1
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission, and receptor recycling require FCHSD2 recruitment by MICAL-L1. Mol Biol Cell 2024; 35:ar144. [PMID: 39382837 PMCID: PMC11617095 DOI: 10.1091/mbc.e24-07-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homologue of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Because MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
Affiliation(s)
- Devin Frisby
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ajay B. Murakonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bazella Ashraf
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kanika Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093, CA
| | - Leonardo Almeida-Souza
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
2
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission and receptor recycling require FCHSD2 recruitment by MICAL-L1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601011. [PMID: 38979241 PMCID: PMC11230409 DOI: 10.1101/2024.06.27.601011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homolog of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Since MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
|
3
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
4
|
Jones T, Naslavsky N, Caplan S. Differential requirements for the Eps15 homology Domain Proteins EHD4 and EHD2 in the regulation of mammalian ciliogenesis. Traffic 2022; 23:360-373. [PMID: 35510564 PMCID: PMC9324998 DOI: 10.1111/tra.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
The endocytic protein EHD1 controls primary ciliogenesis by facilitating fusion of the ciliary vesicle and by removal of CP110 from the mother centriole. EHD3, the closest EHD1 paralog, has a similar regulatory role, but initial evidence suggested that the other two more distal paralogs, EHD2 and EHD4 may be dispensable for ciliogenesis. Herein, we define a novel role for EHD4, but not EHD2, in regulating primary ciliogenesis. To better understand the mechanisms and differential functions of the EHD proteins in ciliogenesis, we first demonstrated a requirement for EHD1 ATP‐binding to promote ciliogenesis. We then identified two sequence motifs that are entirely conserved between EH domains of EHD1, EHD3 and EHD4, but display key amino acid differences within the EHD2 EH domain. Substitution of either P446 or E470 in EHD1 with the aligning S451 or W475 residues from EHD2 was sufficient to prevent rescue of ciliogenesis in EHD1‐depleted cells upon reintroduction of EHD1. Overall, our data enhance the current understanding of the EHD paralogs in ciliogenesis, demonstrate a need for ATP‐binding and identify conserved sequences in the EH domains of EHD1, EHD3 and EHD4 that regulate EHD1 binding to proteins and its ability to rescue ciliogenesis in EHD1‐depleted cells.
Collapse
Affiliation(s)
- Tyler Jones
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
5
|
Sikora R, Bun P, Danglot L, Alqabandi M, Bassereau P, Niedergang F, Galli T, Zahraoui A. MICAL-L1 is required for cargo protein delivery to the cell surface. Biol Open 2021; 10:269021. [PMID: 34100897 PMCID: PMC8214422 DOI: 10.1242/bio.058008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Secreted proteins are transported along intracellular route from the endoplasmic reticulum through the Golgi before reaching the plasma membrane. Small GTPase Rab and their effectors play a key role in membrane trafficking. Using confocal microscopy, we showed that MICAL-L1 was associated with tubulo-vesicular structures and exhibited a significant colocalization with markers of the Golgi apparatus and recycling endosomes. Super resolution STORM microscopy suggested at the molecular level, a very close association of MICAL-L1 and microdomains in the Golgi cisternae. Using a synchronized secretion assay, we report that the shRNA-mediated depletion of MICAL-L1 impaired the delivery of a subset of cargo proteins to the cell surface. The process of membrane tubulation was monitored in vitro, and we observe that recombinant MICAL-L1-RBD domain may contribute to promote PACSINs-mediated membrane tubulation. Interestingly, two hydrophobic residues at the C-terminus of MICAL-L1 appeared to be important for phosphatidic acid binding, and for association with membrane tubules. Our results reveal a new role for MICAL-L1 in cargo delivery to the plasma membrane. Summary: MICAL-L1, an effector of Rab GTPases, exhibits a significant colocalization with markers of the Golgi apparatus and recycling endosomes. It is involved in cargo delivery to the plasma membrane.
