1
|
Ahn M, Dhawan S, McCown EM, Garcia PA, Bhattacharya S, Stein R, Thurmond DC. Beta cell-specific PAK1 enrichment ameliorates diet-induced glucose intolerance in mice by promoting insulin biogenesis and minimising beta cell apoptosis. Diabetologia 2025; 68:152-165. [PMID: 39404845 DOI: 10.1007/s00125-024-06286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 12/22/2024]
Abstract
AIMS/HYPOTHESIS p21 (CDC42/RAC1) activated kinase 1 (PAK1) is depleted in type 2 diabetic human islets compared with non-diabetic human islets, and acute PAK1 restoration in the islets can restore insulin secretory function ex vivo. We hypothesised that beta cell-specific PAK1 enrichment in vivo can mitigate high-fat-diet (HFD)-induced glucose intolerance by increasing the functional beta cell mass. METHODS Human islets expressing exogenous PAK1 specifically in beta cells were used for bulk RNA-seq. Human EndoC-βH1 cells overexpressing myc-tagged PAK1 were used for chromatin immunoprecipitation (ChIP) and ChIP-sequencing (ChIP-seq). Novel doxycycline-inducible beta cell-specific PAK1-expressing (iβPAK1-Tg) mice were fed a 45% HFD pre-induction for 3 weeks and for a further 3 weeks with or without doxycycline induction. These HFD-fed mice were evaluated for GTT, ITT, 6 h fasting plasma insulin and blood glucose, body composition, islet insulin content and apoptosis. RESULTS Beta cell-specific PAK1 enrichment in type 2 diabetes human islets resulted in decreased beta cell apoptosis and increased insulin content. RNA-seq showed an upregulation of INS gene transcription by PAK1. Using clonal human beta cells, we found that PAK1 protein was localised in the cytoplasm and the nucleus. ChIP studies revealed that nuclear PAK1 enhanced pancreatic and duodenal homeobox1 (PDX1) and neuronal differentiation 1 (NEUROD1) binding to the INS promoter in a glucose-responsive manner. Importantly, the iβPAK1-Tg mice, when challenged with HFD and doxycycline induction displayed enhanced glucose tolerance, increased islet insulin content and reduced beta cell apoptosis when compared with iβPAK1-Tg mice without doxycycline induction. CONCLUSIONS/INTERPRETATION PAK1 plays an unforeseen and beneficial role in beta cells by promoting insulin biogenesis via enhancing the expression of PDX1, NEUROD1 and INS, along with anti-apoptotic effects, that culminate in increased insulin content and beta cell mass in vivo and ameliorate diet-induced glucose intolerance. DATA AVAILABILITY The raw and processed RNA-seq data and ChIP-seq data, which has been made publicly available at Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo/ , can be accessed in GSE239382.
Collapse
Affiliation(s)
- Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Erika M McCown
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Pablo A Garcia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Myers AK, Morel M, Gee SH, Hoffmann KA, Long W. ERK3 and DGKζ interact to modulate cell motility in lung cancer cells. Front Cell Dev Biol 2023; 11:1192221. [PMID: 37287450 PMCID: PMC10242005 DOI: 10.3389/fcell.2023.1192221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) promotes cell migration and tumor metastasis in multiple cancer types, including lung cancer. The extracellular-regulated kinase 3 protein has a unique structure. In addition to the N-terminal kinase domain, ERK3 includes a central conserved in extracellular-regulated kinase 3 and ERK4 (C34) domain and an extended C-terminus. However, relatively little is known regarding the role(s) of the C34 domain. A yeast two-hybrid assay using extracellular-regulated kinase 3 as bait identified diacylglycerol kinase ζ (DGKζ) as a binding partner. DGKζ was shown to promote migration and invasion in some cancer cell types, but its role in lung cancer cells is yet to be described. The interaction of extracellular-regulated kinase 3 and DGKζ was confirmed by co-immunoprecipitation and in vitro binding assays, consistent with their co-localization at the periphery of lung cancer cells. The C34 domain of ERK3 was sufficient for binding to DGKζ, while extracellular-regulated kinase 3 bound to the N-terminal and C1 domains of DGKζ. Surprisingly, in contrast to extracellular-regulated kinase 3, DGKζ suppresses lung cancer cell migration, suggesting DGKζ might inhibit ERK3-mediated cell motility. Indeed, co-overexpression of exogenous DGKζ and extracellular-regulated kinase 3 completely blocked the ability of ERK3 to promote cell migration, but DGKζ did not affect the migration of cells with stable ERK3 knockdown. Furthermore, DGKζ had little effect on cell migration induced by overexpression of an ERK3 mutant missing the C34 domain, suggesting DGKζ requires this domain to prevent ERK3-mediated increase in cell migration. In summary, this study has identified DGKζ as a new binding partner and negative regulator of extracellular-regulated kinase 3 in controlling lung cancer cell migration.
