolabeling with antibodies to different residues of Shh, we observed that the N-terminal fragment and the C-terminal fragment of Shh are present in hippocampal neurons, and that these two Shh forms co-exist in most compartments of the neuron. Our findings provide a better understanding of Shh expression in the brain, laying the groundwork for further comprehending the biogenesis of Shh protein in the young and mature brain and neurons.
Collapse
Affiliation(s)
- Aileen Rivell
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Ellie Clawson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Antonelli F, Casciati A, Pazzaglia S. Sonic hedgehog signaling controls dentate gyrus patterning and adult neurogenesis in the hippocampus. Neural Regen Res 2019; 14:59-61. [PMID: 30531071 PMCID: PMC6263010 DOI: 10.4103/1673-5374.243703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
13
|
Liu S, Lv Y, Wan XX, Song ZJ, Liu YP, Miao S, Wang GL, Liu GJ. Hedgehog signaling contributes to bone cancer pain by regulating sensory neuron excitability in rats. Mol Pain 2018; 14:1744806918767560. [PMID: 29607715 PMCID: PMC5888817 DOI: 10.1177/1744806918767560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors. Production and persistence of these pain behaviors are well correlated with tumor cell implantation-induced up-regulation and activation of sonic hedgehog signaling in primary sensory neurons and spinal cord. Spinal administration of sonic hedgehog signaling inhibitor cyclopamine prevents and reverses the induction and persistence of bone cancer pain without affecting normal pain sensitivity. Inhibiting sonic hedgehog signaling activation with cyclopamine, in vivo or in vitro, greatly suppresses tumor cell implantation-induced increase of intracellular Ca2+ and hyperexcitability of the sensory neurons and also the activation of GluN2B receptor and the subsequent Ca2+-dependent signals CaMKII and CREB in dorsal root ganglion and the spinal cord. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest that targeting sonic hedgehog signaling may be an effective approach for treating bone cancer pain.
Collapse
Affiliation(s)
- Su Liu
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,2 Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - You Lv
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin-Xin Wan
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Jing Song
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue-Peng Liu
- 3 Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| | - Shuai Miao
- 1 Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guang-Lei Wang
- 2 Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Gong-Jian Liu
- 2 Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Antonelli F, Casciati A, Tanori M, Tanno B, Linares-Vidal MV, Serra N, Bellés M, Pannicelli A, Saran A, Pazzaglia S. Alterations in Morphology and Adult Neurogenesis in the Dentate Gyrus of Patched1 Heterozygous Mice. Front Mol Neurosci 2018; 11:168. [PMID: 29875630 PMCID: PMC5974030 DOI: 10.3389/fnmol.2018.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Many genes controlling neuronal development also regulate adult neurogenesis. We investigated in vivo the effect of Sonic hedgehog (Shh) signaling activation on patterning and neurogenesis of the hippocampus and behavior of Patched1 (Ptch1) heterozygous mice (Ptch1+/−). We demonstrated for the first time, that Ptch1+/− mice exhibit morphological, cellular and molecular alterations in the dentate gyrus (DG), including elongation and reduced width of the DG as well as deregulations at multiple steps during lineage progression from neural stem cells to neurons. By using stage-specific cellular markers, we detected reduction of quiescent stem cells, newborn neurons and astrocytes and accumulation of proliferating intermediate progenitors, indicative of defects in the dynamic transition among neural stages. Phenotypic alterations in Ptch1+/− mice were accompanied by expression changes in Notch pathway downstream components and TLX nuclear receptor, as well as perturbations in inflammatory and synaptic networks and mouse behavior, pointing to complex biological interactions and highlighting cooperation between Shh and Notch signaling in the regulation of neurogenesis.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mirella Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Maria V Linares-Vidal
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Noemi Serra
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Monserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Alessandro Pannicelli
- Technical Unit of Energetic Efficiency, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
15
|
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Mol Psychiatry 2018; 23:1356-1367. [PMID: 28416808 PMCID: PMC5984103 DOI: 10.1038/mp.2017.39] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1-/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.
Collapse
|
16
|
Liu S, Yao JL, Wan XX, Song ZJ, Miao S, Zhao Y, Wang XL, Liu YP. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression. J Pain Res 2018; 11:649-659. [PMID: 29662325 PMCID: PMC5892616 DOI: 10.2147/jpr.s153544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance.
Collapse
Affiliation(s)
- Su Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Li Yao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu, China
| | - Xin-Xin Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Jing Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Miao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ye Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu-Li Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue-Peng Liu
- Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China
| |
Collapse
|
17
|
Su Y, Yuan Y, Feng S, Ma S, Wang Y. High frequency stimulation induces sonic hedgehog release from hippocampal neurons. Sci Rep 2017; 7:43865. [PMID: 28262835 PMCID: PMC5338313 DOI: 10.1038/srep43865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons.