Collapse
Affiliation(s)
- R Sikora
- Université de Paris, Inserm U1016-CNRS UMR 8104, Institut Cochin, Paris, France
| | - P Bun
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging facility, 75014 Paris, France
| | - L Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging facility, 75014 Paris, France
| | - M Alqabandi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, 75005, Paris, France
| | - P Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, 75005, Paris, France
| | - F Niedergang
- Université de Paris, Inserm U1016-CNRS UMR 8104, Institut Cochin, Paris, France
| | - T Galli
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France.,GHU PARIS psychiatrie & neurosciences, F-75014 Paris, France
| | - A Zahraoui
- Université de Paris, Inserm U1016-CNRS UMR 8104, Institut Cochin, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France
| |
Collapse
|
6
|
Studies on CRMP2 SUMOylation-deficient transgenic mice identify sex-specific Nav1.7 regulation in the pathogenesis of chronic neuropathic pain. Pain 2021; 161:2629-2651. [PMID: 32569093 DOI: 10.1097/j.pain.0000000000001951] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sodium channel Nav1.7 is a master regulator of nociceptive input into the central nervous system. Mutations in this channel can result in painful conditions and produce insensitivity to pain. Despite being recognized as a "poster child" for nociceptive signaling and human pain, targeting Nav1.7 has not yet produced a clinical drug. Recent work has illuminated the Nav1.7 interactome, offering insights into the regulation of these channels and identifying potentially new druggable targets. Among the regulators of Nav1.7 is the cytosolic collapsin response mediator protein 2 (CRMP2). CRMP2, modified at lysine 374 (K374) by addition of a small ubiquitin-like modifier (SUMO), bound Nav1.7 to regulate its membrane localization and function. Corollary to this, preventing CRMP2 SUMOylation was sufficient to reverse mechanical allodynia in rats with neuropathic pain. Notably, loss of CRMP2 SUMOylation did not compromise other innate functions of CRMP2. To further elucidate the in vivo role of CRMP2 SUMOylation in pain, we generated CRMP2 K374A knock-in (CRMP2) mice in which Lys374 was replaced with Ala. CRMP2 mice had reduced Nav1.7 membrane localization and function in female, but not male, sensory neurons. Behavioral appraisal of CRMP2 mice demonstrated no changes in depressive or repetitive, compulsive-like behaviors and a decrease in noxious thermal sensitivity. No changes were observed in CRMP2 mice to inflammatory, acute, or visceral pain. By contrast, in a neuropathic model, CRMP2 mice failed to develop persistent mechanical allodynia. Our study suggests that CRMP2 SUMOylation-dependent control of peripheral Nav1.7 is a hallmark of chronic, but not physiological, neuropathic pain.
Collapse
|
7
|
Farmer T, Xie S, Naslavsky N, Stöckli J, James DE, Caplan S. Defining the protein and lipid constituents of tubular recycling endosomes. J Biol Chem 2021; 296:100190. [PMID: 33334886 PMCID: PMC7948492 DOI: 10.1074/jbc.ra120.015992] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Once internalized, receptors reach the sorting endosome and are either targeted for degradation or recycled to the plasma membrane, a process mediated at least in part by tubular recycling endosomes (TREs). TREs may be efficient for sorting owing to the ratio of large surface membrane area to luminal volume; following receptor segregation, TRE fission likely releases receptor-laden tubules and vesicles for recycling. Despite the importance of TRE networks for recycling, these unique structures remain poorly understood, and unresolved questions relate to their lipid and protein composition and biogenesis. Our previous studies have depicted the endocytic protein MICAL-L1 as an essential TRE constituent, and newer studies show a similar localization for the GTP-binding protein Rab10. We demonstrate that TREs are enriched in both phosphatidic acid (PA) and phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), supporting the idea of MICAL-L1 recruitment by PA and Rab10 recruitment via PI(4,5)P2. Using siRNA knock-down, we demonstrate that Rab10-marked TREs remain prominent in cells upon MICAL-L1 or Syndapin2 depletion. However, depletion of Rab10 or its interaction partner, EHBP1, led to loss of MICAL-L1-marked TREs. We next used phospholipase D inhibitors to decrease PA synthesis, acutely disrupt TREs, and enable monitoring of TRE regeneration after inhibitor washout. Rab10 depletion prevented TRE regeneration, whereas MICAL-L1 knock-down did not. It is surprising that EHBP1 depletion did not affect TRE regeneration under these conditions. Overall, our study supports a primary role for Rab10 and the requirement for PA and PI(4,5)P2 in TRE biogenesis and regeneration, with Rab10 likely linking the sorting endosome to motor proteins and the microtubule network.
