1
|
Gao R, Liu M, Yang H, Shen Y, Xia N. Epigenetic regulation in coronary artery disease: from mechanisms to emerging therapies. Front Mol Biosci 2025; 12:1548355. [PMID: 39959304 PMCID: PMC11825346 DOI: 10.3389/fmolb.2025.1548355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the primary cause of coronary artery disease (CAD), remains a leading global cause of mortality. It is characterized by the accumulation of cholesterol-rich plaques and inflammation, which narrow the coronary arteries and increase the risk of rupture. To elucidate this complex biological process and improve therapeutic strategies, CAD has been extensively explored from an epigenetic perspective over the past two decades. Epigenetics is a field investigating heritable alterations in gene expression without DNA sequence changes, such as DNA methylation, histone modifications, and non-coding RNAs. Increasing evidence has indicated that the development of CAD is significantly influenced by epigenetic changes. Meanwhile, the impact of epigenetics in CAD is now transitioning from pathophysiology to therapeutics. Focusing on the key epigenetic enzymes and their target genes will help to facilitate the diagnosis and treatment of CAD. This review synthesizes novel epigenetic insights into CAD, addressing the pathological processes, key molecular mechanisms, and potential biomarkers. Furthermore, we discuss emerging therapeutic strategies targeting epigenetic pathways. By focusing on pivotal enzymes and their associated genes, this work aims to advance CAD diagnostics and interventions.
Collapse
Affiliation(s)
- Rui Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyi Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Melnes T, Bogsrud MP, Christensen JJ, Rundblad A, Narverud I, Retterstøl K, Aukrust P, Halvorsen B, Ulven SM, Holven KB. Gene expression profiling in elderly patients with familial hypercholesterolemia with and without coronary heart disease. Atherosclerosis 2024; 392:117507. [PMID: 38663317 DOI: 10.1016/j.atherosclerosis.2024.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND AND AIMS Elderly familial hypercholesterolemia (FH) patients are at high risk of coronary heart disease (CHD) due to high cholesterol burden and late onset of effective cholesterol-lowering therapies. A subset of these individuals remains free from any CHD event, indicating the potential presence of protective factors. Identifying possible cardioprotective gene expression profiles could contribute to our understanding of CHD prevention and future preventive treatment. Therefore, this study aimed to investigate gene expression profiles in elderly event-free FH patients. METHODS Expression of 773 genes was analysed using the Nanostring Metabolic Pathways Panel, in peripheral blood mononuclear cells (PBMCs) from FH patients ≥65 years without CHD (FH event-free, n = 44) and with CHD (FH CHD, n = 39), and from healthy controls ≥70 years (n = 39). RESULTS None of the genes were differentially expressed between FH patients with and without CHD after adjusting for multiple testing. However, at nominal p < 0.05, we found 36 (5%) differentially expressed genes (DEGs) between the two FH groups, mainly related to lipid metabolism (e.g. higher expression of ABCA1 and ABCG1 in FH event-free) and immune responses (e.g. lower expression of STAT1 and STAT3 in FH event-free). When comparing FH patients to controls, the event-free group had fewer DEGs than the CHD group; 147 (19%) and 219 (28%) DEGs, respectively. CONCLUSIONS Elderly event-free FH patients displayed a different PBMC gene expression profile compared to FH patients with CHD. Differences in gene expression compared to healthy controls were more pronounced in the CHD group, indicating a less atherogenic gene expression profile in event-free individuals. Overall, identification of cardioprotective factors could lead to future therapeutic targets.
Collapse
Affiliation(s)
- Torunn Melnes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital Ullevål, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Ingunn Narverud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Norway.
| |
Collapse
|
4
|
Dash M, Mahajan B, Dar GM, Sahu P, Saluja SS. An update on the cell-free DNA-derived methylome as a non-invasive biomarker for coronary artery disease. Int J Biochem Cell Biol 2024; 169:106555. [PMID: 38428633 DOI: 10.1016/j.biocel.2024.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/22/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases are the foremost contributor to global mortality, presenting a complex etiology and an expanding array of risk factors. Coronary artery disease characterized by atherosclerotic plaque build-up in the coronary arteries, imposes significant mortality and financial burdens, especially in low- and middle-income nations. The pathogenesis of coronary artery disease involves a multifaceted interplay of genetic, environmental, and epigenetic factors. Epigenetic regulation contributes to the dynamic control of gene expression without altering the underlying DNA sequence. The mounting evidence that highlights the pivotal role of epigenetic regulation in coronary artery disease development and progression, offering potential avenues for the development of novel diagnostic biomarkers and therapeutic targets. Abnormal DNA methylation patterns are linked to the modulation of gene expression involved in crucial processes like lipid metabolism, inflammation, and vascular function in the context of coronary artery disease. Cell-free DNA has become invaluable in tumor biology as a liquid biopsy, while its applications in coronary artery disease are limited, but intriguing. Atherosclerotic plaque rupture causes myocardial infarction, by depriving heart muscles of oxygen, releasing cell-free DNA from dead cardiac cells, and providing a minimally invasive source to explore tissue-specific epigenetic alterations. We discussed the methodologies for studying the global methylome and hydroxy-methylome landscape, their advantages, and limitations. It explores methylome alterations in coronary artery disease, considering risk factors and their relevance in coronary artery disease genesis. The review also details the implications of MI-derived cell-free DNA for developing minimally invasive biomarkers and associated challenges.
Collapse
Affiliation(s)
- Manoswini Dash
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; School of Medicine, Center for Aging, Tulane University, LA, United States
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Parameswar Sahu
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| |
Collapse
|
5
|
Zhang L, Zou W, Hu Y, Wu H, Gao Y, Zhang J, Zheng J. Maternal high-calorie diet feeding programs hepatic cholesterol metabolism and Abca1 promoter methylation in the early life of offspring. J Nutr Biochem 2023; 122:109449. [PMID: 37748622 DOI: 10.1016/j.jnutbio.2023.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Maternal high-calorie diet feeding can dramatically increase the susceptibility of metabolic diseases in offspring. However, whether maternal high-calorie diet feeding can program hepatic cholesterol metabolism in the early life of offspring is less understood, and the epigenetic mechanisms underlying this intergenerational effect, especially during the early life of offspring, are unknown. Female C57BL/6J mice were randomly assigned to a high-calorie diet or control diet before and during gestation, and lactation. Lipid metabolism was evaluated in male offspring at weaning. Gene expressions and quantitative methylation levels of key genes associated with hepatic cholesterol metabolism were further evaluated in offspring at weaning age. We found that maternal high-calorie diet feeding resulted in higher body weight, hypercholesterolemia, elevated total cholesterol in liver homogenates, and fat deposits in the liver in offspring at weaning. For key genes that regulate cholesterol metabolism in liver, we showed lower Hmgcr and Ldlr, and higher Abca1 mRNA and protein expressions in offspring from dams fed with high-calorie diet at weaning age. We further found that maternal high-calorie diet feeding significantly decreased Abca1 methylation level in offspring, with lower methylation levels of both CpG 11 and CpG 22 sites. Interestingly, we found that Abca1 methylation level was negatively associated with hepatic Abca1 mRNA expression in offspring from dams fed with high-calorie diet and controls. However, the expressions of key genes associated with hepatic cholesterol metabolism were not significant between fetuses of dams fed with high-calorie diet and control diet. In conclusion, our results indicate that maternal high-calorie diet feeding results in aberrant lipid metabolism, including hypercholesterolemia and fat deposits in the liver of offspring as early as weaning age. Furthermore, maternal high-calorie feeding can program hepatic cholesterol metabolism and Abca1 methylation in the early life of offspring.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China.