Collapse
Affiliation(s)
- Amanda K. Myers
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Marion Morel
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Stephen H. Gee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Katherine A. Hoffmann
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| |
Collapse
|
3
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
4
|
Magliozzi JO, Moseley JB. Pak1 kinase controls cell shape through ribonucleoprotein granules. eLife 2021; 10:67648. [PMID: 34282727 PMCID: PMC8318594 DOI: 10.7554/elife.67648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Fission yeast cells maintain a rod shape due to conserved signaling pathways that organize the cytoskeleton for polarized growth. We discovered a mechanism linking the conserved protein kinase Pak1 with cell shape through the RNA-binding protein Sts5. Pak1 (also called Shk1 and Orb2) prevents Sts5 association with P bodies by directly phosphorylating its intrinsically disordered region (IDR). Pak1 and the cell polarity kinase Orb6 both phosphorylate the Sts5 IDR but at distinct residues. Mutations preventing phosphorylation in the Sts5 IDR cause increased P body formation and defects in cell shape and polarity. Unexpectedly, when cells encounter glucose starvation, PKA signaling triggers Pak1 recruitment to stress granules with Sts5. Through retargeting experiments, we reveal that Pak1 localizes to stress granules to promote rapid dissolution of Sts5 upon glucose addition. Our work reveals a new role for Pak1 in regulating cell shape through ribonucleoprotein granules during normal and stressed growth conditions.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
5
|
Venu A, Archana B, Kanumuri R, Vuttaradhi VK, D'Cruze L, Murugan S, Ganesh K, Prathiba D, Dymova MA, Rayala SK, Venkatraman G. Clinical Evaluation of P21 Activated Kinase 1 (PAK1) Activation in Gliomas and Its Effect on Cell Proliferation. Cancer Invest 2020; 39:98-113. [PMID: 33251876 DOI: 10.1080/07357907.2020.1858097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastomas are the primary malignant tumors of brain tissues with poor prognosis and highly invasive phenotypes. Till now Ki-67 LI has emerged as a well-studied proliferation marker that aids in tumor grading, but labeling index alone cannot predict overall survival in gliomas. P21 activated kinase 1 (PAK1) - a serine/threonine kinase has been shown to function as downstream nodule for various oncogenic signaling pathways that promote neoplastic changes. This study is designed to evaluate the expression of PAK1 across various grades and its correlation with Ki-67 LI and overall survival rates among a total number of 140 clinical brain tumors of glioma patients. We also studied the activation status of phospho PAK1 in glioma tissues and established the role of PAK1 in proliferation of glioblatoma cell lines under γ-irradiation.This study provides molecular evidence signifying the role of PAK1 and its activation status in the progression of Gliomas to more aggressive phenotypes.
