1
|
Qi Q, Yang J, Li S, Liu J, Xu D, Wang G, Feng L, Pan X. Melatonin alleviates oxidative stress damage in mouse testes induced by bisphenol A. Front Cell Dev Biol 2024; 12:1338828. [PMID: 38440074 PMCID: PMC10910031 DOI: 10.3389/fcell.2024.1338828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
We investigated the effect of melatonin on bisphenol A (BPA)-induced oxidative stress damage in testicular tissue and Leydig cells. Mice were gavaged with 50 mg/kg BPA for 30 days, and concurrently, were injected with melatonin (10 mg/kg and 20 mg/kg). Leydig cells were treated with 10 μmol/L of BPA and melatonin. The morphology and organ index of the testis and epididymis were observed and calculated. The sperm viability and density were determined. The expressions of melatonin receptor 1A and luteinizing hormone receptor, and the levels of malonaldehyde, antioxidant enzymes, glutathione, steroid hormone synthases, aromatase, luteinizing hormone, testosterone, and estradiol were measured. TUNEL assay was utilized to detect testicular cell apoptosis. The administration of melatonin at 20 mg/kg significantly improved the testicular index and epididymis index in mice treated with BPA. Additionally, melatonin promoted the development of seminiferous tubules in the testes. Furthermore, the treatment with 20 mg/kg melatonin significantly increased sperm viability and sperm density in mice, while also promoting the expressions of melatonin receptor 1A and luteinizing hormone receptor in Leydig cells of BPA-treated mice. Significantly, melatonin reduced the level of malonaldehyde in testicular tissue and increased the expression of antioxidant enzymes (superoxide dismutase 1, superoxide dismutase 2, and catalase) as well as the content of glutathione. Moreover, melatonin also reduced the number of apoptotic Leydig cells and spermatogonia, aromatase expression, and estradiol level, while increasing the expression of steroid hormone synthases (steroidogenic acute regulatory protein, cytochrome P450 family 17a1, cytochrome P450 17α-hydroxylase/20-lyase, and, 17β-hydroxysteroid dehydrogenase) and the level of testosterone. Melatonin exhibited significant potential in alleviating testicular oxidative stress damage caused by BPA. These beneficial effects may be attributed to melatonin's ability to enhance the antioxidant capacity of testicular tissue, promote testosterone synthesis, and reduce testicular cell apoptosis.
Collapse
Affiliation(s)
- Qi Qi
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jiaxin Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Shuang Li
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jingjing Liu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Da Xu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Guoqing Wang
- School of Medical Technology, Beihua University, Jilin, China
| | - Lei Feng
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
2
|
Dong Y, Gao L, Sun Q, Jia L, Liu D. Increased levels of IL-17 and autoantibodies following Bisphenol A exposure were associated with activation of PI3K/AKT/mTOR pathway and abnormal autophagy in MRL/lpr mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114788. [PMID: 36948005 DOI: 10.1016/j.ecoenv.2023.114788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a common environmental endocrine disruptor which mimic the effect of estrogen. The immunotoxicity of BPA has attracted widespread attention in recent years. However, the effects and mechanism of BPA on autoimmune disease were rarely reported. Systemic lupus erythematosus (SLE) is a typical autoimmune disease, and its etiology and mechanism are complex and unclear. Currently, inflammation and the production of autoantibodies are considered to be important pathological mechanisms of SLE, and estrogen contributes to the occurrence and development of SLE. Therefore, in order to explore whether BPA exposure can affect the development of SLE and its possible mechanism, we used MRL/lpr (lupus-prone mice) and C57/BL6 female mice exposed to 0.1 and 0.2 µg/mL BPA for 6 weeks. We discovered that BPA exposure increased the concentration of serum anti-dsDNA antibody and IL-17, and the level of RORγt protein (the transcription factor of Th17 cells). Moreover, there were higher expression of p-PI3K, p-AKT, p-mTOR, ULK, Rubicon, P62, Becline1 and LC3 protein in spleen tissue of BPA exposed MRL/lpr mice compared with the control. However, there were no significant changes in the expression of IL-17, RORγt or mTOR in C57 mice exposed to BPA at the same dose. Our study implied that BPA exposure induced the development of SLE, which might be related to the up-regulation of PI3K/AKT/mTOR signaling pathway and abnormal autophagy. Our study indicated that lupus mice were more susceptible to BPA, and provided a new insight into the mechanism by which BPA exacerbated SLE. Therefore, our study suggested that autoimmune patients and susceptible population should be considered when setting thresholds for environmental BPA exposure.
