1
|
Zou H, Bao S, Chen X, Zhou X, Zhang S. High-frequency repetitive transcranial magnetic stimulation ameliorates memory impairment by inhibiting neuroinflammation in the chronic cerebral hypoperfusion mice. Brain Behav 2024; 14:e3618. [PMID: 39010692 PMCID: PMC11250728 DOI: 10.1002/brb3.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been found to ameliorate cognitive impairment. However, the effects of HF-rTMS remain unknown in chronic cerebral hypoperfusion (CCH). AIM To investigate the effects of HF-rTMS on cognitive improvement and its potential mechanisms in CCH mice. MATERIALS AND METHODS Daily HF-rTMS therapy was delivered after bilateral carotid stenosis (BCAS) and continued for 14 days. The mice were randomly assigned to three groups: the sham group, the model group, and the HF-rTMS group. The Y maze and the new object recognition test were used to assess cognitive function. The expressions of MAP-2, synapsis, Myelin basic protein(MBP), and brain-derived growth factors (BDNF) were analyzed by immunofluorescence staining and western blot to evaluate neuronal plasticity and white matter myelin regeneration. Nissl staining and the expression of caspase-3, Bax, and Bcl-2 were used to observe neuronal apoptosis. In addition, the activation of microglia and astrocytes were evaluated by fluorescence staining. The inflammation levels of IL-1β, IL-6, and Tumor Necrosis Factor(TNF)-α were detected by qPCR in the hippocampus of mice in each group. RESULTS Via behavioral tests, the BCAS mice showed reduced a rate of new object preference and decreased a rate of spontaneous alternations, while HF-rTMS significantly improved hippocampal learning and memory deficits. In addition, the mice in the model group showed decreased levels of MAP-2, synapsis, MBP, and BDNF, while HF-rTMS treatment reversed these effects. As expected, activated microglia and astrocytes increased in the model group, but HF-rTMS treatment suppressed these changes. HF-rTMS decreased BCAS-induced neuronal apoptosis and the expression of pro-apoptotic protein (Caspase-3 and Bax) and increased the expression of anti-apoptotic protein (Bcl-2). In addition, HF-rTMS inhibited the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α). CONCLUSIONS HF-rTMS alleviates cognitive impairment in CCH mice by enhancing neuronal plasticity and inhibiting inflammation, thus serving as a potential method for vascular cognitive impairment.
Collapse
Affiliation(s)
- Huihui Zou
- Department of Neurology, Neuroscience CenterSouthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| | - Shilin Bao
- Department of Neurology, Neuroscience CenterSourthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| | - Xinrun Chen
- Department of NeurologyGeneral Hospital of Southern Theater Command, Chinese People's Liberation ArmyGuangzhouChina
| | - Xianju Zhou
- Department of Neurology, Neuroscience CenterSouthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| | - Shaotian Zhang
- Department of Neurology, Neuroscience CenterSourthern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical UniversityNo. 13 Shi Liu Gang Road, Haizhu DistrictGuangzhou510315China
| |
Collapse
|
2
|
Zhang Y, Geng R, Liu M, Deng S, Ding J, Zhong H, Tu Q. Shared peripheral blood biomarkers for Alzheimer’s disease, major depressive disorder, and type 2 diabetes and cognitive risk factor analysis. Heliyon 2023; 9:e14653. [PMID: 36994393 PMCID: PMC10040717 DOI: 10.1016/j.heliyon.2023.e14653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background Alzheimer's disease (AD), type 2 diabetes mellitus (T2DM), and Major Depressive Disorder (MDD) have a higher incidence rate in modern society. Although increasing evidence supports close associations between the three, the mechanisms underlying their interrelationships remain elucidated. Objective The primary purpose is to explore the shared pathogenesis and the potential peripheral blood biomarkers for AD, MDD, and T2DM. Methods We downloaded the microarray data of AD, MDD, and T2DM from the Gene Expression Omnibus database and constructed co-expression networks by Weighted Gene Co-Expression Network Analysis to identify differentially expressed genes. We took the intersection of differentially expressed genes to obtain co-DEGs. Then, we performed GO and KEGG enrichment analysis on the common genes in the AD, MDD, and T2DM-related modules. Next, we utilized the STRING database to find the hub genes in the protein-protein interaction network. ROC curves were constructed for co-DEGs to obtain the most diagnostic valuable genes and to make drug predictions against the target genes. Finally, we conducted a present condition survey to verify the correlation between T2DM, MDD and AD. Results Our findings indicated 127 diff co-DEGs, 19 upregulated co-DEGs, and 25 down-regulated co-DEGs. Functional enrichment analysis showed co-DEGs were mainly enriched in signaling pathways such as metabolic diseases and some neurodegeneration. Protein-protein interaction network construction identified hub genes in AD, MDD and T2DM shared genes. We identified seven hub genes of co-DEGs, namely, SMC4, CDC27, HNF1A, RHOD, CUX1, PDLIM5, and TTR. The current survey results suggest a correlation between T2DM, MDD and dementia. Moreover, logistic regression analysis showed that T2DM and depression increased the risk of dementia. Conclusion Our work identified common pathogenesis of AD, T2DM, and MDD. These shared pathways might provide novel ideas for further mechanistic studies and hub genes that may serve as novel therapeutic targets for diagnosing and treating.