Collapse
Affiliation(s)
- Trey Farmer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shuwei Xie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
8
|
Bhat S, Ljubojevic N, Zhu S, Fukuda M, Echard A, Zurzolo C. Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci Rep 2020; 10:16803. [PMID: 33033331 PMCID: PMC7544914 DOI: 10.1038/s41598-020-74013-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Tunneling nanotubes (TNTs) are F-actin rich structures that connect distant cells, allowing the transport of many cellular components, including vesicles, organelles and molecules. Rab GTPases are the major regulators of vesicle trafficking and also participate in actin cytoskeleton remodelling, therefore, we examined their role in TNTs. Rab35 functions with several proteins that are involved in vesicle trafficking such as ACAP2, MICAL-L1, ARF6 and EHD1, which are known to be involved in neurite outgrowth. Here we show that Rab35 promotes TNT formation and TNT-mediated vesicle transfer in a neuronal cell line. Furthermore, our data indicates that Rab35-GTP, ACAP2, ARF6-GDP and EHD1 act in a cascade mechanism to promote TNT formation. Interestingly, MICAL-L1 overexpression, shown to be necessary for the action of Rab35 on neurite outgrowth, showed no effect on TNTs, indicating that TNT formation and neurite outgrowth may be processed through similar but not identical pathways, further supporting the unique identity of these cellular protrusions.
Collapse
Affiliation(s)
- Shaarvari Bhat
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Nina Ljubojevic
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, ED394-Physiologie, Physiopathologie et Thérapeutique, 75005, Paris, France
| | - Seng Zhu
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, UMR3691 CNRS, Institut Pasteur, 75015, Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
9
|
Dhawan K, Naslavsky N, Caplan S. Sorting nexin 17 (SNX17) links endosomal sorting to Eps15 homology domain protein 1 (EHD1)-mediated fission machinery. J Biol Chem 2020; 295:3837-3850. [PMID: 32041776 DOI: 10.1074/jbc.ra119.011368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Following endocytosis, receptors that are internalized to sorting endosomes are sorted to different pathways, in part by sorting nexin (SNX) proteins. Notably, SNX17 interacts with a multitude of receptors in a sequence-specific manner to regulate their recycling. However, the mechanisms by which SNX17-labeled vesicles that contain sorted receptors bud and undergo vesicular fission from the sorting endosomes remain elusive. Recent studies suggest that a dynamin-homolog, Eps15 homology domain protein 1, catalyzes fission and releases endosome-derived vesicles for recycling to the plasma membrane. However, the mechanism by which EHD1 is coupled to various receptors and regulates their recycling remains unknown. Here we sought to characterize the mechanism by which EHD1 couples with SNX17 to regulate recycling of SNX17-interacting receptors. We hypothesized that SNX17 couples receptors to the EHD1 fission machinery in mammalian cells. Coimmunoprecipitation experiments and in vitro assays provided evidence that EHD1 and SNX17 directly interact. We also found that inducing internalization of a SNX17 cargo receptor, low-density lipoprotein receptor-related protein 1 (LRP1), led to recruitment of cytoplasmic EHD1 to endosomal membranes. Moreover, surface rendering and quantification of overlap volumes indicated that SNX17 and EHD1 partially colocalize on endosomes and that this overlap further increases upon LRP1 internalization. Additionally, SNX17-containing endosomes were larger in EHD1-depleted cells than in WT cells, suggesting that EHD1 depletion impairs SNX17-mediated endosomal fission. Our findings help clarify our current understanding of endocytic trafficking, providing significant additional insight into the process of endosomal fission and connecting the sorting and fission machineries.