Collapse
Affiliation(s)
- Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Liang Gao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Dongmei Liu
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| |
Collapse
|
3
|
Bordbar H, Yahyavi SS, Noorafshan A, Aliabadi E, Naseh M. Resveratrol ameliorates bisphenol A-induced testicular toxicity in adult male rats: a stereological and functional study. Basic Clin Androl 2023; 33:1. [PMID: 36604652 PMCID: PMC9817316 DOI: 10.1186/s12610-022-00174-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/24/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is one of the most widely used synthetic chemicals worldwide. BPA as an endocrine disruptor affects the reproductive systems through estrogenic and antiandrogenic proprieties. Resveratrol (RES) as a natural polyphenol and potent antioxidant exhibits protective effects against reproductive toxicity by inhibiting of oxidative stress. 48 male rats were divided into eight groups (n=6), including CONTROL, OLIVE OIL (0.5 ml/ day), Carboxy methylcellulose (CMC) (1 ml of 10 g/l), RES (100mg/kg/day), low dose of BPA (25 mg/kg/day), high dose of BPA (50 mg/kg/day), low dose of BPA + RES, and high dose of BPA + RES. All treatments were done orally per day for 56 days. At the end of the 8th week, blood samples were collected for hormone assays. Then, the sperm parameters were analyzed, and the left testis was removed for stereological study. RESULTS We showed a significant decrease in sperm parameters in the low and high doses of BPA groups compared to control groups (P<0.05). The volume of testicular components as well as the diameter and length of seminiferous tubules significantly reduced (11-64 %), and the total number of the testicular cell types decreased (34-67 %) on average in the low and high doses of BPA groups. Moreover, serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone hormones concentration showed a significant reduction in both doses of BPA groups (P<0.01). Nonetheless, treatment with RES could ameliorate all the above-mentioned changes in the low and high doses of BPA groups (P<0.05). CONCLUSIONS RES could prevent BPA-induced testicular structural changes and sperm quality via improving gonadotropin hormones and testosterone levels.
Collapse
Affiliation(s)
- Hossein Bordbar
- grid.412571.40000 0000 8819 4698Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794 Iran ,grid.412571.40000 0000 8819 4698Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Saeedeh Yahyavi
- grid.412571.40000 0000 8819 4698Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794 Iran ,grid.412571.40000 0000 8819 4698Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- grid.412571.40000 0000 8819 4698Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794 Iran ,grid.412571.40000 0000 8819 4698Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Aliabadi
- grid.412571.40000 0000 8819 4698Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- grid.412571.40000 0000 8819 4698Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794 Iran
| |
Collapse
|
4
|
Sahu C, Jena G. Dietary zinc deficient condition increases the Bisphenol A toxicity in diabetic rat testes. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 882:503547. [PMID: 36155143 DOI: 10.1016/j.mrgentox.2022.503547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter that causes male reproductive dysfunction in humans and rodents. Diabetes-induced hyperglycemia alters spermatogenesis and antioxidant status, which negatively impacts male fertility in adults. Zinc (Zn) deficiency is a global health concern maintaining the testicular structure and functions in developing gonads. The present experiment was designed to investigate the role of Zn deficiency on BPA-induced germ cell and male gonadal toxicity in diabetic conditions. Rats were randomly divided into eight different groups - control (normal feed and water), BPA (10 mg/kg/day), ZDD (fed with a Zn-deficient diet), DIA (diabetic), BPA+ZDD, BPA+DIA, ZDD+DIA and BPA+ZDD+DIA for four weeks. Animals' body and organ weight, sperm count, motility and sperm morphology were examined; testes and epididymis histopathology were investigated. Testicular DNA damage and sperm apoptosis were evaluated by halo and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays respectively. Testicular catalase and octamer-binding transcription factor 4 (OCT4) expressions were evaluated by western blot analysis. The present results demonstrated that dietary Zn-deficient condition significantly increased the BPA-induced testicular, epididymal and sperm toxicity in diabetic rats due to hypogonadism, increased sperm abnormalities, epididymis, testicular structure and DNA damages, sperm apoptosis as well as decreased testicular catalase and OCT4 expressions. The present results revealed that dietary Zn-deficient condition exacerbated the BPA-induced testicular and epididymal toxicity as well as perturbed the general male reproductive health in diabetic rats.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