Collapse
|
3
|
Currenti W, Godos J, Castellano S, Caruso G, Ferri R, Caraci F, Grosso G, Galvano F. Association between Time Restricted Feeding and Cognitive Status in Older Italian Adults. Nutrients 2021; 13:nu13010191. [PMID: 33435416 PMCID: PMC7827225 DOI: 10.3390/nu13010191] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Due to the increased life expectancy, the prevalence of aging-related health conditions, such as cognitive impairment, dementia and Alzheimer’s disease is increasing. Among the modifiable risk factors, dietary factors have proved to be of primary importance in preserving and improving mental health and cognitive status in older adults, possibly through the modulation of adult neurogenesis, neuronal plasticity and brain signaling. Feeding/fasting timing manipulation has emerged as an innovative strategy to counteract and treat cognitive decline. The aim of this study was to investigate the association between the timing of the feeding period and cognitive status in a cross-sectional cohort of adults living in the Mediterranean area. Methods: Demographic and dietary characteristics of 883 adults living in Southern Italy (Sicily) were analyzed. Food frequency questionnaires were used to calculate the time window between the first and the last meal of an average day. Participants with an eating time window duration of more than 10 h were then identified, as well as those with eating time restricted to less than 10 h (TRF). Results: After adjusting for potential confounding factors, individuals adherent to TRF were less likely to have cognitive impairment, compared to those with no eating time restrictions [odds ratio (OR) = 0.28; 95% confidence intervals (CI): 0.07–0.90]; a similar association was found for individuals having breakfast (OR = 0.37, 95% CI: 0.16–0.89), but not for those having dinner. Conclusions: The results of this study reveal that time restricted eating may be positively associated with cognitive status, and thus exert plausible effects on brain health.
Collapse
Affiliation(s)
- Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.)
| | - Justyna Godos
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (J.G.); (R.F.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy;
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (J.G.); (R.F.); (F.C.)
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (J.G.); (R.F.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.)
- Correspondence: ; Tel.: +39-0954-781-187
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.)
| |
Collapse
|
4
|
Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, Wu H. CUX1, A Controversial Player in Tumor Development. Front Oncol 2020; 10:738. [PMID: 32547943 PMCID: PMC7272708 DOI: 10.3389/fonc.2020.00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023] Open
Abstract
CUX1 belongs to the homeodomain transcription factor family and is evolutionarily and functionally conserved from Drosophila to humans. In addition to the involvement in various physiological events including tissue development, cell proliferation, differentiation and migration, and DNA damage response, CUX1 has been implicated in tumorigenesis. Interestingly, CUX1 has been recently recognized as a haploinsufficient tumor suppressor, which is paradoxically overexpressed in tumor cells. While loss of heterozygosity and/or mutations of CUX1 have been frequently detected in many types of cancers, genomic amplification, and overexpression of CUX1 have also been reported in cancer tissues and are correlated with higher tumor grade and poor prognosis. Therefore, deciphering the roles of different CUX1 isoforms and in different tumor stages is required to establish a CUX1-based therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Qiliang Sun
- Department of Respiratory Medicine, Taian City Central Hospital, Tai'an, China
| | - Long Wan
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Xuan Wang
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Judong Luo
- Department of Radiation Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Miyazaki I, Kikuoka R, Isooka N, Takeshima M, Sonobe K, Arai R, Funakoshi H, Quin KE, Smart J, Zensho K, Asanuma M. Effects of maternal bisphenol A diglycidyl ether exposure during gestation and lactation on behavior and brain development of the offspring. Food Chem Toxicol 2020; 138:111235. [DOI: 10.1016/j.fct.2020.111235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