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
6
|
Deng X, Zhou S, Hu Z, Gong F, Zhang J, Zhou C, Lan W, Gao X, Huang Y. Nicotinic Acid-Mediated Modulation of Metastasis-Associated Protein 1 Methylation and Inflammation in Brain Arteriovenous Malformation. Biomolecules 2023; 13:1495. [PMID: 37892177 PMCID: PMC10605296 DOI: 10.3390/biom13101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
We explored metastasis-associated protein 1 (MTA1) promoter methylation in the development of brain arteriovenous malformation (BAVM). The clinical data of 148 sex- and age-matched BAVMs and controls were collected, and the MTA1 DNA methylation in peripheral white blood cells (WBC) was assessed by bisulfite pyrosequencing. Among them, 18 pairs of case-control samples were used for WBC mRNA detection, 32 pairs were used for WBC MTA1 protein measurement, and 50 pairs were used for plasma inflammatory factor analysis. Lipopolysaccharide (LPS) treatment was used to induce an inflammatory injury cell model of human brain microvascular endothelial cells (BMECS). 5-Aza-2'-deoxycytidine (5-AZA), nicotinic acid (NA), and MTA1 siRNAs were used in functional experiments to examine BMECS behaviors. RT-qPCR, Western blot, and ELISA or cytometric bead arrays were used to measure the expression levels of MTA1, cytokines, and signaling pathway proteins in human blood or BMECS. The degree of MTA1 promoter methylation was reduced in BAVM compared with the control group and was inversely proportional to MTA1 expression. Plasma ApoA concentrations in BAVM patients were significantly lower than those in controls and correlated positively with MTA1 promoter methylation and negatively with MTA1 expression. The expression of cytokine was markedly higher in BAVM than in controls. Cell experiments showed that 5-AZA decreased the methylation level of MTA1 and increased the expression of MTA1 protein. LPS treatment significantly increased cytokine concentrations (p < 0.05). NA and MTA1 silencing could effectively reverse the LPS-mediated increase in IL-6 and TNF-α expression through the NF-κB pathway. Our study indicated that NA may regulate MTA1 expression by affecting promoter DNA methylation, improve vascular inflammation through the NF-κB pathway, and alleviate the pathological development of BAVM.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315302, China
| | - Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Junjun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Wenting Lan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China;
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
7
|
Sánchez EC, Barajas-Olmos F, Baca P, Zerrweck C, Guilbert L, Martínez-Hernández A, Centeno F, Orozco L. DNA Methylation Remodeling after Bariatric Surgery Correlates with Clinical Parameters. Adv Biol (Weinh) 2023; 7:e2300001. [PMID: 37144655 DOI: 10.1002/adbi.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Indexed: 05/06/2023]
Abstract
The altered functions of adipose tissue are one of the main issues in obesity. Bariatric surgery is associated with improvement of obesity associated comorbidities. Here DNA methylation remodeling in adipose tissue after bariatric surgery is examined. After six months postoperative, DNA methylation shows changes in 1155 CpG sites, 66 of these sites correlate with body mass index. Some sites also show correlation with LDL-C, HDL-C, total cholesterol, and triglycerides. CpG sites are located in genes that have not previously been linked to obesity or metabolic diseases. GNAS complex locus is one of those that presented CpG site with the greatest changes after surgery, and the most significant correlation with BMI and lipid profiles. These results show that epigenetic regulation may be involved in the alteration of adipose tissue functions in obesity.
Collapse
Affiliation(s)
- Ernesto Carlos Sánchez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Cto. de los Posgrados, Ciudad Universitaria, Mexico City, Coyoacán, 04510, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Paulina Baca
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Carlos Zerrweck
- Facultad de Medicina, Alta especialidad en Cirugía Bariatrica, UNAM, Escolar 411A, Copilco Universidad, Mexico City, Coyoacán, 04360, Mexico
| | - Lizbeth Guilbert
- Clínica Integral de Obesidad, Hospital General Tláhuac, Secretaría de Salud de la CDMX, Av. La turba 655, Mexico City, Tláhuac, 13278, Mexico
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Federico Centeno
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| |
Collapse
|
8
|
Fujii R, Ando Y, Yamada H, Tsuboi Y, Munetsuna E, Yamazaki M, Mizuno G, Maeda K, Ohashi K, Ishikawa H, Watanabe M, Imaeda N, Goto C, Wakai K, Hashimoto S, Suzuki K. Integration of methylation quantitative trait loci (mQTL) on dietary intake on DNA methylation levels: an example of n-3 PUFA and ABCA1 gene. Eur J Clin Nutr 2023; 77:881-887. [PMID: 37542202 DOI: 10.1038/s41430-023-01315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Epigenetic studies have reported relationships between dietary nutrient intake and methylation levels. However, genetic variants that may affect DNA methylation (DNAm) pattern, called methylation quantitative loci (mQTL), are usually overlooked in these analyses. We investigated whether mQTL change the relationship between dietary nutrient intake and leukocyte DNAm levels with an example of estimated fatty acid intake and ATP-binding cassette transporter A1 (ABCA1). METHODS A cross-sectional study on 231 participants (108 men, mean age: 62.7 y) without clinical history of cancer and no prescriptions for dyslipidemia. We measured leukocyte DNAm levels of 8 CpG sites within ABCA1 gene by pyrosequencing method and used mean methylation levels for statistical analysis. TaqMan assay was used for genotyping a genetic variant of ABCA1 (rs1800976). Dietary fatty acid intake was estimated with a validated food frequency questionnaire and adjusted for total energy intake by using residual methods. RESULTS Mean ABCA1 DNAm levels were 5% lower with the number of minor alleles in rs1800976 (CC, 40.6%; CG, 35.9%; GG, 30.6%). Higher dietary n-3 PUFA intake was associated with lower ABCA1 DNAm levels (1st (ref) vs. 4th, β [95% CI]: -2.52 [-4.77, -0.28]). After controlling for rs180076, the association between dietary n-3 PUFA intake and ABCA1 DNAm levels was attenuated, but still showed an independent association (1st (ref) vs. 4th, β [95% CI]: -2.00 [-3.84, -0.18]). The interaction of mQTL and dietary n-3 PUFA intake on DNAm levels was not significant. CONCLUSIONS This result suggested that dietary n-3 PUFA intake would be an independent predictor of DNAm levels in ABCA1 gene after adjusting for individual genetic background. Considering mQTL need to broaden into other genes and nutrients for deeper understanding of DNA methylation, which can contribute to personalized nutritional intervention.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Alessandro Volta 21, Bolzano/Bozen, Italy
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho, Takamatsu, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota-ku, Japan
| | - Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Mami Watanabe
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Nahomi Imaeda
- Department of Nutrition, Faculty of Wellness, Shigakkan University, 55 Nakoyama, Yokonemachi, Obu, Japan
| | - Chiho Goto
- Department of Health and Nutrition, Nagoya Bunri University, 365 Maeda, Inazawa-city, Inazawa, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan.