5
|
Merii MH, Fardoun MM, El-Asmar K, Khalil MI, Eid A, Dhaini HR. Effect of BPA on CYP450s expression, and nicotine modulation, in fetal rat brain. Neurotoxicol Teratol 2022; 92:107095. [DOI: 10.1016/j.ntt.2022.107095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
6
|
Mentor A, Wänn M, Brunström B, Jönsson M, Mattsson A. Bisphenol AF and Bisphenol F Induce Similar Feminizing Effects in Chicken Embryo Testis as Bisphenol A. Toxicol Sci 2021; 178:239-250. [PMID: 33010167 PMCID: PMC7706397 DOI: 10.1093/toxsci/kfaa152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The plastic component bisphenol A (BPA) impairs reproductive organ development in various experimental animal species. In birds, effects are similar to those caused by other xenoestrogens. Because of its endocrine disrupting activity, BPA is being substituted with other bisphenols in many applications. Using the chicken embryo model, we explored whether the BPA alternatives bisphenol AF (BPAF), bisphenol F (BPF), and bisphenol S (BPS) can induce effects on reproductive organ development similar to those induced by BPA. Embryos were exposed in ovo from embryonic day 4 (E4) to vehicle, BPAF at 2.1, 21, 210, and 520 nmol/g egg, or to BPA, BPF, or BPS at 210 nmol/g egg and were dissected on embryonic day 19. Similar to BPA, BPAF and BPF induced testis feminization, manifested as eg testis-size asymmetry and ovarian-like cortex in the left testis. In the BPS-group, too few males were alive on day 19 to evaluate any effects on testis development. We found no effects by any treatment on ovaries or Müllerian ducts. BPAF and BPS increased the gallbladder-somatic index and BPAF, BPF and BPS caused increased embryo mortality. The overall lowest-observed-adverse-effect level for BPAF was 210 nmol/g egg based on increased mortality, increased gallbladder-somatic index, and various signs of testis feminization. This study demonstrates that the BPA replacements BPAF, BPF, and BPS are embryotoxic and suggests that BPAF is at least as potent as BPA in inducing estrogen-like effects in chicken embryos. Our results support the notion that these bisphenols are not safe alternatives to BPA.
Collapse
Affiliation(s)
- Anna Mentor
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Mimmi Wänn
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| |
Collapse
|
7
|
Çetin S, Özaydın T. The effects of bisphenol A given in ovo on bursa of Fabricius development and percentage of acid phosphatase positive lymphocyte in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41688-41697. [PMID: 33791960 DOI: 10.1007/s11356-021-13640-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), one of the endocrine disrupting chemicals, is the object of great concern because of its widespread use throughout the world. In this study, it was aimed to determine the effects of in ovo administrated BPA on the bursa of Fabricius and percentage of acid phosphatase positive lymphocyte in peripheral blood by means of histological and enzyme histochemical methods. For this purpose, 310 fertile eggs of Isa Brown laying parent stock were used. The eggs were divided into 5 groups as control, vehicle control, 50, 100, and 250μg/egg BPA. At days 13, 18, and 21 of incubation, eggs were opened until 10 living embryos were obtained from each group. Tissue samples were taken from the obtained embryos and processed for enzyme histochemical methods in addition to routine histological techniques. It was observed that, in BPA-treated groups, embryonic development of bursa of Fabricius was retarded. It was also indicated that the percentage of peripheral blood ACP-ase positive lymphocytes was significantly decreased. These results suggested that a limited maternal transfer of BPA into the eggs might be lead to immunosuppression in chicks.