|
6
|
Wang LY, Tao Z, Zhao HP, Wang RL, Li LZ, Luo YM, Chen ZG. Huoluo Yinao decoction mitigates cognitive impairments after chronic cerebral hypoperfusion in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111846. [PMID: 30954615 DOI: 10.1016/j.jep.2019.111846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huoluo Yinao decoction (HLYND) has been used to ameliorate cognitive impairment induced by chronic cerebral hypoperfusion in clinical for years. However, the exact mechanisms remain unknown. AIM OF THE STUDY To investigate the effects and mechanisms underlying HLYND-mediated improvement in cognitive deficits associated with chronic cerebral hypoperfusion. MATERIALS AND METHODS Thirty-six Sprague-Dawley rats were randomly allocated to three groups: sham, model, and HLYND. Daily administration of HLYND or volume-matched vehicle by gavage was initiated 1 day after bilateral carotid artery stenosis (BCAS) and continued for 42 days. The Morris water maze (MWM) test was used to assess cognitive functions from days 36-42. Via western blot and immunofluorescent staining, restoration of neuronal plasticity and remyelination of white matter were evaluated by analyzing the expression profiles of MAP-2, synaptophysin and MBP. In addition, macrophage/microglial activation was assessed by quantifying changes in Iba1, and macrophage/microglial polarization was assessed by changes in iNOS and CD16 (M1 markers), as well as Arg1 and CD206 (M2 markers). RESULTS In the MWM test, BCAS rats showed significantly extended escape latency and reduced platform crossing times, while those in the HLYND group had shortened escape latency and increased frequency of platform crossing. In addition, rats in the model group showed decreased levels and abnormal morphological changes of MAP-2, synaptophysin and MBP, whereas HLYND administration reversed these effects. As expected, Iba1 levels were elevated in both the model and HLYND groups but rats in the model group showed increased levels of the M1 markers, iNOS and CD16, and a correspondent decrease in the M2 marker, Arg1. In contrast, in the HLYND group, iNOS and CD16 levels were suppressed, while Arg1 levels were elevated. CONCLUSIONS Our findings demonstrate that HLYND mitigates cognitive impairment after chronic cerebral hypoperfusion in rats through mechanisms involving increased neuronal plasticity and white matter remyelination, with a subtile modulation of macrophage/microglial polarization toward the M2 phenotype.
Collapse
Affiliation(s)
- Li-Ye Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hai-Ping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rong-Liang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ling-Zhi Li
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu-Min Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
| | - Zhi-Gang Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Doan RN, Shin T, Walsh CA. Evolutionary Changes in Transcriptional Regulation: Insights into Human Behavior and Neurological Conditions. Annu Rev Neurosci 2019; 41:185-206. [PMID: 29986162 DOI: 10.1146/annurev-neuro-080317-062104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the biological basis for human-specific cognitive traits presents both immense challenges and unique opportunities. Although the question of what makes us human has been investigated with several different methods, the rise of comparative genomics, epigenomics, and medical genetics has provided tools to help narrow down and functionally assess the regions of the genome that seem evolutionarily relevant along the human lineage. In this review, we focus on how medical genetic cases have provided compelling functional evidence for genes and loci that appear to have interesting evolutionary signatures in humans. Furthermore, we examine a special class of noncoding regions, human accelerated regions (HARs), that have been suggested to show human-lineage-specific divergence, and how the use of clinical and population data has started to provide functional information to examine these regions. Finally, we outline methods that provide new insights into functional noncoding sequences in evolution.