Collapse
Affiliation(s)
- Akkanapally Venu
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Balasubramanian Archana
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Rahul Kanumuri
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Lawrence D'Cruze
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sowmiya Murugan
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Krishnamurthy Ganesh
- Department of Neurosurgery, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Duvuru Prathiba
- Department of Biotechnology, Indian Institute of Technology, Chennai, India
| | - Mayya Alexandrovna Dymova
- Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Suresh Kumar Rayala
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
6
|
Grebeňová D, Holoubek A, Röselová P, Obr A, Brodská B, Kuželová K. PAK1, PAK1Δ15, and PAK2: similarities, differences and mutual interactions. Sci Rep 2019; 9:17171. [PMID: 31748572 PMCID: PMC6868145 DOI: 10.1038/s41598-019-53665-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
P21-activated kinases (PAK) are key effectors of the small GTPases Rac1 and Cdc42, as well as of Src family kinases. In particular, PAK1 has several well-documented roles, both kinase-dependent and kinase-independent, in cancer-related processes, such as cell proliferation, adhesion, and migration. However, PAK1 properties and functions have not been attributed to individual PAK1 isoforms: besides the full-length kinase (PAK1-full), a splicing variant lacking the exon 15 (PAK1Δ15) is annotated in protein databases. In addition, it is not clear if PAK1 and PAK2 are functionally overlapping. Using fluorescently tagged forms of human PAK1-full, PAK1Δ15, and PAK2, we analyzed their intracellular localization and mutual interactions. Effects of PAK inhibition (IPA-3, FRAX597) or depletion (siRNA) on cell-surface adhesion were monitored by real-time microimpedance measurement. Both PAK1Δ15 and PAK2, but not PAK1-full, were enriched in focal adhesions, indicating that the C-terminus might be important for PAK intracellular localization. Using coimmunoprecipitation, we documented direct interactions among the studied PAK group I members: PAK1 and PAK2 form homodimers, but all possible heterocomplexes were also detected. Interaction of PAK1Δ15 or PAK2 with PAK1-full was associated with extensive PAK1Δ15/PAK2 cleavage. The impedance measurements indicate, that PAK2 depletion slows down cell attachment to a surface, and that PAK1-full is involved in cell spreading. Altogether, our data suggest a complex interplay among different PAK group I members, which have non-redundant functions.
Collapse
Affiliation(s)
- Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic.
| |
Collapse
|
7
|
p21-Activated kinase 3 promotes cancer stem cell phenotypes through activating the Akt-GSK3β-β-catenin signaling pathway in pancreatic cancer cells. Cancer Lett 2019; 456:13-22. [PMID: 31051214 DOI: 10.1016/j.canlet.2019.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022]
|
8
|
Zhang N, Li X, Liu X, Cao Y, Chen D, Liu X, Wang Q, Du J, Weng J, Ma W. p21-activated kinase 1 activity is required for histone H3 Ser 10 phosphorylation and chromatin condensation in mouse oocyte meiosis. Reprod Fertil Dev 2018; 29:1287-1296. [PMID: 27166635 DOI: 10.1071/rd16026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/06/2016] [Indexed: 01/04/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is essential for a variety of cellular events, including gene transcription, cytoskeletal organisation, cell proliferation and apoptosis. Pak1 is activated upon autophosphorylation on many amino residues; in particular, phosphorylation on Thr423 maintains maximal Pak1 activation. In the present study we investigated the protein expression, subcellular localisation and function of Pak1 phosphorylated on Thr423 (pPak1Thr423) in mouse oocytes. pPak1Thr423 was detected upon meiotic resumption and localised on the condensing chromatin. Thr423 phosphorylation was markedly suppressed by the Pak1 ATP-competitive inhibitor PF-3758309, but not by the allosteric inhibitors IPA-3 (2.5 μM and 10μM) (1, 1'-dithiobis-2-naphthalenol) and TAT-PAK18 (10 μM), which prevent the binding of Pak1 to its upstream activators GTPase Cdc42/Rac and Pak-interacting exchange factor (PIX), respectively, implying that Pak1 activation may be independent of GTPase and PIX in oocyte meiosis. Inhibition of Pak1 activation concomitantly restrained histone H3 phosphorylation on Ser10 and consequently inhibited chromatin condensation; however, this phenotype was reversed by concomitant administration of the Pak1 activator FTY720. The changes in the pattern of expression of phosphorylated extracellular signal-regulated kinase 1/2 in response to PF-3758309 or FTY720 were the same as seen for pPak1Thr423. These results show that activated Pak1 regulates chromatin condensation by promoting H3 Ser10 phosphorylation in oocytes after the resumption of meiotic progression.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuhong Li