Collapse
Affiliation(s)
- Kanika Dhawan
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198 .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
10
|
Xie S, Farmer T, Naslavsky N, Caplan S. MICAL-L1 coordinates ciliogenesis by recruiting EHD1 to the primary cilium. J Cell Sci 2019; 132:jcs.233973. [PMID: 31615969 DOI: 10.1242/jcs.233973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The endocytic protein EHD1 plays an important role in ciliogenesis by facilitating fusion of the ciliary vesicle and removal of CP110 (also known as CCP110) from the mother centriole, as well as removal of Cep215 (also known as CDK5RAP2) from centrioles to permit disengagement and duplication. However, the mechanism of its centrosomal recruitment remains unknown. Here, we address the role of the EHD1 interaction partner MICAL-L1 in ciliogenesis. MICAL-L1 knockdown impairs ciliogenesis in a similar manner to EHD1 knockdown, and MICAL-L1 localizes to cilia and centrosomes in both ciliated and non-ciliated cells. Consistent with EHD1 function, MICAL-L1-depletion prevents CP110 removal from the mother centriole. Moreover, upon MICAL-L1-depletion, EHD1 fails to localize to basal bodies. Since MICAL-L1 localizes to the centrosome even in non-ciliated cells, we hypothesized that it might be anchored to the centrosome via an interaction with centrosomal proteins. By performing mass spectrometry, we identified several tubulins as potential MICAL-L1 interaction partners, and found a direct interaction between MICAL-L1 and both α-tubulin-β-tubulin heterodimers and γ-tubulin. Our data support the notion that a pool of centriolar γ-tubulin and/or α-tubulin-β-tubulin heterodimers anchor MICAL-L1 to the centriole, where it might recruit EHD1 to promote ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- The Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Trey Farmer
- The Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Naava Naslavsky
- The Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
11
|
Finicle BT, Ramirez MU, Liu G, Selwan EM, McCracken AN, Yu J, Joo Y, Nguyen J, Ou K, Roy SG, Mendoza VD, Corrales DV, Edinger AL. Sphingolipids inhibit endosomal recycling of nutrient transporters by inactivating ARF6. J Cell Sci 2018; 131:jcs.213314. [PMID: 29848659 DOI: 10.1242/jcs.213314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells. We propose that ARF6 inactivation may occur downstream of PP2A activation since: (1) sphingolipids that fail to activate PP2A did not reduce ARF6-GTP levels; (2) a structurally unrelated PP2A activator disrupted tubular recycling endosome morphology and transporter localization; and (3) overexpression of a phosphomimetic mutant of the ARF6 GEF GRP1 prevented nutrient transporter loss. ARF6 inhibition alone was not toxic; however, the ARF6 inhibitors SecinH3 and NAV2729 dramatically enhanced the killing of cancer cells by SH-BC-893 without increasing toxicity to peripheral blood mononuclear cells, suggesting that ARF6 inactivation contributes to the anti-neoplastic actions of sphingolipids. Taken together, these studies provide mechanistic insight into how ceramide and sphingolipid-like molecules limit nutrient access and suppress tumor cell growth and survival.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Manuel U Ramirez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Gang Liu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Alison N McCracken
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Jingwen Yu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Yoosun Joo
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Jannett Nguyen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Kevin Ou
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Saurabh Ghosh Roy
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Victor D Mendoza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Dania Virginia Corrales
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Cai Y, Lu J, Tang F. Overexpression of MICAL2, a novel tumor-promoting factor, accelerates tumor progression through regulating cell proliferation and EMT. J Cancer 2018; 9:521-527. [PMID: 29483957 PMCID: PMC5820919 DOI: 10.7150/jca.22355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
Molecule interacting with CasL 2 (MICAL2), a microtubule associated monooxygenase, is involved in cell growth, axon guidance, vesicle trafficking and apoptosis. Recent studies have demonstrated that MICAL2 is highly expressed in tumor and accelerates tumor progression and it is deemed to be a novel tumor-promoting factor. MICAL2 overexpression increases cell proliferation to accelerate tumor growth, and MICAL2 also promotes epithelial-mesenchymal transition (EMT)-related proteins to increase cancer cell metastasis. On mechanism, MICAL2 induces EMT by regulating SRF (serum response factor)/MRTF-A (myocardin related transcription factor A) signaling, Semaphorin/Plexin pathway and inducing ROS (Reactive oxygen species) production. In the present review, we introduced MICAL family, expatiated the structure and functions of MICALs, and summarized the mechanisms of MICAL2 involving tumor progression. The challenges and perspectives for MICAL2 in tumor are also discussed.