Collapse
Affiliation(s)
- Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02138, USA
| |
Collapse
|
8
|
Platzer K, Cogné B, Hague J, Marcelis CL, Mitter D, Oberndorff K, Park SM, Ploos van Amstel HK, Simonic I, van der Smagt JJ, Stegmann APA, Stevens SJC, Stumpel CTRM, Vincent M, Lemke JR, Jamra R. Haploinsufficiency of CUX1 Causes Nonsyndromic Global Developmental Delay With Possible Catch-up Development. Ann Neurol 2018; 84:200-207. [PMID: 30014507 DOI: 10.1002/ana.25278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Developmental delay (DD) with favorable intellectual outcome and mild intellectual disability (ID) are mostly considered to be of complex genetic and environmental origin, but, in fact, often remain unclear. We aimed at proving our assumption that also mild cases of DD and ID may be of monogenic etiology. METHODS We clinically evaluated 8 individuals and performed exome sequencing or array copy number analysis and identified variants in CUX1 as the likely cause. In addition, we included a case from the public database, DECIPHER. RESULTS All 9 individuals harbored heterozygous null-allele variants in CUX1, encoding the Cut-homeobox 1 transcription factor that is involved in regulation of dendritogenesis and cortical synapse formation in layer II to IV cortical neurons. Six variants arose de novo, while in one family the variant segregated with ID. Of the 9 included individuals, 2 were diagnosed with moderate ID, 3 with mild ID, and 3 showed a normal age-related intelligence at ages 4, 6, and 8 years after a previous history of significant DD. INTERPRETATION Our results suggest that null-allele variants, and thus haploinsufficiency of CUX1, cause an isolated phenotype of DD or ID with possible catch-up development. This illustrates that such a developmental course is not necessarily genetic complex, but may also be attributed to a monogenic cause. Ann Neurol 2018;84:200-207.
Collapse
Affiliation(s)
- Konrad Platzer
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Benjamin Cogné
- Service de génétique médicale, CHU Nantes, Nantes, France.,L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Jennifer Hague
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Carlo L Marcelis
- Department of Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Diana Mitter
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Katrin Oberndorff
- Department of Pediatrics, Zuyderland Medical Center, BG Sittard, The Netherlands
| | - Soo-Mi Park
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | | | - Ingrid Simonic
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | | | - Alexander P A Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marie Vincent
- Service de génétique médicale, CHU Nantes, Nantes, France.,L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Rami Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| |
Collapse
|
9
|
A recurrent de novo CUX2 missense variant associated with intellectual disability, seizures, and autism spectrum disorder. Eur J Hum Genet 2018; 26:1388-1391. [PMID: 29795476 DOI: 10.1038/s41431-018-0184-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
In most patients with intellectual disability (ID), the etiology is unknown, but lately several de novo variants have been associated with ID. One of the involved genes, CUX2, has twice been reported to be affected by a de novo variant c.1768G>A; p.(Glu590Lys) in patients with ID or epileptic encephalopathy. CUX2 is expressed primarily in nervous tissues where it may act as a transcription factor involved in neural specification. Here we describe a third case who was diagnosed with epilepsy including general and myoclonic seizures, moderate to severe cognitive disability, and infantile autism. The patient was heterozygous for the c.1768G>A; p.(Glu590Lys) variant in CUX2 identified by whole exome sequencing. These findings strongly suggest a causal impact of this variant and add to our understanding of a subset of patients with ID, seizures, and autism spectrum disorder as well as suggest an important role for the CUX2 gene in human brain function.
Collapse
|
10
|
Koenig A, Krug S, Mueller D, Barth PJ, Koenig U, Scharf M, Ellenrieder V, Michl P, Moll R, Homayunfar K, Kann PH, Stroebel P, Gress TM, Rinke A. Clinicopathological hallmarks and biomarkers of colorectal neuroendocrine neoplasms. PLoS One 2017; 12:e0188876. [PMID: 29232390 PMCID: PMC5726657 DOI: 10.1371/journal.pone.0188876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022] Open
Abstract
Chromogranin A (CgA) is a well-established marker for diagnosis and follow up of patients with gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN). Recently, it has been shown that plasma levels of CgA correlate with tumor load and predict survival of patients with NEN of the small bowel. It is assumed that this is as well valid for NEN of the colon and rectum, however, this is not supported by data. To evaluate this assumption, we analyzed 62 patients with NEN of the colon and rectum listed in the Marburg GEP-NEN registry for clinicopathological characteristics, expression and plasma levels of CgA. The present study demonstrates that immunohistochemical CgA and synaptophysin are good markers for histological diagnosis in patients with NEN of the colon and rectum. However, plasma CgA is a poor marker to follow-up these patients because only a minority exhibited increased levels which did not increase significantly during tumor progression. In contrast to NEN of the small bowel, there is no correlation of CgA plasma levels with tumor burden or survival. Patients with NEN of the colon and rectum displayed a relatively good prognosis resulting in a median survival of 8.5 years. However, a subset of patients affected by G3 neoplasms, exhibited a poorer prognosis with a median survival of 2.5 years. Taken together, CgA is a valuable marker for immunohistochemical diagnosis, but CgA plasma concentration is not suitable to mirror tumor burden or prognosis in patients with NEN of the colon and rectum.