- Biospecimen and Clinical Data Repository, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Cao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dandan Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaoyu Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Juan Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Weng
- Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
9
|
Cloning and functional characterization of human Pak1 promoter by steroid hormones. Gene 2017; 646:120-128. [PMID: 29274909 DOI: 10.1016/j.gene.2017.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
P21-activated kinase 1 (Pak1) is known to be involved in a plethora of functions including cell growth, survival and can lead to cell transformation and tumor progression especially in breast tissue. Multiple studies have shown Pak1 dysregulation as a change in DNA copy number as well as gene expression levels, suggesting many regulatory mechanisms at transcriptional and translational level. However, very little is known about the transcriptional regulation of the human Pak1 promoter. Here, we focus on Pak1 promoter regulation by steroid hormones along with their respective receptors that are also crucial players in breast tissue function and tumorigenesis. Our results show high Pak1 expression in breast cancer cell lines and in breast tumor tissue. It also suggests that Pak1 is hormone responsive, whose expression can be modulated by steroid hormones namely, estrogen in the form of 17β-estradiol (E2) and progesterone (P4). Sequence analysis of a 3.2kb Pak1 proximal promoter region shows the presence of PRE (progesterone response element) and ERE (estrogen response element) half sites, that were further cloned and characterized. Results from promoter analysis showed that Pak1 promoter activity is mediated by PR via its binding to PRE present on the Pak1 promoter that was further reaffirmed in vitro by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Our results together suggest that it is the PR isoform B regulates Pak1 promoter. To our knowledge, this is the first study to report the detailed characterization and transcriptional regulation of the human Pak1 promoter by steroid hormones.
Collapse
|
10
|
Hammer A, Diakonova M. Prolactin-induced PAK1 tyrosyl phosphorylation promotes FAK dephosphorylation, breast cancer cell motility, invasion and metastasis. BMC Cell Biol 2016; 17:31. [PMID: 27542844 PMCID: PMC4992334 DOI: 10.1186/s12860-016-0109-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/04/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The serine/threonine kinase PAK1 is an important regulator of cell motility. Both PAK1 and the hormone/cytokine prolactin (PRL) have been implicated in breast cancer cell motility, however, the exact mechanisms guiding PRL/PAK1 signaling in breast cancer cells have not been fully elucidated. Our lab has previously demonstrated that PRL-activated tyrosine kinase JAK2 phosphorylates PAK1 on tyrosines 153, 201, and 285, and that tyrosyl phosphorylated PAK1 (pTyr-PAK1) augments migration and invasion of breast cancer cells. RESULTS Here we further investigate the mechanisms by which pTyr-PAK1 enhances breast cancer cell motility in response to PRL. We demonstrate a distinct reduction in PRL-induced FAK auto-phosphorylation in T47D and TMX2-28 breast cancer cells overexpressing wild-type PAK1 (PAK1 WT) when compared to cells overexpressing either GFP or phospho-tyrosine-deficient mutant PAK1 (PAK1 Y3F). Furthermore, pTyr-PAK1 phosphorylates MEK1 on Ser298 resulting in subsequent ERK1/2 activation. PRL-induced FAK auto-phosphorylation is rescued in PAK1 WT cells by inhibiting tyrosine phosphatases and tyrosine phosphatase inhibition abrogates cell motility and invasion in response to PRL. siRNA-mediated knockdown of the tyrosine phosphatase PTP-PEST rescues FAK auto-phosphorylation in PAK1 WT cells and reduces both cell motility and invasion. Finally, we provide evidence that PRL-induced pTyr-PAK1 stimulates tumor cell metastasis in vivo. CONCLUSION These data provide insight into the mechanisms guiding PRL-mediated breast cancer cell motility and invasion and highlight a significant role for pTyr-PAK1 in breast cancer metastasis.