Collapse
Affiliation(s)
- Yongqiang Cai
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Jinping Lu
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Faqing Tang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
13
|
Vanoni MA. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics. Arch Biochem Biophys 2017; 632:118-141. [PMID: 28602956 DOI: 10.1016/j.abb.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of multidomain proteins conserved from insects to humans, which are increasingly attracting attention for their participation in the control of actin cytoskeleton dynamics, and, therefore, in the several related key processes in health and disease. MICAL is unique among actin binding proteins because it catalyzes a NADPH-dependent F-actin depolymerizing reaction. This unprecedented reaction is associated with its N-terminal FAD-containing domain that is structurally related to p-hydroxybenzoate hydroxylase, the prototype of aromatic monooxygenases, but catalyzes a strong NADPH oxidase activity in the free state. This review will focus on the known structural and functional properties of MICAL forms in order to provide an overview of the arguments supporting the current hypotheses on the possible mechanism of action of MICAL in the free and F-actin bound state, on the modulating effect of the CH, LIM, and C-terminal domains that follow the catalytic flavoprotein domain on the MICAL activities, as well as that of small molecules and proteins interacting with MICAL.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
14
|
Frémont S, Romet-Lemonne G, Houdusse A, Echard A. Emerging roles of MICAL family proteins - from actin oxidation to membrane trafficking during cytokinesis. J Cell Sci 2017; 130:1509-1517. [PMID: 28373242 DOI: 10.1242/jcs.202028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokinetic abscission is the terminal step of cell division, leading to the physical separation of the two daughter cells. The exact mechanism mediating the final scission of the intercellular bridge connecting the dividing cells is not fully understood, but requires the local constriction of endosomal sorting complex required for transport (ESCRT)-III-dependent helices, as well as remodelling of lipids and the cytoskeleton at the site of abscission. In particular, microtubules and actin filaments must be locally disassembled for successful abscission. However, the mechanism that actively removes actin during abscission is poorly understood. In this Commentary, we will focus on the latest findings regarding the emerging role of the MICAL family of oxidoreductases in F-actin disassembly and describe how Rab GTPases regulate their enzymatic activity. We will also discuss the recently reported role of MICAL1 in controlling F-actin clearance in the ESCRT-III-mediated step of cytokinetic abscission. In addition, we will highlight how two other members of the MICAL family (MICAL3 and MICAL-L1) contribute to cytokinesis by regulating membrane trafficking. Taken together, these findings establish the MICAL family as a key regulator of actin cytoskeleton dynamics and membrane trafficking during cell division.