Collapse
Affiliation(s)
- Alexander Koenig
- Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
- * E-mail: (AK); (AR)
| | - Sebastian Krug
- Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany
- Department of Internal Medicine I, University Halle, Halle, Germany
| | - Daniela Mueller
- Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany
| | - Peter J. Barth
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
- Department of Pathology, Philipps-University of Marburg, Marburg, Germany
| | - Ute Koenig
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Scharf
- Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Patrick Michl
- Department of Internal Medicine I, University Halle, Halle, Germany
| | - Roland Moll
- Department of Pathology, Philipps-University of Marburg, Marburg, Germany
| | - Kia Homayunfar
- Department of General-, Visceral- and Pediatric Surgery University Medical Center Goettingen, Goettingen, Germany
| | - Peter Herbert Kann
- Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany
| | - Philipp Stroebel
- Department of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas M. Gress
- Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany
| | - Anja Rinke
- Department of Gastroenterology and Endocrinology, Philipps-University of Marburg, Marburg, Germany
- * E-mail: (AK); (AR)
| |
Collapse
|
11
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
13
|
Pal R, Ramdzan ZM, Kaur S, Duquette PM, Marcotte R, Leduy L, Davoudi S, Lamarche-Vane N, Iulianella A, Nepveu A. CUX2 protein functions as an accessory factor in the repair of oxidative DNA damage. J Biol Chem 2015. [PMID: 26221032 DOI: 10.1074/jbc.m115.651042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.
Collapse
Affiliation(s)
| | | | - Simran Kaur
- From the Goodman Cancer Research Centre and Departments of Biochemistry
| | - Philippe M Duquette
- Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Richard Marcotte
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada, and
| | - Lam Leduy
- From the Goodman Cancer Research Centre and
| | | | | | - Angelo Iulianella
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax B3H 4R2, Canada
| | - Alain Nepveu
- From the Goodman Cancer Research Centre and Departments of Biochemistry, Medicine, Oncology, and
| |
Collapse
|
14
|
Silva J, Sharma S, Cowell JK. Homozygous Deletion of the LGI1 Gene in Mice Leads to Developmental Abnormalities Resulting in Cortical Dysplasia. Brain Pathol 2014; 25:587-97. [PMID: 25346110 DOI: 10.1111/bpa.12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/21/2014] [Indexed: 01/02/2023] Open
Abstract
LGI1 mutations lead to an autosomal dominant form of epilepsy. Lgi1 mutant null mice develop seizures and show abnormal neuronal excitability. A fine structure analysis of the cortex in these mice demonstrated a subtle cortical dysplasia, preferentially affecting layers II-IV, associated with increased Foxp2 and Cux1-expressing neurons leading to blurring of the cortical layers. The hypercellularity observed in the null cortex resulted from an admixture of highly branched mature pyramidal neurons with short and poorly aligned axons as revealed by Golgi staining and immature small neurons with branched disoriented dendrites with reduced spine density and undersized, morphologically altered and round-headed spines. In vitro, hippocampal neurons revealed poor neurite outgrowth in null mice as well as reduced synapse formation. Electron microscopy demonstrated reduced spine-localized asymmetric (axospinous) synapses with postsynaptic densities and vesicle-loaded synapses in the mutant null cortex. The overall pathology in the null mice suggested cortical dyslamination most likely because of mislocalization of late-born neurons, with an admixture of those carrying suboptimally developed axons and dendrites with reduced functional synapses with normal neurons. Our study suggests that LGI1 has a role in regulating cortical development, which is increasingly becoming recognized as one of the causes of idiopathic epilepsy.