Collapse
Affiliation(s)
- Alan Hammer
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, 43606-3390, OH, USA
| | - Maria Diakonova
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, 43606-3390, OH, USA.
| |
Collapse
|
11
|
PAK1 translocates into nucleus in response to prolactin but not to estrogen. Biochem Biophys Res Commun 2016; 473:206-211. [PMID: 27003261 DOI: 10.1016/j.bbrc.2016.03.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022]
Abstract
Tyrosyl phosphorylation of the p21-activated serine-threonine kinase 1 (PAK1) has an essential role in regulating PAK1 functions in breast cancer cells. We previously demonstrated that PAK1 serves as a common node for estrogen (E2)- and prolactin (PRL)-dependent pathways. We hypothesize herein that intracellular localization of PAK1 is affected by PRL and E2 treatments differently. We demonstrate by immunocytochemical analysis that PAK1 nuclear translocation is ligand-dependent: only PRL but not E2 stimulated PAK1 nuclear translocation. Tyrosyl phosphorylation of PAK1 is essential for this nuclear translocation because phospho-tyrosyl-deficient PAK1 Y3F mutant is retained in the cytoplasm in response to PRL. We confirmed these data by Western blot analysis of subcellular fractions. In 30 min of PRL treatment, only 48% of pTyr-PAK1 is retained in the cytoplasm of PAK1 WT clone while 52% re-distributes into the nucleus and pTyr-PAK1 shuttles back to the cytoplasm by 60 min of PRL treatment. In contrast, PAK1 Y3F is retained in the cytoplasm. E2 treatment causes nuclear translocation of neither PAK1 WT nor PAK1 Y3F. Finally, we show by an in vitro kinase assay that PRL but not E2 stimulates PAK1 kinase activity in the nuclear fraction. Thus, PAK1 nuclear translocation is ligand-dependent: PRL activates PAK1 and induces translocation of activated pTyr-PAK1 into nucleus while E2 activates pTyr-PAK1 only in the cytoplasm.
Collapse
|
12
|
Antioxidant Treatment and Induction of Autophagy Cooperate to Reduce Desmin Aggregation in a Cellular Model of Desminopathy. PLoS One 2015; 10:e0137009. [PMID: 26333167 PMCID: PMC4557996 DOI: 10.1371/journal.pone.0137009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Desminopathies, a subgroup of myofibrillar myopathies (MFMs), the progressive muscular diseases characterized by the accumulation of granulofilamentous desmin-positive aggregates, result from mutations in the desmin gene (DES), encoding a muscle-specific intermediate filament. Desminopathies often lead to severe disability and premature death from cardiac and/or respiratory failure; no specific treatment is currently available. To identify drug-targetable pathophysiological pathways, we performed pharmacological studies in C2C12 myoblastic cells expressing mutant DES. We found that inhibition of the Rac1 pathway (a G protein signaling pathway involved in diverse cellular processes), antioxidant treatment, and stimulation of macroautophagy reduced protein aggregation by up to 75% in this model. Further, a combination of two or three of these treatments was more effective than any of them alone. These results pave the way towards the development of the first treatments for desminopathies and are potentially applicable to other muscle or brain diseases associated with abnormal protein aggregation.