Collapse
Affiliation(s)
- Yujuan Su
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Feng
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shaorong Ma
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
The Many Hats of Sonic Hedgehog Signaling in Nervous System Development and Disease. J Dev Biol 2016; 4:jdb4040035. [PMID: 29615598 PMCID: PMC5831807 DOI: 10.3390/jdb4040035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells. Shh signaling is particularly dynamic in the nervous system, ranging from canonical transcription-dependent, to non-canonical and localized to axonal growth cones. Here, we review the variety of Shh functions in the developing nervous system and their consequences for neurodevelopmental diseases and neural regeneration, with particular emphasis on the signaling mechanisms underlying Shh action.
Collapse
|
19
|
Yao PJ, Manor U, Petralia RS, Brose RD, Wu RTY, Ott C, Wang YX, Charnoff A, Lippincott-Schwartz J, Mattson MP. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell 2016; 28:387-395. [PMID: 27932496 PMCID: PMC5341723 DOI: 10.1091/mbc.e16-07-0553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Activation of the Sonic hedgehog signaling pathway affects multiple aspects of mitochondria in hippocampal neurons. It increases mitochondrial mass significantly, reduces fission, and promotes elongation. It also protects neurons against stress. Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Uri Manor
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca D Brose
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ryan T Y Wu
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Carolyn Ott
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ari Charnoff
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
20
|
Yao PJ, Petralia RS, Mattson MP. Sonic Hedgehog Signaling and Hippocampal Neuroplasticity. Trends Neurosci 2016; 39:840-850. [PMID: 27865563 PMCID: PMC5148655 DOI: 10.1016/j.tins.2016.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
Abstract
Sonic hedgehog (Shh) is a secreted protein that controls the patterning of neural progenitor cells, and their neuronal and glial progeny, during development. Emerging findings suggest that Shh also has important roles in the formation and plasticity of neuronal circuits in the hippocampus, a brain region of fundamental importance in learning and memory. Shh mediates activity-dependent and injury-induced hippocampal neurogenesis. Activation of Shh receptors in the dendrites of hippocampal neurons engages a trans-neuronal signaling pathway that accelerates axon outgrowth and enhances glutamate release from presynaptic terminals. Impaired Shh signaling may contribute to the pathogenesis of several developmental and adult-onset neurological disorders that affect the hippocampus, suggesting a potential for therapeutic interventions that target Shh pathways.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA.
| | - Ronald S Petralia
- Advanced Imaging Core, NIDCD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
22
|
Campbell C, Beug S, Nickerson PEB, Peng J, Mazerolle C, Bassett EA, Ringuette R, Jama FA, Morales C, Christ A, Wallace VA. Sortilin regulates sorting and secretion of Sonic hedgehog. J Cell Sci 2016; 129:3832-3844. [PMID: 27632999 DOI: 10.1242/jcs.183541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
Sonic Hedgehog (Shh) is a secreted morphogen that is an essential regulator of patterning and growth. The Shh full-length protein undergoes autocleavage in the endoplasmic reticulum to generate the biologically active N-terminal fragment (ShhN), which is destined for secretion. We identified sortilin (Sort1), a member of the VPS10P-domain receptor family, as a new Shh trafficking receptor. We demonstrate that Sort-Shh interact by performing coimmunoprecipitation and proximity ligation assays in transfected cells and that they colocalize at the Golgi. Sort1 overexpression causes re-distribution of ShhN and, to a lesser extent, of full-length Shh to the Golgi and reduces Shh secretion. We show loss of Sort1 can partially rescue Hedgehog-associated patterning defects in a mouse model that is deficient in Shh processing, and we show that Sort1 levels negatively regulate anterograde Shh transport in axons in vitro and Hedgehog-dependent axon-glial interactions in vivo Taken together, we conclude that Shh and Sort1 can interact at the level of the Golgi and that Sort1 directs Shh away from the pathways that promote its secretion.
Collapse
Affiliation(s)
- Charles Campbell
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Shawn Beug
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Philip E B Nickerson
- Vision Science Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Sciences, University of Toronto, 60 Leonard Street, Toronto ON M5T 2S8
| | - Jimmy Peng
- Department of Biology, McGill University, 1205 Ave Docteur Penfield Room W4/8, Montreal, Quebec, Canada H3A 1B1 Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7
| | - Chantal Mazerolle
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Erin A Bassett
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Randy Ringuette
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Fadumo A Jama
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Carlos Morales
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, Quebec, Canada H3A 0C7
| | - Annabel Christ
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Valerie A Wallace
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 Vision Science Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Sciences, University of Toronto, 60 Leonard Street, Toronto ON M5T 2S8
| |
Collapse
|
23
|
Eitan E, Petralia RS, Wang YX, Indig FE, Mattson MP, Yao PJ. Probing extracellular Sonic hedgehog in neurons. Biol Open 2016; 5:1086-92. [PMID: 27387534 PMCID: PMC5004615 DOI: 10.1242/bio.019422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023] Open
Abstract
The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons.