| |
Collapse
|
9
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
10
|
Mishra S, Raval M, Kachhawaha AS, Tiwari BS, Tiwari AK. Aging: Epigenetic modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:171-209. [PMID: 37019592 DOI: 10.1016/bs.pmbts.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Aging is one of the most complex and irreversible health conditions characterized by continuous decline in physical/mental activities that eventually poses an increased risk of several diseases and ultimately death. These conditions cannot be ignored by anyone but there are evidences that suggest that exercise, healthy diet and good routines may delay the Aging process significantly. Several studies have demonstrated that Epigenetics plays a key role in Aging and Aging-associated diseases through methylation of DNA, histone modification and non-coding RNA (ncRNA). Comprehension and relevant alterations in these epigenetic modifications can lead to new therapeutic avenues of age-delaying contrivances. These processes affect gene transcription, DNA replication and DNA repair, comprehending epigenetics as a key factor in understanding Aging and developing new avenues for delaying Aging, clinical advancements in ameliorating aging-related diseases and rejuvenating health. In the present article, we have described and advocated the epigenetic role in Aging and associated diseases.
Collapse
|
11
|
Chew NWS, Loong SSE, Foo R. Progress in molecular biology and translational science: Epigenetics in cardiovascular health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:105-134. [PMID: 37019589 DOI: 10.1016/bs.pmbts.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conrad Waddington's epigenetics landscape has provided a metaphorical framework for how cells progress from undifferentiated states to one of several discrete, distinct, differentiated cell fates. The understanding of epigenetics has evolved over time, with DNA methylation being the most studied epigenetic modification, followed by histone modifications and non-coding RNA. Cardiovascular diseases (CVD) are leading contributors to death worldwide, with the prevalence of CVDs increasing across the last couple of decades. Significant amount of resources being poured into researching key mechanisms and underpinnings of the various CVDs. These molecular studies looked at the genetics, epigenetics as well as the transcriptomics of various cardiovascular conditions, aiming to provide mechanistic insights. It has paved the way for therapeutics to be developed and in recent years, epi-drugs for the treatment of CVDs. This chapter aims to cover the various roles of epigenetics in the context of cardiovascular health and disease. The following will be examined in detail: the developments in basic experimental techniques used to study epigenetics, the role of epigenetics in various CVDs (hypertension, atrial fibrillation, atherosclerosis, and heart failure), and current advances in epi-therapeutics, providing a holistic view of the current concerted efforts in advancing the field of epigenetics in CVDs.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore.
| | - Shaun S E Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Mansouri E, Esmaeili F, Montaseri M, Emami MA, Koochakkhani S, Khayatian M, Zarei H, Turki H, Eftekhar E. Association of methylation status of ABCA1/G1 genes with the risk of coronary artery disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
ATP-binding cassette transporters A1/G1 (ABCA1/G1) is a main regulator of HDL (high-density lipoprotein) formation and reverse cholesterol transport. Impaired ABCA1/G1 genes function may seriously affect cholesterol homeostasis, leading to increased risk of cardiovascular disease. In the present study, the association of ABCA1/G1 genes methylation status with the risk of coronary artery disease (CAD), risk factors of CAD, and serum level of lipid parameters was investigated.
This study was conducted on 70 CAD patients and 40 control subjects. All CAD subjects with diabetes mellitus were excluded. The promoter methylation status of ABCA1/G1 genes was determined by the methylation-specific polymerase chain reaction (MS-PCR) method and serum lipid parameters were assessed using commercial kits.
Results
ABCA1 promoter methylation was higher in CAD group compared to the control participants (80% vs. 60%). Hypermethylation of the ABCA1 gene significantly increases the risk of CAD in the total population (OR 3.886, 95% CI (1.181–12.791), p = 0.026). ABCG1 methylation status showed no difference between CAD and control subjects. In addition, no significant association was noted between methylation status of ABCA1/G1 and serum level of lipid profile.
Conclusions
Altogether, our study shows that ABCA1 gene promoter hypermethylation may increase the risk of CAD, which may help identify people at risk of developing CAD.
Collapse
|
13
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
14
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
15
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
16
|
Tang H, Xiang Z, Li L, Shao X, Zhou Q, You X, Xiong C, Ning J, Chen T, Deng D, Zou H. Potential role of anti-inflammatory HDL subclasses in metabolic unhealth/obesity. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:565-575. [PMID: 34402692 DOI: 10.1080/21691401.2021.1961798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
High-density lipoprotein (HDL) particles comprising heterogeneous subclasses of different functions exert anti-inflammatory effects by interacting with immune-response cells. However, the relationship of HDL subclasses with immune-response cells in metabolic unhealth/obesity has not been defined clearly. The purpose of this study was to delineate the relational changes of HDL subclasses with immune cells and inflammatory markers in metabolic unhealth/obesity to understand the role of anti-inflammatory HDL subclasses. A total of 316 participants were classified by metabolic health. HDL subclasses were detected by microfluidic chip electrophoresis. White blood cell (WBC) counts and lymphocytes were assessed using automatic haematology analyser. Levels of high-sensitivity C-reactive protein (hs-CRP) and interleukin 6 (IL-6) were measured. In our study, not only the distribution of HDL subclasses, but also HDL-related structural proteins changed with the deterioration of metabolic disease. Moreover, lymphocytes and inflammation factors significantly gradually increased. The level of HDL2b was negatively associated with WBC, lymphocytes and hs-CRP in multivariable linear regression analysis. In multinomial logistic regression analysis, high levels of HDL3 and low levels of HDL2b increased the probability of having an unfavourable metabolic unhealth/obesity status. We supposed that HDL2b particles may play anti-inflammation by negatively regulating lymphocytes activation. HDL2b may be a therapeutic target for future metabolic disease due to the anti-inflammatory effects.