Collapse
Affiliation(s)
- Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris 75013, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| |
Collapse
|
15
|
Rai A, Oprisko A, Campos J, Fu Y, Friese T, Itzen A, Goody RS, Gazdag EM, Müller MP. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication. eLife 2016; 5. [PMID: 27552051 PMCID: PMC5026484 DOI: 10.7554/elife.18675] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking. DOI:http://dx.doi.org/10.7554/eLife.18675.001
Collapse
Affiliation(s)
- Amrita Rai
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anastasia Oprisko
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jeremy Campos
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yangxue Fu
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Timon Friese
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Garching, Germany
| | - Roger S Goody
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Emerich Mihai Gazdag
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Matthias P Müller
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
16
|
Giridharan SSP, Caplan S. MICAL-family proteins: Complex regulators of the actin cytoskeleton. Antioxid Redox Signal 2014; 20:2059-73. [PMID: 23834433 PMCID: PMC3993057 DOI: 10.1089/ars.2013.5487] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE The molecules interacting with CasL (MICAL) family members participate in a multitude of activities, including axonal growth cone repulsion, membrane trafficking, apoptosis, and bristle development in flies. An interesting feature of MICAL proteins is the presence of an N-terminal flavo-mono-oxygenase domain. This mono-oxygenase domain generates redox potential with which MICALs can either oxidize proteins or produce reactive oxygen species (ROS). Actin is one such protein that is affected by MICAL function, leading to dramatic cytoskeletal rearrangements. This review describes the MICAL-family members, and discusses their mechanisms of actin-binding and regulation of actin cytoskeleton organization. RECENT ADVANCES Recent studies show that MICALs directly induce oxidation of actin molecules, leading to actin depolymerization. ROS production by MICALs also causes oxidation of collapsin response mediator protein-2, a microtubule assembly promoter, which subsequently undergoes phosphorylation. CRITICAL ISSUES MICAL proteins oxidize proteins through two mechanisms: either directly by oxidizing methionine residues or indirectly via the production of ROS. It remains unclear whether MICAL proteins employ both mechanisms or whether the activity of MICAL-family proteins might vary with different substrates. FUTURE DIRECTIONS The identification of additional substrates oxidized by MICAL will shed new light on MICAL protein function. Additional directions include expanding studies toward the MICAL-like homologs that lack flavin adenine dinucleotide domains and oxidation activity.
Collapse
Affiliation(s)
- Sai Srinivas Panapakkam Giridharan
- Department of Biochemistry and Molecular Biology, and the Pamela and Fred Buffett Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska
| | | |
Collapse
|
17
|
Sun Y, Chiu TT, Foley KP, Bilan PJ, Klip A. Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell 2014; 25:1159-70. [PMID: 24478457 PMCID: PMC3967978 DOI: 10.1091/mbc.e13-08-0493] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rab-GTPases are important molecular switches regulating intracellular vesicle traffic, and we recently showed that Rab8A and Rab13 are activated by insulin in muscle to mobilize GLUT4-containing vesicles to the muscle cell surface. Here we show that the unconventional motor protein myosin Va (MyoVa) is an effector of Rab8A in this process. In CHO-IR cell lysates, a glutathione S-transferase chimera of the cargo-binding COOH tail (CT) of MyoVa binds Rab8A and the related Rab10, but not Rab13. Binding to Rab8A is stimulated by insulin in a phosphatidylinositol 3-kinase-dependent manner, whereas Rab10 binding is insulin insensitive. MyoVa-CT preferentially binds GTP-locked Rab8A. Full-length green fluorescent protein (GFP)-MyoVa colocalizes with mCherry-Rab8A in perinuclear small puncta, whereas GFP-MyoVa-CT collapses the GTPase into enlarged perinuclear depots. Further, GFP-MyoVa-CT blocks insulin-stimulated translocation of exofacially myc-tagged GLUT4 to the surface of muscle cells. Mutation of amino acids in MyoVa-CT predicted to bind Rab8A abrogates both interaction with Rab8A (not Rab10) and inhibition of insulin-stimulated GLUT4myc translocation. Of importance, small interfering RNA-mediated MyoVa silencing reduces insulin-stimulated GLUT4myc translocation. Rab8A colocalizes with GLUT4 in perinuclear but not submembrane regions visualized by confocal total internal reflection fluorescence microscopy. Hence insulin signaling to the molecular switch Rab8A connects with the motor protein MyoVa to mobilize GLUT4 vesicles toward the muscle cell plasma membrane.
Collapse
Affiliation(s)
- Yi Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | | | | | | |
Collapse
|