Collapse
Affiliation(s)
- Selvinaz Çetin
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey
| | - Tuğba Özaydın
- Department of Histology and Embryology, Faculty of Veterinary, Selçuk University, Konya, Turkey.
| |
Collapse
|
8
|
Pellerin E, Caneparo C, Chabaud S, Bolduc S, Pelletier M. Endocrine-disrupting effects of bisphenols on urological cancers. ENVIRONMENTAL RESEARCH 2021; 195:110485. [PMID: 33212129 DOI: 10.1016/j.envres.2020.110485] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenols are endocrine-disrupting chemicals found in a broad range of products that can modulate hormonal signalling pathways and various other biological functions. These compounds can bind steroid receptors, e.g. estrogen and androgen receptors, expressed by numerous cells and tissues, including the prostate and the bladder, with the potential to alter their homeostasis and normal physiological functions. In the past years, exposure to bisphenols was linked to cancer progression and metastasis. As such, recent pieces of evidence suggest that endocrine-disrupting chemicals can lead to the development of prostate cancer. Moreover, bisphenols are found in the urine of the wide majority of the population. They could potentially affect the bladder's normal physiology and cancer development, even if the bladder is not recognized as a hormone-sensitive tissue. This review will focus on prostate and bladder malignancies, two urological cancers that share standard carcinogenic processes. The description of the underlying mechanisms involved in cell toxicity, and the possible roles of bisphenols in the development of prostate and bladder cancer, could help establish the putative roles of bisphenols on public health.
Collapse
Affiliation(s)
- Eve Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| | - Martin Pelletier
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada.
| |
Collapse
|
9
|
Liu X, Wang Z, Liu F. Chronic exposure of BPA impairs male germ cell proliferation and induces lower sperm quality in male mice. CHEMOSPHERE 2021; 262:127880. [PMID: 32777607 DOI: 10.1016/j.chemosphere.2020.127880] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-known endocrine disruptor that affects male fertility. However, the main biological events through which BPA affects spermatogenesis remain to be identified. METHODS Adult male mice were treated by feeding with drinking water containing BPA (0.2 μg/ml, 20 μg/ml, 200 μg/ml, respectively) for two months. Testes were collected for protein extraction or for immunohistochemical analysis. Epididymal spermatozoa were collected for sperm quality evaluation and male fertility assay by in vitro fertility (IVF). Serums were collected for detection of testosterone levels. Proteins associated with germ cell proliferation, meiosis, blood-testis barrier, and steroidogenesis production were examined in BPA-treated and control mice testes. CCK8 assay was used to detect the effect of BPA on the proliferation of GC-1 and GC-2 cells. RESULTS The BPA-treated mice were characterized by decreased sperm quality, serum testosterone levels and, sub-fertile phenotype characterizing with low pregnancy rates and reduced fertilization efficiency. In lower BPA (0.2 μg/ml) treatment, PCNA and PLZF were down-expressed that indicated impaired germ cell proliferation. SYCP3 was down-expressed in BPA-treated mice, but expressions of other proteins associated with meiosis and blood-testis barrier were not significantly altered. CYP11A1 and HSD3B1 were down-expressed in BPA-treated mice that demonstrated reduced steroidogenesis activity. BPA has a concentration-dependent inhibition effect on the proliferation of GC-1 and GC-2 cells. Conclusively, low doses BPA exposure reduced mice sperm quality mainly by impairing germ cell proliferation, leading to reduced male fertility. The study would provide relevant information for investigation on molecular mechanisms and protective strategy on male production.
Collapse
Affiliation(s)
- XueXia Liu
- Department of Central Laboratory, Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - ZhiXin Wang
- Department of Central Laboratory, Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - FuJun Liu
- Department of Central Laboratory, Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China.