Collapse
Affiliation(s)
- Erez Eitan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Fred E Indig
- Confocal Imaging Facility, Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Abstract
UNLABELLED The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits.
Collapse
|
25
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Petralia RS, Schwartz CM, Wang YX, Kawamoto EM, Mattson MP, Yao PJ. Sonic hedgehog promotes autophagy in hippocampal neurons. Biol Open 2013; 2:499-504. [PMID: 23789099 PMCID: PMC3654269 DOI: 10.1242/bio.20134275] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/20/2013] [Indexed: 01/07/2023] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway is well known in patterning of the neural tube during embryonic development, but its emerging role in differentiated neurons is less understood. Here we report that Shh enhances autophagy in cultured hippocampal neurons. Microarray analysis reveals the upregulation of multiple autophagy-related genes in neurons in response to Shh application. Through analysis of the autophagy-marker LC3 by immunoblot analysis and immunocytochemistry, we confirm activation of the autophagy pathway in Shh-exposed neurons. Using electron microscopy, we find autophagosomes and associated structures with a wide range of morphologies in synaptic terminals of Shh-exposed neurons. Moreover, we show that Shh-triggered autophagy depends on class III Phosphatidylinositol 3-kinase complexes (PtdIns3K). These results identify a link between Shh and autophagy pathways and, importantly, provide a lead for further understanding the physiology of Shh signaling activity in neurons.
Collapse
|
27
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Subcellular distribution of patched and smoothened in the cerebellar neurons. CEREBELLUM (LONDON, ENGLAND) 2012; 11:972-81. [PMID: 22477363 PMCID: PMC3495249 DOI: 10.1007/s12311-012-0374-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Sonic hedgehog (Shh) signaling pathway carries out a wide range of biological functions such as patterning of the embryonic neural tube and expansion of cerebellar granule cell precursors. We previously have found that the Shh signaling receptors, Patched1 (Ptch1) and Smoothened (Smo), are expressed in hippocampal neurons of developing and adult rats, suggesting the continued presence of Shh signaling in postmitotic, differentiated neurons. Here, we report that Ptch1 and Smo are present in the processes and growth cones of immature neurons in the developing cerebellum, and that, in the mature cerebellum, Ptch1 and Smo are expressed by several types of neurons including Purkinje cells, granule cells, and interneurons. Within these neurons, Ptch1 and Smo are predominantly localized in the postsynaptic side of the synapses, a distribution pattern similar to that found in hippocampal neurons. Our findings provide morphological evidence that Shh signaling events are not confined to neuronal precursors and are likely to have ongoing roles within the postmitotic neurons of the developing and adult cerebellum.
Collapse
Affiliation(s)
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Pamela J. Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA. Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
28
|
Mitchell N, Petralia RS, Currier DG, Wang YX, Kim A, Mattson MP, Yao PJ. Sonic hedgehog regulates presynaptic terminal size, ultrastructure and function in hippocampal neurons. J Cell Sci 2012; 125:4207-13. [PMID: 22641692 DOI: 10.1242/jcs.105080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is essential to the patterning of the embryonic neural tube, but its presence and function in the postmitotic differentiated neurons in the brain remain largely uncharacterized. We recently showed that Shh and its signaling components, Patched and Smoothened, are expressed in postnatal and adult hippocampal neurons. We have now examined whether Shh signaling has a function in these neurons. Using cultured hippocampal neurons as a model system, we found that presynaptic terminals become significantly larger in response to the application of Shh. Ultrastructural examination confirmed the enlarged presynaptic profiles and also revealed variable increases in the size of synaptic vesicles, with a resulting loss of uniformity. Furthermore, electrophysiological analyses showed significant increases in the frequency, but not the amplitude, of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in response to Shh, providing functional evidence of the selective role of Shh in presynaptic terminals. Thus, we conclude that Shh signaling regulates the structure and functional properties of presynaptic terminals of hippocampal neurons.
Collapse
Affiliation(s)
- Nicholas Mitchell
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bhat P, Chakrabarty M, Thawani V, Saxena A. Signalled roads to memory and its degeneration. Ann Neurosci 2012; 19:84-7. [PMID: 25205973 PMCID: PMC4117045 DOI: 10.5214/ans.0972.7531.12190209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/05/2012] [Accepted: 04/11/2012] [Indexed: 12/03/2022] Open
Abstract
Brain is concerned with the thoughts, feelings, perception, learning, memory and behaviour. The present review discusses some of the prominent molecular pathways governing memory acquisition, storage and subsequent consolidation.
Collapse
Affiliation(s)
- Priyanka Bhat
- Department of Pharmacology, Dr. R.P. Government. Medical College, Tanda, Kangra, Himachal Pradesh.176001
| | | | | | - Alok Saxena
- Department of Anatomy, Veer Chandra Singh Garhwali Govt. Medical Science and Research Institute, Srinagar, Srikot – 246174, Garhwal, Uttarakhand, INDIA
| |
Collapse
|