Collapse
|
13
|
Kim YB, Shin YJ, Roy A, Kim JH. The Role of the Pleckstrin Homology Domain-containing Protein CKIP-1 in Activation of p21-activated Kinase 1 (PAK1). J Biol Chem 2015; 290:21076-21085. [PMID: 26160174 DOI: 10.1074/jbc.m115.675124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Upon growth factor stimulation, PAK1 is recruited to the plasma membrane and activated by a mechanism that requires its phosphorylation at Ser-223 by the protein kinase CK2. However, the upstream signaling molecules that regulate this phosphorylation event are not clearly defined. Here, we demonstrate a major role of the CK2α-interacting protein CKIP-1 in activation of PAK1. CK2α, CKIP-1, and PAK1 are translocated to membrane ruffles in response to the epidermal growth factor (EGF), where CKIP-1 mediates the interaction between CK2α and PAK1 in a PI3K-dependent manner. Consistently, PAK1 mediates phosphorylation and modulation of the activity of p41-Arc, one of its plasma membrane substrate, in a fashion that requires PI3K and CKIP-1. Moreover, CKIP-1 knockdown or PI3K inhibition suppresses PAK1-mediated cell migration and invasion, demonstrating the physiological significance of the PI3K-CKIP-1-CK2-PAK1 signaling pathway. Taken together, these findings identify a novel mechanism for the activation of PAK1 at the plasma membrane, which is critical for cell migration and invasion.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037 and
| | - Yong Jae Shin
- Samsung Biomedical Research Institute and Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037 and
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037 and.
| |
Collapse
|
14
|
Hammer A, Oladimeji P, De Las Casas LE, Diakonova M. Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover. FASEB J 2014; 29:943-59. [PMID: 25466889 DOI: 10.1096/fj.14-259366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The p21-activated serine-threonine kinase (PAK1) regulates cell motility and adhesion. We have previously shown that the prolactin (PRL)-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo and in vitro and identified tyrosines 153, 201, and 285 in PAK1 as sites of JAK2 tyrosyl phosphorylation. Here, we further investigate the role of the tyrosyl phosphorylated PAK1 (pTyr-PAK1) in regulation of cell adhesion. We use human breast cancer T47D cell lines that stably overexpress PAK1 wild type or PAK1 Y3F mutant in which these 3 JAK2 phosphorylation sites were mutated to phenylalanine. We demonstrate that PRL/JAK2-dependent phosphorylation of these tyrosines promotes a motile phenotype in the cells upon adhesion, participates in regulation of cell adhesion on collagen IV, and is required for maximal PAK1 kinase activity. Down-regulation of PAK1 abolishes the effect of PAK1 on cell adhesion. We show that the tyrosyl phosphorylation of PAK1 promotes PAK1 binding to β-PAK1-interacting guanine-nucleotide exchange factor (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), phosphorylation of paxillin on Ser273, and formation and distribution of adhesion complexes. Using phosphospecific antibodies (Abs) directed to single phosphorylated tyrosines on PAK1, we identified Tyr285 as a site of PRL-dependent phosphorylation of PAK1 by JAK2. Furthermore, using PAK1 Y285F mutant, we provide evidence for a role of pTyr285 in cell adhesion, enhanced βPIX/GIT1 binding, and adhesion turnover. Our immunohistochemistry analysis demonstrates that pTyr285- PAK1 may modulate PAK1 signaling during tumor progression.