| |
Collapse
|
10
|
Sahu C, Charaya A, Singla S, Dwivedi DK, Jena G. Zinc deficient diet increases the toxicity of bisphenol A in rat testis. J Biochem Mol Toxicol 2020; 34:e22549. [PMID: 32609952 DOI: 10.1002/jbt.22549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Zinc (Zn) plays an important role in maintaining the process of spermatogenesis and reproductive health. Bisphenol A (BPA), an endocrine disrupting chemical is known to be a reproductive toxicant in different animal models. The present study was designed to study the effect of two of the utmost determinative factors (Zn deficient condition and influence of toxicant BPA) on germ cell growth and overall male reproductive health in the testis, epididymis, and sperm using (a) biochemical, (b) antioxidant, (c) cellular damage, (d) apoptosis, and (e) protein expression measurements. Rats were divided into Control (normal feed and water), BPA (100 mg/kg/d), zinc deficient diet (ZDD; fed with ZDD), and BPA + ZDD for 8 weeks. Body and organ weights, sperm motility and counts, and sperm head morphology were evaluated. The histology of testes, epididymides, and prostate was investigated. Testicular deoxyribonucleic acid (DNA) damage was evaluated by Halo and Comet assay, apoptosis of sperm and testes were quantified by TUNEL assay. Serum protein electrophoretic patterns and testicular protein expressions such as Nrf-2, catalase, PCNA, and Keap1 were analyzed by Western blot analysis. The results showed that BPA significantly increased the testicular, epididymal, and prostrate toxicity in dietary Zn deficient condition due to testicular hypozincemia, hypogonadism, increased cellular and DNA damage, apoptosis, as well as perturbations in protein expression.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Aarzoo Charaya
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Durgesh K Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
11
|
Balci A, Ozkemahli G, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. Histopathologic, apoptotic and autophagic, effects of prenatal bisphenol A and/or di(2-ethylhexyl) phthalate exposure on prepubertal rat testis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20104-20116. [PMID: 32239407 DOI: 10.1007/s11356-020-08274-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine-disrupting chemicals (EDCs) used in a wide variety of industrial products as plasticizers. Exposure to EDCs, particularly in mixtures, in prenatal and early postnatal periods may lead to unwanted effects and can cause both developmental and reproductive problems. In this study, we aimed to determine the individual and combined effects of prenatal and lactational exposure to BPA and/or DEHP on testicular histology, apoptosis, and autophagic proteins. Pregnant Sprague-Dawley rats (n = 3) were divided into four groups (control, BPA (50 mg/kg/day), DEHP (30 mg/kg/day), and BPA (50 mg/kg/day) + DEHP (30 mg/kg/day)) and dosed by oral gavage during pregnancy and lactation. The male offspring (n = 6) from each group were chosen randomly, and their testicular examinations were performed on the twelfth week. The results showed that fetal and neonatal exposure to BPA and DEHP could lead to significant testicular histopathological alterations and cause increases in apoptosis markers (as evidenced by increases in caspase 3 and caspase 8 levels; increased TUNEL-positive spermatogonia and TUNEL-positive testicular apoptotic cells) and autophagic proteins (as evidenced by increased LC3 and Beclin levels and decreased p62 levels) in testicular tissue. We can suggest that EDCs cause more dramatic changes in both testicular structure and cell death when there is combined exposure.
Collapse
Affiliation(s)
- Aylin Balci
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
12
|
Barbagallo F, Condorelli RA, Mongioì LM, Cannarella R, Aversa A, Calogero AE, La Vignera S. Effects of Bisphenols on Testicular Steroidogenesis. Front Endocrinol (Lausanne) 2020; 11:373. [PMID: 32714277 PMCID: PMC7344146 DOI: 10.3389/fendo.2020.00373] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, the adverse effects of human exposure to the so-called "endocrine disruptors" have been a matter of scientific debate and public attention. Bisphenols are synthetic chemicals, widely used in the manufacture of hard plastic products. Bisphenol A (BPA) is one of the best-known environmental toxicants proven to alter the reproductive function in men and to cause other health problems. Consumer concern resulted in "BPA free" products and in the development of bisphenol analogs (BPA-A) to replace BPA in many applications. However, these other bisphenol derivatives seem to have effects similar to those of BPA. Although a number of reviews have summarized the effects of BPA on human reproduction, the purpose of this article is to review the effects of bisphenols on testicular steroidogenesis and to explore their mechanisms of action. Testicular steroidogenesis is a fine-regulated process, and its main product, testosterone (T), has a crucial role in fetal development and maturation and in adulthood for the maintenance of secondary sexual function and spermatogenesis. Contradictory outcomes of both human and animal studies on the effects of BPA on steroid hormone levels may be related to various factors that include study design, dosage of BPA used in in vitro studies, timing and route of exposure, and other confounding factors. We described the main possible molecular target of bisphenols on this complex pathway. We report that Leydig cells (LCs), the steroidogenic testicular component, are highly sensitive to BPA and several mechanisms concur to the functional impairment of these cells.