Collapse
Affiliation(s)
- Hongjuan Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, Maoming People's Hospital, Maoming, China
| | - Zhicong Xiang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Longyu Li
- Guangdong Ardent Biomed Co. Ltd & Ardent BioMed LLC (California), Guangzhou, CA, USA
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xu You
- Department of Clinical Lab, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ning
- Department of Nephrology, Pinghu Hospital, Health Science Center, South China Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Tong Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - David Deng
- Guangdong Ardent Biomed Co. Ltd & Ardent BioMed LLC (California), Guangzhou, CA, USA
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, Pinghu Hospital, Health Science Center, South China Hospital of Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
17
|
Miroshnikova VV, Panteleeva AA, Pobozheva IA, Razgildina ND, Polyakova EA, Markov AV, Belyaeva OD, Berkovich OA, Baranova EI, Nazarenko MS, Puzyrev VP, Pchelina SN. ABCA1 and ABCG1 DNA methylation in epicardial adipose tissue of patients with coronary artery disease. BMC Cardiovasc Disord 2021; 21:566. [PMID: 34837967 PMCID: PMC8627066 DOI: 10.1186/s12872-021-02379-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the development of coronary artery disease (CAD). ABCA1 and ABCG1 transporters regulate cell cholesterol content and reverse cholesterol transport. We aimed to determine whether DNA methylation and mRNA levels of the ABCA1 and ABCG1 genes in EAT and subcutaneous adipose tissue (SAT) were associated with CAD. METHODS Paired EAT and SAT samples were collected from 82 patients undergoing elective cardiac surgery either for coronary artery bypass grafting (CAD group, N = 66) or valve surgery (NCAD group, N = 16). ABCA1 and ABCG1 mRNA levels in EAT and SAT samples were analyzed using real time polymerase chain reaction, ABCA1 protein levels in EAT samples were assessed by western blotting. ABCA1 and ABCG1 DNA methylation analysis was performed in 24 samples from the CAD group and 9 samples from the NCAD group via pyrosequencing. RESULTS DNA methylation levels in the ABCA1 promoter and ABCG1 cg27243685 and cg06500161 CpG sites were higher in EAT samples from patients with CAD compared with NCAD (21.92% vs 10.81%, p = 0.003; 71.51% vs 68.42%, p = 0.024; 46.11% vs 37.79%, p = 0.016, respectively). In patients with CAD, ABCA1 and ABCG1 DNA methylation levels were higher in EAT than in SAT samples (p < 0.05). ABCA1 mRNA levels in EAT samples were reduced in the subgroup of patients with CAD and concomitant carotid artery disease or peripheral artery disease compared with the NCAD group (p = 0.024). ABCA1 protein levels in EAT samples tended to be lower in CAD patients than in the NCAD group (p = 0.053). DNA methylation levels at the ABCG1 cg27243685 site positively correlated with plasma triglyceride concentration (r = 0.510, p = 0.008), body mass index (r = 0.556, p = 0.013) and waist-to-hip ratio (r = 0.504, p = 0.012) in SAT samples. CONCLUSION CAD is associated with ABCA1 and ABCG1 DNA hypermethylation in EAT. CAD with concomitant carotid artery disease or peripheral artery disease is accompanied by decreased ABCA1 gene expression in EAT. DNA methylation levels at the ABCG1 cg27243685 locus in SAT are associated with hypertriglyceridemia and obesity.
Collapse
Affiliation(s)
- Valentina V Miroshnikova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation.
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.
| | - Alexandra A Panteleeva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Irina A Pobozheva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Natalia D Razgildina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
| | - Ekaterina A Polyakova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Anton V Markov
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Olga D Belyaeva
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Olga A Berkovich
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Elena I Baranova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Maria S Nazarenko
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Valery P Puzyrev
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
18
|
Copur S, Rossing P, Afsar B, Sag AA, Siriopol D, Kuwabara M, Ortiz A, Kanbay M. A primer on metabolic memory: why existing diabesity treatments fail. Clin Kidney J 2021; 14:756-767. [PMID: 34512957 PMCID: PMC8422888 DOI: 10.1093/ckj/sfaa143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/28/2022] Open
Abstract
Despite massive government and private sector investments into prevention of cardiovascular disease, diabetes mellitus and obesity, efforts have largely failed, and the burden of cost remains in the treatment of downstream morbidity and mortality, with overall stagnating outcomes. A new paradigm shift in the approach to these patients may explain why existing treatment strategies fail, and offer new treatment targets. This review aims to provide a clinician-centred primer on metabolic memory, defined as the sum of irreversible genetic, epigenetic, cellular and tissue-level alterations that occur with long-time exposure to metabolic derangements.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Baris Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC, USA
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | | | - Alberto Ortiz
- School of Medicine, Dialysis Unit, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
19
|
Pedro-Botet J, Climent E, Benaiges D. Familial Hypercholesterolemia: Do HDL Play a Role? Biomedicines 2021; 9:biomedicines9070810. [PMID: 34356876 PMCID: PMC8301335 DOI: 10.3390/biomedicines9070810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) in heterozygous familial hypercholesterolemia (HeFH), the most frequent monogenic disorder of human metabolism, is largely driven by low-density lipoprotein (LDL) cholesterol concentrations. Since the CVD rate differs considerably in this population, beyond the lifetime LDL cholesterol vascular accumulation, other classical risk factors are involved in the high cardiovascular risk of HeFH. Among other lipoprotein disturbances, alterations in the phenotype and functionality of high-density lipoproteins (HDL) have been described in HeFH patients, contributing to the presence and severity of CVD. In fact, HDL are the first defensive barrier against the burden of high LDL cholesterol levels owing to their contribution to reverse cholesterol transport as well as their antioxidant and anti-inflammatory properties, among others. In this context, the present narrative review aimed to focus on quantitative and qualitative abnormalities in HDL particles in HeFH, encompassing metabolic, genetic and epigenetic aspects.
Collapse
Affiliation(s)
- Juan Pedro-Botet
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-932483902; Fax: +34-932483254
| | - Elisenda Climent
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - David Benaiges
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| |
Collapse
|
20
|
Sharma AR, Shashikiran U, Uk AR, Shetty R, Satyamoorthy K, Rai PS. Aberrant DNA methylation and miRNAs in coronary artery diseases and stroke: a systematic review. Brief Funct Genomics 2021; 19:259-285. [PMID: 31950130 DOI: 10.1093/bfgp/elz043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Coronary artery disease (CAD) and ischemic stroke are the two most predominant forms of cardiovascular diseases (CVDs) caused by genetic, epigenetic and environmental risk factors. Although studies on the impact of 'epigenetics' in CVDs is not new, its effects are increasingly being realized as a key regulatory determinant that may drive predisposition, pathophysiology and therapeutic outcome. The most widely studied epigenetic risk factors are regulated by DNA methylation and miRNA expression. To keep pace with growing developments and discoveries, a comprehensive review was performed using Pubmed, Science Direct and Scopus databases to highlight the role of DNA methylation and miRNAs in CAD and stroke subjects. Network analysis was performed using ClueGO software and miRTargetLink database. We identified 32 studies of DNA methylation on CAD and stroke, of which, 6 studies showed differences in global DNA methylation, 10 studies reported the genome-wide difference in DNA methylation and 16 studies demonstrated altered DNA methylation at 14 candidate loci. The network analysis showed positive regulation of nitric oxide biosynthetic process, homocysteine metabolic process and negative regulation of lipid storage. About, 155 miRNAs were associated with CAD, stroke and related phenotypes in 83 studies. Interestingly, mir-223 hypomethylation and altered expression were associated with cerebral infarction and stroke. The target prediction for 18 common miRNAs between CAD and stroke showed strong interaction with SP3 and SP1 genes. This systematic review addresses the present knowledge on DNA methylation and miRNAs in CAD and stroke, whose abnormal regulation has been implicated in etiology or progression of the diseases.