Collapse
Affiliation(s)
- Jeane Silva
- Cancer Center, Georgia Regents University, Augusta, GA
| | - Suash Sharma
- Cancer Center, Georgia Regents University, Augusta, GA.,Department of Pathology, Georgia Regents University, Augusta, GA
| | - John K Cowell
- Cancer Center, Georgia Regents University, Augusta, GA.,Department of Pathology, Georgia Regents University, Augusta, GA
| |
Collapse
|
15
|
Cubelos B, Briz CG, Esteban-Ortega GM, Nieto M. Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons. Dev Neurobiol 2014; 75:163-72. [PMID: 25059644 DOI: 10.1002/dneu.22215] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 01/19/2023]
Abstract
A number of recent reports implicate the differential regulation of apical and basal dendrites in autism disorders and in the higher functions of the human brain. They show that apical and basal dendrites are functionally specialized and that mechanisms regulating their development have important consequences for neuron function. The molecular identity of layer II-III neurons of the cerebral cortex is determined by the overlapping expression of Cux1 and Cux2. We previously showed that both Cux1 and Cux2 are necessary and nonredundant for normal dendrite development of layer II-III neurons. Loss of function of either gene reduced dendrite arbors, while overexpression increased dendritic complexity and suggested additive functions. We herein characterize the function of Cux1 and Cux2 in the development of apical and basal dendrites. By in vivo loss and gain of function analysis, we show that while the expression level of either Cux1 or Cux2 influences both apical and basal dendrites, they have distinct effects. Changes in Cux1 result in a marked effect on the development of the basal compartment whereas modulation of Cux2 has a stronger influence on the apical compartment. These distinct effects of Cux genes might account for the functional diversification of layer II-III neurons into different subpopulations, possibly with distinct connectivity patterns and modes of neuron response. Our data suggest that by their differential effects on basal and apical dendrites, Cux1 and Cux2 can promote the integration of layer II-III neurons in the intracortical networks in highly specific ways.
Collapse
Affiliation(s)
- Beatriz Cubelos
- Departamento de Biología Molecular, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, UAM-CSIC, Nicolás Cabrera, 1, Madrid, 28049, Spain
| | | | | | | |
Collapse
|
16
|
Possible association of CUX1 gene polymorphisms with antidepressant response in major depressive disorder. THE PHARMACOGENOMICS JOURNAL 2012; 13:354-8. [PMID: 22584459 DOI: 10.1038/tpj.2012.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
Abstract
Association between response to antidepressant treatment and genetic polymorphisms was examined in two independent Japanese samples of patients with major depressive disorder (MDD). Genome-wide approach using the Illumina Human CNV370-quad Bead Chip was utilized in the analysis of the 92 MDD patients in the first sample. In all, 11 non-intergenic single-nucleotide polymorphisms with uncorrected allelic P-value <0.0001 were selected for the subsequent association analyses in the second sample of 136 MDD patients. Difference in allele distribution between responders and nonresponders were found in the second-stage sample for rs365836 and rs201522 of the CUX1 gene (P=0.005 and 0.004, respectively). The allelic P-values for rs365836 and rs201522 in both samples combined were 0.0000023 and 0.0000040, respectively. Our results provide the first evidence that polymorphisms of the CUX1 gene may be associated with response to antidepressant treatment in Japanese patients with MDD.
Collapse
|
17
|
Hulea L, Nepveu A. CUX1 transcription factors: from biochemical activities and cell-based assays to mouse models and human diseases. Gene 2012; 497:18-26. [PMID: 22306263 DOI: 10.1016/j.gene.2012.01.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 01/19/2023]
Abstract
ChIP-chip and expression analyses indicated that CUX1 transcription factors regulate a large number of genes and microRNAs involved in multiple cellular processes. Indeed, in proliferating cells CUX1 was shown to regulate several genes involved in DNA replication, progression into S phase and later, the spindle assembly checkpoint that controls progression through mitosis. siRNA-mediated knockdown established that CUX1 is required for cell motility. Moreover, higher expression of short CUX1 isoforms, as observed in many cancers, was shown to stimulate cell migration and invasion. In parallel, elevated expression particularly in higher grade tumors of breast and pancreatic cancers implicated CUX1 in tumor initiation and progression. Indeed, transgenic mouse models demonstrated a causal role of CUX1 in cancers originating from various cell types. These studies revealed that higher CUX1 expression or activity not only stimulates cell proliferation and motility, but also promotes genetic instability. CUX1 has also been implicated in the etiology of polycystic kidney diseases, both from a transgenic approach and the analysis of CUX1 activity in multiple mouse models of this disease. Studies in neurobiology have uncovered a potential implication of CUX1 in cognitive disorders, neurodegeneration and obesity. CUX1 was shown to be expressed specifically in pyramidal neurons of the neocortex upper layers where it regulates dendrite branching, spine development, and synapse formation. In addition, modulation of CUX1 expression in neurons of the hypothalamus has been associated with changes in leptin receptor trafficking in the vicinity of the primary cilium resulting in altered leptin signaling and ultimately, eating behavior. Overall, studies in various fields have allowed the development of several cell-based assays to monitor CUX1 function and have extended the range of organs in which CUX1 plays an important role in development and tissue homeostasis.
Collapse
Affiliation(s)
- Laura Hulea
- Goodman Cancer Centre, McGill University, 1160 Pine avenue West, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|