Collapse
Affiliation(s)
- Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- *Correspondence: Rosita A. Condorelli
| | - Laura M. Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Rahman MS, Pang MG. Understanding the molecular mechanisms of bisphenol A action in spermatozoa. Clin Exp Reprod Med 2019; 46:99-106. [PMID: 31484226 PMCID: PMC6736506 DOI: 10.5653/cerm.2019.00276] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is capable of interfering with the normal function of the endocrine system in the body. Exposure to this chemical from BPA-containing materials and the environment is associated with deleterious health effects, including male reproductive abnormalities. A search of the literature demonstrated that BPA, as a toxicant, directly affects the cellular oxidative stress response machinery. Because of its hormone-like properties, it can also bind with specific receptors in target cells. Therefore, the tissue-specific effects of BPA mostly depend on its endocrine-disrupting capabilities and the expression of those particular receptors in target cells. Although studies have shown the possible mechanisms of BPA action in various cell types, a clear consensus has yet to be established. In this review, we summarize the mechanisms of BPA action in spermatozoa by compiling existing information in the literature.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| |
Collapse
|
14
|
Rahman MS, Kang KH, Arifuzzaman S, Pang WK, Ryu DY, Song WH, Park YJ, Pang MG. Effect of antioxidants on BPA-induced stress on sperm function in a mouse model. Sci Rep 2019; 9:10584. [PMID: 31332285 PMCID: PMC6646364 DOI: 10.1038/s41598-019-47158-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
In the past few years, bisphenol A, (BPA) an endocrine-disrupting chemical, has received increasing attention because of its detrimental health effects. There is ample evidence to support that BPA interferes with the reproductive health of humans and animals. In spermatozoa, BPA-induced adverse effects are mostly caused by increased oxidative stress. Using an in vitro experimental model, we examined whether antioxidants (glutathione, vitamin C, and vitamin E) have defensive effects against BPA-induced stress in spermatozoa. The results showed that antioxidants inhibit the overproduction of reactive oxygen species (basically cellular peroxides) and increase intracellular ATP levels, thereby preventing motility loss and abnormal acrosome reaction in BPA-exposed spermatozoa. In particular, glutathione and vitamin E reduced the protein kinase A-dependent tyrosine phosphorylation in spermatozoa and, thus, prevented the precocious acrosome reaction from occurring. Furthermore, we found that the compromised fertilisation and early embryo development mediated by BPA-exposed spermatozoa can be improved following their supplementation with glutathione and vitamin E. Based on these findings, we suggest that antioxidants reduce oxidative stress in BPA-exposed spermatozoa, thus preventing detrimental effects on their function and fertility.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Kyu-Ho Kang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Sarder Arifuzzaman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Won-Hee Song
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea.
| |
Collapse
|
15
|
The environmental obesogen bisphenol A increases macrophage self-renewal. Cell Tissue Res 2019; 378:81-96. [DOI: 10.1007/s00441-019-03019-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
|
16
|
Ali M, Jaghbir M, Salam M, Al-Kadamany G, Damsees R, Al-Rawashdeh N. Testing baby bottles for the presence of residual and migrated bisphenol A. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 191:7. [PMID: 30535565 DOI: 10.1007/s10661-018-7126-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/23/2018] [Indexed: 05/10/2023]
Abstract
Plastic made with bisphenol A (BPA) produces trans-generational changes in genes and behavior. It has been positively linked to obesity and thyroid dysfunction. This study aimed to detect the presence of BPA in polycarbonate plastic (PC) baby bottles. Fifteen PC baby bottles with a clear indication of BPA free/safe/clear were randomly selected. High-performance liquid chromatography (HPLC) tests were used to detect residual or migrating BPA post three stress tests. An estimated intake of BPA among children was calculated then compared to the universal tolerable daily intake (TDI). Around 27% of bottles had detectable amounts of residual BPA in the first test, 100% released migrating BPA in the second and third tests. A significant positive linear trend in migrated BPA levels was observed over the three consecutive tests P < 0.0001. Approximately 73.5% of the accounted variability in BPA levels was due to these stress tests P < 0.0001. Babies from 0 to 3 months are expected to consume 0.8 to 23.8% of their safe TDI of BPA just by using plastic bottles between the first time of usage and after 60 washes (estimated 15 to 20 days of usage). Although no bottles have shown a risk of BPA intake exceeding TDI, the combined use of BPA bottles with other plastic utensils might result in reaching it. It is advisable to refrain from using BPA-containing plastic bottles or be cautious about usage duration. Manufacturers should indicate a clear margin of usage duration. Four baby bottle brands showed the least BPA leaking (Baby King, Camera, Sweet Baby, and Farlin).