Collapse
|
21
|
Shyamala N, Gundapaneni KK, Galimudi RK, Tupurani MA, Padala C, Puranam K, Kupsal K, Kummari R, Gantala SR, Nallamala KR, Sahu SK, Hanumanth SR. PCSK9 genetic (rs11591147) and epigenetic (DNA methylation) modifications associated with PCSK9 expression and serum proteins in CAD patients. J Gene Med 2021; 23:e3346. [PMID: 33885177 DOI: 10.1002/jgm.3346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 (PCSK9) genetic polymorphisms play a significant role in cholesterol homeostasis. Therefore, we aimed to investigate the association of PCSK9 genetic variations NM_174936.3:c.137G>T (R46L, rs11591147) and NM_174936.3:c.1120G>T (D374Y, rs137852912), as well as promoter DNA methylation status, with mRNA expression and circulating serum protein levels in coronary artery disease (CAD) patients. METHODS The present study includes 300 CAD cases and 300 controls from South India. Biochemical assays were performed using commercially available kits. PCSK9 rs11591147 and rs137852912 polymorphisms were analyzed by the polymerase chain reaction (PCR)-restriction fragment length polymorphism method, whereas promoter DNA methylation status and gene expression were determined using methylation specific PCR and quantitative PCR respectively. RESULTS The genotypic distribution of PCSK9 rs11591147 revealed that individuals with the TT-genotype and T-allele have a reduced risk for CAD. Furthermore, patients with the PCSK9 rs11591147 TT genotype have a significantly lower total cholesterol and low-density lipoprotein-cholesterol levels and also higher high-density lipoprotein-cholesterol levels than individuals with the GG genotype. Logistic regression analysis has shown that the GG and GT (p = 1.51 × 10-8 , p = 1.47 × 10-9 ) genotypes predicted the risk for CAD with an odds ratio of 5.8 and 7.3 respectively. In addition, individuals with the TT genotype were hypermethylated at promoter DNA of PCSK9, resulting in lower mRNA expression and circulating serum proteins than in individuals with the GG genotype. In silico analyses revealed that rs11591147 T-allele has protein destabilizing capacity. CONCLUSIONS In conclusion, the present study indicates that the PCSK9 gene expression and circulating serum protein levels are not only associated with rs11591147 genotype, but also with promoter DNA methylation. Furthermore, the findings with respect to both single nucleotide polymorphism and promoter DNA methylation may open avenues for novel treatment possibilities targeting PCSK9 for CAD management.
Collapse
Affiliation(s)
- Nivas Shyamala
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India
| | | | - Rajesh Kumar Galimudi
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | - Chiranjeevi Padala
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India.,Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Kaushik Puranam
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India
| | - Keerthi Kupsal
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India
| | - Ramanjaneyulu Kummari
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India
| | - Srilatha Reddy Gantala
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India
| | - Krishna Reddy Nallamala
- CARE cardiac center, Durgabai Deshmukh Hospital and Research Centre, Hyderabad, Telangana State, India
| | - Sanjib K Sahu
- CARE cardiac center, Durgabai Deshmukh Hospital and Research Centre, Hyderabad, Telangana State, India
| | - Surekha Rani Hanumanth
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana State, India
| |
Collapse
|
22
|
Pagiatakis C, Musolino E, Gornati R, Bernardini G, Papait R. Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res 2021; 33:737-745. [PMID: 31811572 PMCID: PMC8084772 DOI: 10.1007/s40520-019-01430-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Aging is an important risk factor for several human diseases such as cancer, cardiovascular disease and neurodegenerative disorders, resulting from a combination of genetic and environmental factors (e.g., diet, smoking, obesity and stress), which, at molecular level, cause changes in gene expression underlying the decline of physiological function. Epigenetics, which include mechanisms regulating gene expression independently of changes to DNA sequence, regulate gene expression by modulating the structure of chromatin or by regulating the binding of transcriptional machinery to DNA. Several studies showed that an impairment of epigenetic mechanisms promotes alteration of gene expression underlying several aging-related diseases. Alteration of these mechanisms is also linked with changes of gene expression that occurs during aging processes of different tissues. In this review, we will outline the potential role of epigenetics in the onset of two age-related pathologies, cancer and cardiovascular diseases.
Collapse
|
23
|
An F, Liu C, Wang X, Li T, Fu H, Bao B, Cong H, Zhao J. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc Disord 2021; 21:78. [PMID: 33557767 PMCID: PMC7869242 DOI: 10.1186/s12872-021-01894-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND ATP-binding cassette transporter A1 (ABCA1) plays a major role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) and exerts anti-inflammatory effects. Increased ABCA1 promoter methylation level may result in the progression of coronary artery disease. Thus, the present study investigated the association between promoter methylation status of ABCA1 and inflammation in the development of premature coronary artery disease (pCAD). METHODS PCAD patients and healthy individuals (n = 90 each) were recruited from the Characteristic Medical Center of the Chinese People's Armed Police Force from June to December 2019. Using pyrosequencing, the levels of ABCA1 promoter methylation in their blood samples were evaluated. Serum concentrations of lipids, interleukin 1β (IL-1β), C-reactive protein (CRP), and circulating free DNA/Neutrophil extracellular traps (cfDNA/NETs) were also routinely measured and compared between the two groups. P values < 0.05 were considered statistically significant. RESULTS The mean ABCA1 promoter methylation levels were significantly higher in the pCAD group than in the control group (44.24% ± 3.66 vs. 36.05% ± 2.99, P < 0.001). Based on binary logistic regression analysis, ABCA1 promoter methylation level was identified as an independent risk factor for pCAD development (odds ratio = 2.878, 95% confidence interval: 1.802-4.594, P < 0.001). Furthermore, ABCA1 promoter methylation levels were negatively correlated with HDL levels (r = - 0.488, P < 0.001) and positively correlated with the levels of CRP, cfDNA/NETs, and IL-1β (r = 0.389, 0.404, 0.385, respectively; P < 0.001). Multiple regression analysis showed that the serum levels of CRP, IL-1β, and cfDNA/NETs independently affect ABCA1 promoter methylation. CONCLUSIONS Our findings indicate that high methylation levels at the ABCA1 promoter are associated with low HDL cholesterol levels and an increased risk of pCAD. Inflammatory factors and NETs may be involved in the progression of pCAD by affecting ABCA1 promoter methylation levels.