Collapse
Affiliation(s)
- Alan Hammer
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| | - Peter Oladimeji
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| | - Luis E De Las Casas
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| | - Maria Diakonova
- Departments of *Biological Sciences and Pathology, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
15
|
Field J, Manser E. The PAKs come of age: Celebrating 18 years of discovery. CELLULAR LOGISTICS 2014; 2:54-58. [PMID: 23125949 PMCID: PMC3485743 DOI: 10.4161/cl.22084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein kinases are versatile signaling molecules that are involved in the regulation most physiological responses. The p21-activated kinases (PAKs) can be activated directly by the small GTPases Rac and Cdc42 and are among the best characterized downstream effectors of these Rho proteins. The structure, substrate specificity and functional role of PAKS are evolutionarily conserved from protozoa to mammals. Vertebrate PAKs are particularly important for cytoskeletal remodeling and focal adhesion assembly, thereby contributing to dynamic processes such as cell migration and synaptic plasticity. This issue of Cellular Logistics focuses on the PAK family of kinases, with ten reviews written by researchers currently working in the field. Here in this introductory overview we highlight some of the most interesting recent discoveries regarding PAK biochemistry and biology. The reviews in this issue cover a range of topics including the atomic structures of PAK1 and PAK4, their role in animals as assessed by knockout studies, and how PAKs are likely to contribute to cancer and neurodegenerative diseases. The promise remains that PAK inhibitors will emerge that validate current pre-clinical studies suggesting that blocking PAK activity will positively contribute to human health.
Collapse
Affiliation(s)
- Jeffrey Field
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
16
|
Bachmann VA, Bister K, Stefan E. Interplay of PKA and Rac: fine-tuning of Rac localization and signaling. Small GTPases 2013; 4:247-51. [PMID: 24322054 PMCID: PMC4011821 DOI: 10.4161/sgtp.27281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022] Open
Abstract
Cellular membrane receptors sense environmental changes and relay the reshaped signal through spatially and temporally organized protein-protein interactions (PPI). Many of such PPI are transient and occur in a certain cell-dependent context. Molecular switches such as kinases and GTPases are engaged in versatile PPI. Recently, we have identified dynamic interaction and reciprocal regulation of cAMP-dependent protein kinase A (PKA) and Rho-GTPase Rac signaling. We demonstrated that GTP-activated Rac acts as a dual kinase-tuning scaffold for p21-activated kinase (PAK) and PKA activities. We showed that receptor-triggered PKA trans-phosphorylation of GTP-Rac-organized PAK contributes to elevations of nuclear Erk1/2 signaling and proliferation. We discuss these recent observations and we provide additional insights how the cAMP-PKA axis might also participate in the regulation of Rac localization.
Collapse
Affiliation(s)
- Verena A Bachmann
- Institute of Biochemistry; University of Innsbruck; Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry; University of Innsbruck; Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry; University of Innsbruck; Innsbruck, Austria
| |
Collapse
|
17
|
Garcia-Cattaneo A, Braga VM. Hold on tightly: how to keep the local activation of small GTPases. Cell Adh Migr 2013; 7:283-7. [PMID: 23590879 PMCID: PMC3711994 DOI: 10.4161/cam.24646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Signaling regulated by Rho small GTPases plays a pivotal role in cell migration, cell attachment to substratum or to their neighbors among other functions. Concerted efforts have focused on understanding how different GTPases are activated by specific stimuli and which regulator is responsible for the spatio-temporal control of their activity at particular intracellular sites. We have recently described the role of a scaffold protein, Ajuba, in adherens junction maintenance via direct stabilization of activated small GTPase Rac1 at cell-cell contacts. Ajuba binds to both active and inactive forms of Rac1. Upon junction formation, Rac1 activation initiates a positive feedback loop leading to Ajuba phosphorylation and Ajuba-mediated retention of activated Rac1 at junctions. Thus, cytoskeletal proteins may have a dual role to provide a scaffolding platform and dynamically modulate small GTPases function at a specific place, irrespective of their ability to interact with active and inactive forms. Here we discuss similar mechanisms via which cytoskeletal proteins can facilitate cellular processes downstream of Rho proteins by increasing their affinity to activated GTPases.
Collapse
Affiliation(s)
- Alejandra Garcia-Cattaneo
- Molecular Medicine; National Heart and Lung Institute; Faculty of Medicine; Imperial College London; London, UK
| | - Vania M.M. Braga
- Molecular Medicine; National Heart and Lung Institute; Faculty of Medicine; Imperial College London; London, UK
| |
Collapse
|