Collapse
Affiliation(s)
- Manal Ali
- Department of Family and Community Medicine, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Madi Jaghbir
- Department of Family and Community Medicine, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Mahmoud Salam
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Ghada Al-Kadamany
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Rana Damsees
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia
- The Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Nedal Al-Rawashdeh
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490 Mail Code 1515, Riyadh, 11426, Kingdom of Saudi Arabia.
- The Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan.
| |
Collapse
|
17
|
DNA methylation and transcriptome aberrations mediated by ERα in mouse seminal vesicles following developmental DES exposure. Proc Natl Acad Sci U S A 2018; 115:E4189-E4198. [PMID: 29666266 DOI: 10.1073/pnas.1719010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early transient developmental exposure to an endocrine active compound, diethylstilbestrol (DES), a synthetic estrogen, causes late-stage effects in the reproductive tract of adult mice. Estrogen receptor alpha (ERα) plays a role in mediating these developmental effects. However, the developmental mechanism is not well known in male tissues. Here, we present genome-wide transcriptome and DNA methylation profiling of the seminal vesicles (SVs) during normal development and after DES exposure. ERα mediates aberrations of the mRNA transcriptome in SVs of adult mice following neonatal DES exposure. This developmental exposure impacts differential diseases between male (SVs) and female (uterus) tissues when mice reach adulthood due to most DES-altered genes that appear to be tissue specific during mouse development. Certain estrogen-responsive gene changes in SVs are cell-type specific. DNA methylation dynamically changes during development in the SVs of wild-type (WT) and ERα-knockout (αERKO) mice, which increases both the loss and gain of differentially methylated regions (DMRs). There are more gains of DMRs in αERKO compared with WT. Interestingly, the methylation changes between the two genotypes are in different genomic loci. Additionally, the expression levels of a subset of DES-altered genes are associated with their DNA methylation status following developmental DES exposure. Taken together, these findings provide an important basis for understanding the molecular and cellular mechanism of endocrine-disrupting chemicals (EDCs), such as DES, during development in the male mouse tissues. This unique evidence contributes to our understanding of developmental actions of EDCs in human health.
Collapse
|
18
|
Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol 2017; 92:1453-1469. [PMID: 29275510 DOI: 10.1007/s00204-017-2150-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022]
Abstract
Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction. Exposure to 100 μM BPA had no effects on cell viability, but increased cytoplasmic expression of ERβ and release of GDF-15, as well as decreased release of IL-6, ET-1, and IP-10 through suppression of NFκB phosphorylation. By performing global gene expression and pathway analysis in this study, we identified molecular pathways, gene networks, and key molecules that were affected by 100, but not 0.01 and 1 µM BPA in HFLF. Using multiple genomic and proteomic tools, we confirmed these changes at both gene and protein levels. Our data suggest that 100 μM BPA increased CYP1B1 and HSD17B14 gene and protein expression and release of endogenous estradiol, which was associated with increased ROS production and DNA double-strand breaks, upregulation of genes and/or proteins in steroid synthesis and metabolism, and activation of Nrf2-regulated stress response pathways. In addition, BPA activated ATM-p53 signaling pathway, resulting in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. The results suggest that prenatal exposure to BPA at certain concentrations may affect fetal lung development and maturation, and thereby affecting susceptibility to childhood respiratory diseases.
Collapse
|
19
|
Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, Leung YK, Jefferson WN, Williams CJ. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol 2016; 68:85-104. [PMID: 27421580 DOI: 10.1016/j.reprotox.2016.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States; Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, OH, United States.
| | - Ana Cheong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A Adgent
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Veevers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Alisa A Suen
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States; Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Neville N C Tam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
20
|
Sharma R, Kotyk MW, Wiltshire WA. An investigation into bisphenol A leaching from materials used intraorally. J Am Dent Assoc 2016; 147:545-50. [DOI: 10.1016/j.adaj.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
|