Collapse
Affiliation(s)
- Fang An
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.,Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Chao Liu
- Institute of Cardiovascular disease, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Xiujuan Wang
- Institute of Cardiovascular Disease, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Tan Li
- Department of Pathogen Biology, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Hao Fu
- Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Buhe Bao
- Department of Clinical Laboratory, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Hongliang Cong
- Institute of Cardiovascular disease, Tianjin Chest Hospital, Tianjin, 300222, China. .,Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, China.
| | - Jihong Zhao
- Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| |
Collapse
|
24
|
De Lillo A, Pathak GA, De Angelis F, Di Girolamo M, Luigetti M, Sabatelli M, Perfetto F, Frusconi S, Manfellotto D, Fuciarelli M, Polimanti R. Epigenetic profiling of Italian patients identified methylation sites associated with hereditary transthyretin amyloidosis. Clin Epigenetics 2020; 12:176. [PMID: 33203445 PMCID: PMC7672937 DOI: 10.1186/s13148-020-00967-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Hereditary transthyretin (TTR) amyloidosis (hATTR) is a rare life-threatening disorder caused by amyloidogenic coding mutations located in TTR gene. To understand the high phenotypic variability observed among carriers of TTR disease-causing mutations, we conducted an epigenome-wide association study (EWAS) assessing more than 700,000 methylation sites and testing epigenetic difference of TTR coding mutation carriers vs. non-carriers. We observed a significant methylation change at cg09097335 site located in Beta-secretase 2 (BACE2) gene (standardized regression coefficient = -0.60, p = 6.26 × 10-8). This gene is involved in a protein interaction network enriched for biological processes and molecular pathways related to amyloid-beta metabolism (Gene Ontology: 0050435, q = 0.007), amyloid fiber formation (Reactome HSA-977225, q = 0.008), and Alzheimer's disease (KEGG hsa05010, q = 2.2 × 10-4). Additionally, TTR and BACE2 share APP (amyloid-beta precursor protein) as a validated protein interactor. Within TTR gene region, we observed that Val30Met disrupts a methylation site, cg13139646, causing a drastic hypomethylation in carriers of this amyloidogenic mutation (standardized regression coefficient = -2.18, p = 3.34 × 10-11). Cg13139646 showed co-methylation with cg19203115 (Pearson's r2 = 0.32), which showed significant epigenetic differences between symptomatic and asymptomatic carriers of amyloidogenic mutations (standardized regression coefficient = -0.56, p = 8.6 × 10-4). In conclusion, we provide novel insights related to the molecular mechanisms involved in the complex heterogeneity of hATTR, highlighting the role of epigenetic regulation in this rare disorder.
Collapse
Affiliation(s)
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Flavio De Angelis
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Marco Di Girolamo
- Clinical Pathophysiology Center, Fatebenefratelli Foundation -'San Giovanni Calibita' Fatebenefratelli Hospital, Rome, Italy
| | - Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Sabatelli
- Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico NEMO Adulti, Rome, Italy
| | - Federico Perfetto
- Regional Amyloid Centre, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Sabrina Frusconi
- Genetic Diagnostics Unit, Laboratory Department, Careggi University Hospital, Florence, Italy
| | - Dario Manfellotto
- Clinical Pathophysiology Center, Fatebenefratelli Foundation -'San Giovanni Calibita' Fatebenefratelli Hospital, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
25
|
Reeskamp LF, Venema A, Pereira JPB, Levin E, Nieuwdorp M, Groen AK, Defesche JC, Grefhorst A, Henneman P, Hovingh GK. Differential DNA methylation in familial hypercholesterolemia. EBioMedicine 2020; 61:103079. [PMID: 33096472 PMCID: PMC7581877 DOI: 10.1016/j.ebiom.2020.103079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/28/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background Familial hypercholesterolemia (FH) is a monogenic disorder characterized by elevated low-density lipoprotein cholesterol (LDL-C). A FH causing genetic variant in LDLR, APOB, or PCSK9 is not identified in 12–60% of clinical FH patients (FH mutation-negative patients). We aimed to assess whether altered DNA methylation might be associated with FH in this latter group Methods In this study we included 78 FH mutation-negative patients and 58 FH mutation-positive patients with a pathogenic LDLR variant. All patients were male, not using lipid lowering therapies and had LDL-C levels >6 mmol/L and triglyceride levels <3•5 mmol/L. DNA methylation was measured with the Infinium Methylation EPIC 850 K beadchip assay. Multiple linear regression analyses were used to explore DNA methylation differences between the two groups in genes related to lipid metabolism. A gradient boosting machine learning model was applied to investigate accumulated genome-wide differences between the two groups. Findings Candidate gene analysis revealed one significantly hypomethylated CpG site in CPT1A (cg00574958) in FH mutation-negative patients, while no differences in methylation in other lipid genes were observed. The machine learning model did distinguish the two groups with a mean Area Under the Curve (AUC)±SD of 0•80±0•17 and provided two CpG sites (cg26426080 and cg11478607) in genes with a possible link to lipid metabolism (PRDM16 and GSTT1). Interpretation FH mutation-negative patients are characterized by accumulated genome wide DNA methylation differences, but not by major DNA methylation alterations in known lipid genes compared to FH mutation-positive patients. Funding ZonMW grant (VIDI no. 016.156.445)
Collapse
Affiliation(s)
- Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Joao P Belo Pereira
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands; HORAIZON BV, Delft, The Netherlands
| | - Evgeni Levin
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands; HORAIZON BV, Delft, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Albert K Groen
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Joep C Defesche
- Department of Clinical Genetics, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| |
Collapse
|
26
|
Fujii R, Yamada H, Munetsuna E, Yamazaki M, Mizuno G, Ando Y, Maeda K, Tsuboi Y, Ohashi K, Ishikawa H, Hagiwara C, Wakai K, Hashimoto S, Hamajima N, Suzuki K. Dietary fish and ω-3 polyunsaturated fatty acids are associated with leukocyte ABCA1 DNA methylation levels. Nutrition 2020; 81:110951. [PMID: 33045487 DOI: 10.1016/j.nut.2020.110951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES A diet rich in fish and ω-3 polyunsaturated fatty acids (PUFAs) has been thought to reduce the risk for cardiovascular disease (CVD). The beneficial effects of fish oil and ω-3 PUFA on CVD can be mediated by epigenetic status of the genes associated with lipid metabolism and inflammation. The aim of this study was to investigate whether dietary fish and fatty acid (FA) intakes are associated with leukocyte ATP-binding cassette transporter A1 (ABCA1) DNA methylation levels in a Japanese population. METHODS This cross-sectional study included 298 adults (137 men and 161 women) without clinical history of CVD or cancer. The pyrosequencing method was used to measure leukocyte ABCA1 DNA methylation levels. Dietary fish and FA intakes were assessed based on the validated food frequency questionnaire. RESULTS Mean ABCA1 DNA methylation levels were significantly lower in the highest fish intake groups (≥5-6/wk) compared with the lowest intake group (≤1-2/wk; P = 0.004). In multivariable linear regression analyses, higher dietary intake of ω-3 PUFAs and ω-3 highly unsaturated fatty acids was significantly associated with decreased levels of ABCA1 DNA methylation (P = 0.001 and 0.005); whereas no significant associations were seen between intake of dietary saturated fatty acid, monounsaturated fatty acid, and ω-6 PUFAs and ABCA1 DNA methylation. CONCLUSION Higher dietary fish and ω-3 PUFA intake were associated with lower ABCA1 DNA levels in a Japanese population. The present results may bring potential insights on biological mechanisms underlying the protective effects of dietary fish and ω-3 PUFA intakes on CVD.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Genki Mizuno
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keisuke Maeda
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Chiharu Hagiwara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Health Care Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan.
| |
Collapse
|
27
|
Yousuf FA, Kazmi K, Iqbal J, Ahmed N, Iqbal MP. Higher DNA methylation of ABO gene promoter is associated with acute myocardial infarction in a hospital-based population in Karachi. Pak J Med Sci 2020; 36:505-510. [PMID: 32292461 PMCID: PMC7150418 DOI: 10.12669/pjms.36.3.1406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective To find out if there is any relationship of methylation status of ABO gene promoter with the risk of acute myocardial infarction (AMI) in a hospital-based Pakistani population in Karachi, Pakistan. Methods A case control study comprising of 39 adult AMI patients (both males and females; age range 30-70 years) and 39 normal healthy controls (both males and females and similar age range) nested in a large study (to see the relationship of ABO genotypes with AMI) was designed to investigate the methylation status of ABO gene promoter and its association with AMI. The study was carried out at the Aga Khan University, Karachi during July 2018 to June 2019. DNA isolated from samples of AMI patients and normal healthy controls were converted into bisulphite DNA using a kit method. Methylation specific polymerase chain reaction was carried out to determine the methylation status of ABO gene promoter in both cases and controls. Logistic regression was used to find out any association between increased methylation status of ABO gene promoter and risk of AMI. Results A significantly higher percentage of DNA methylation of the ABO gene promoter was observed in AMI patients as compared to normal healthy controls (82.1% vs. 35.9%; p value <0.001). This higher methylation status of ABO gene promoter was associated with AMI and the odds of AMI in this population were more than 6-fold in subjects with methylated gene promoter compared to those with unmethylated gene promoter after adjusting with age and waist circumference [AOR (95% CI) = 6.27 (1.76-22.3); p value = 0.005]. Conclusion The ABO gene promoter's hypermethylation appears to be increasing the risk of AMI in a hospital-based Pakistani population in Karachi, Pakistan.
Collapse
Affiliation(s)
- Farzana Abubakar Yousuf
- Farzana Abubakar Yousuf, Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Khawar Kazmi
- Khawar Kazmi, National Institute of Cardiovascular Diseases, Karachi, Pakistan
| | - Junaid Iqbal
- Junaid Iqbal, Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Nikhat Ahmed
- Nikhat Ahmed, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Mohammad Perwaiz Iqbal
- Mohammad Perwaiz Iqbal, Pakistan Academy of Sciences, Islamabad - Pakistan. Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
28
|
Li X, Wu N, Ji H, Huang Y, Hu H, Li J, Mi S, Duan S, Chen X. A male-specific association between AGTR1 hypermethylation and coronary heart disease. Bosn J Basic Med Sci 2020; 20:31-36. [PMID: 31538912 PMCID: PMC7029202 DOI: 10.17305/bjbms.2019.4321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/07/2019] [Indexed: 01/09/2023] Open
Abstract
The AGTR1 gene encodes angiotensin II receptor type 1, which is involved in cardiovascular diseases such as coronary heart disease (CHD). In the current study, we analyzed AGTR1 promoter methylation level in a Han Chinese population by SYBR green-based quantitative methylation-specific PCR (qMSP). We collected blood samples from 761 CHD patients and 398 non-CHD controls at the Ningbo First Hospital. A data mining analysis was also performed to explore the association between AGTR1 methylation and AGTR1 gene expression, using datasets from the cBioPortal for Cancer Genomics and the Gene Expression Omnibus (GEO) database. Our results showed a significantly higher percentage of methylated reference (PMR) of AGTR1 in male CHD patients compared with male non-CHD controls (median PMR: 2.12% vs. 0.59%, p = 0.037). The data mining analysis showed that AGTR1 expression was significantly increased in human hepatoma HepG2 cells treated with the demethylation agent 5-aza-2’-deoxycytidine (fold = 3.12, p = 0.009). Further data mining analysis using the cholangiocarcinoma (TCGA, PanCancer Atlas) data indicated an inverse association between AGTR1 methylation and AGTR1 expression (r = -0.595, p = 1.29E-04). Overall, our results suggest that AGTR1 methylation is involved in the regulation of AGTR1 gene expression and that AGTR1 hypermethylation is associated with CHD in males. These findings may provide new clues about the pathogenesis of CHD.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Nan Wu
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yi Huang
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Haochang Hu
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Jiyi Li
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Siyu Mi
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China.
| | - Xiaomin Chen
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, China.
| |
Collapse
|
29
|
Fujii R, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Mizuno G, Tsuboi Y, Ohashi K, Ishikawa H, Hagiwara C, Maeda K, Hashimoto S, Suzuki K. Associations between dietary vitamin intake, ABCA1 gene promoter DNA methylation, and lipid profiles in a Japanese population. Am J Clin Nutr 2019; 110:1213-1219. [PMID: 31504085 DOI: 10.1093/ajcn/nqz181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Higher intake of fruits and vegetables is associated with reduced risk of specific types of cancer and of cardiovascular disease (CVD), but the protective role of the vitamins contained in fruits and vegetables on CVD is controversial. This discrepancy can raise the question of the effects of antioxidants in vitamins on CVD. Recently, we reported that higher vegetable intake was significantly associated with the decreased DNA methylation level of ATP-binding cassette transporter A1 (ABCA1), a gene associated with HDL-cholesterol metabolism. OBJECTIVE We investigated whether ABCA1 DNA methylation mediates an effect of dietary vitamin intake on lipid profiles, an important risk factor for CVD, in a Japanese population. METHODS A total of 225 individuals (108 men and 117 women) with no clinical history and no drug use for dyslipidemia participated in this cross-sectional study. We used the pyrosequencing method to measure the ABCA1 DNA methylation levels at 8 CpG sites, and we used mean DNA methylation level in statistical analysis. Dietary vitamin intake was assessed with the FFQ and adjusted for the residual method. RESULTS In women, higher dietary vitamin intake [vitamin A, β-carotene, folic acid, vitamin C (VC), vitamin D, and vitamin E] was significantly associated with lower mean ABCA1 DNA methylation levels (P = 0.004, 0.03, 0.005, 0.001, 0.03, and 0.04, respectively). In addition, in women, we found a significant inverse association between mean ABCA1 DNA methylation and HDL cholesterol (P = 0.04) but not for other lipid indexes. Mediation analysis showed a significant indirect effect of VC intake on HDL cholesterol through ABCA1 DNA methylation level in women (P = 0.04). CONCLUSIONS Although this study does not prove causality, the results suggest that ABCA1 DNA methylation mediates the protective effect of VC on HDL cholesterol in women, which could offer a novel biological mechanism in CVD prevention.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan.,Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Genki Mizuno
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Chiharu Hagiwara
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Keisuke Maeda
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
30
|
Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC Transporter-Mediated Multidrug-Resistant Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:549-580. [PMID: 31571174 DOI: 10.1007/978-981-13-7647-4_12] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in active pumping of many diverse substrates through the cellular membrane. The transport mediated by these proteins modulates the pharmacokinetics of many drugs and xenobiotics. These transporters are involved in the pathogenesis of several human diseases. The overexpression of certain transporters by cancer cells has been identified as a key factor in the development of resistance to chemotherapeutic agents. In this chapter, the localization of ABC transporters in the human body, their physiological roles, and their roles in the development of multidrug resistance (MDR) are reviewed. Specifically, P-glycoprotein (P-GP), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP/ABCG2) are described in more detail. The potential of ABC transporters as therapeutic targets to overcome MDR and strategies for this purpose are discussed as well as various explanations for the lack of efficacy of ABC drug transporter inhibitors to increase the efficiency of chemotherapy.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hong-May Sim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Dietary vegetable intake is inversely associated with ATP-binding cassette protein A1 (ABCA1) DNA methylation levels among Japanese women. Nutrition 2019; 65:1-5. [DOI: 10.1016/j.nut.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/14/2019] [Indexed: 11/20/2022]
|
32
|
Jin X, Pan B, Wu H, Wu B, Li Y, Wang X, Liu G, Dang X, Xu D. The efficacy and safety of Shenzhu Guanxin Recipe Granules for the treatment of patients with coronary artery disease: protocol for a double-blind, randomized controlled trial. Trials 2019; 20:520. [PMID: 31429810 PMCID: PMC6701014 DOI: 10.1186/s13063-019-3629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Coronary artery disease (CAD) is one of the most common types of the cardiovascular disease. Previous pilot trials have suggested that Traditional Chinese Medicine (TCM) has brought clinical benefits for patients with CAD. We will conduct this trial to determine the efficacy and safety of Shenzhu Guanxin Recipe Granules (SGR) for the treatment of patients with CAD. Methods This randomized controlled trial recruited 190 patients who were diagnosed with CAD by clinical manifestation and examination and in which coronary computed tomography angiography (CCTA) showed 50–70% stenosis, with soft or mixed plaque types. The included participants were randomly assigned to the case group and control group using a 1:1 allocation ratio; patients in the case group received SGR and usual care, and those in the control group received placebo (6 g/day for 6 months) and usual care. The endpoint of the study included Calcium Coverage Score (CCS), C-reactive protein (CRP) level, and the levels of blood lipids, tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and ATP-binding membrane cassette transporter A1 (ABCA1) were calculated before recruiting and at the sixth month. The indicators were Seattle Angina Questionnaire (SAQ) and TCM Syndrome Questionnaire scores at 0, 3, and 6 months. Discussion This clinical trial may provide reliable evidence regarding the clinical effectiveness and safety of SGR therapy for patients with CAD diagnosed by clinical manifestation and examination, in which CCTA showed 50–70% stenosis, with soft or mixed plaque types. Trial registration ClinicalTrials.gov, ID: ChiCTR1900020501. The trial was registered on 25 December 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3629-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Jin
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Biqi Pan
- Department of Traditional Chinese medicine, GuangDong Women and Children Hospital, Guangzhou, China
| | - Huanlin Wu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Bingxin Wu
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukai Li
- Department of Cardiology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xia Wang
- Department of Cardiology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Guoqing Liu
- Department of Cardiology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiaojing Dang
- Department of Cardiology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Danping Xu
- Department of Cardiology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
33
|
Song Y, Zhou T, Zong Y, Gu B, Tan X, Yang L. Arsenic inhibited cholesterol efflux of THP-1 macrophages via ROS-mediated ABCA1 hypermethylation. Toxicology 2019; 424:152225. [DOI: 10.1016/j.tox.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/15/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
|
34
|
Liu JY, Shang J, Mu XD, Gao ZY. RETRACTED: Protective effect of down-regulated microRNA-27a mediating high thoracic epidural block on myocardial ischemia-reperfusion injury in mice through regulating ABCA1 and NF-κB signaling pathway. Biomed Pharmacother 2019; 112:108606. [PMID: 30802823 DOI: 10.1016/j.biopha.2019.108606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the heart images shown in Figure 1A, which appear to contain similar features to those found in other publications, as detailed here: https://pubpeer.com/publications/108A0BE9F52724D6879E23FAE7F361; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Concerns over the provenance of the flow cytometry data in Figure 7A were also raised. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jin-Yu Liu
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, 264000, PR China
| | - Jie Shang
- Department of Electrocardiogram, Yantai Yuhuangding Hospital, Yantai, 264000, PR China
| | - Xiao-Dong Mu
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, PR China
| | - Zhi-Yong Gao
- Department of Rehabilitation, Yantai Yuhuangding Hospital, Yantai, 264000, PR China.
| |
Collapse
|
35
|
Chen X, Jiang D, Xu L, Han L, Hu H, Huang Y, Lu D, Ji H, Li B, Yang Y, Zhou C, Xu X, Wu N, Xu X, Xu Y, Shen Y, Li J, Duan S. Elevated methylation of cyclin dependent kinase inhibitor 2B contributes to the risk of coronary heart disease in women. Exp Ther Med 2018; 17:205-213. [PMID: 30651784 PMCID: PMC6307461 DOI: 10.3892/etm.2018.6920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cyclin dependent kinase inhibitor 2B (CDKN2B) encodes a cyclin-dependent kinase inhibitor that may enhance the formation of atherosclerotic plaques. The aim of the present study was to investigate the contribution of CDKN2B promoter methylation on the risk of coronary heart disease (CHD). The present results indicated a significant association between increased CDKN2B methylation and the risk of CHD (adjusted P=0.043). A breakdown analysis according to sex demonstrated that CDKN2B methylation was significantly associated with the risk of CHD in women (adjusted P=0.010), but not in men. A further breakdown analysis by age indicated a significant association of CHD in the women >60 years (P=0.024). Luciferase reporter gene assay results indicated that the CDKN2B promoter fragment significantly enhanced luciferase activity (P<0.001). In addition, CDKN2B transcription was significantly enhanced following treatment with 5-aza-2′-deoxycytidine methylation inhibitor in human aortic endothelial cells (HAEC) and human primary coronary artery smooth muscle cells (HPCASMC; P<0.05 and P<0.01), but not in 293 cells. Notably, estrogen treatment reduced CDKN2B methylation of several CpGs and significantly increased CDKN2B gene expression levels in HAEC, HPCASMC and 293 cells (P<0.05 and P<0.01). Additionally, treatment of HAEC and HPCASMC with simvastatin and γ-carboxy-L-glutamic acid reduced CDKN2B promoter methylation and increased CDKN2B transcription concomitantly. The present study suggests that CDKN2B promoter methylation may be associated with sex dimorphism in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Xiaomin Chen
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Danjie Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Limin Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liyuan Han
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haochang Hu
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Yi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Deyi Lu
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xuting Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Nan Wu
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Xu
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Yan Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yusheng Shen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiyi Li
- Key Laboratory of Ningbo First Hospital and Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
36
|
Naushad SM, Hussain T, Indumathi B, Samreen K, Alrokayan SA, Kutala VK. Machine learning algorithm-based risk prediction model of coronary artery disease. Mol Biol Rep 2018; 45:901-910. [DOI: 10.1007/s11033-018-4236-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/02/2018] [Indexed: 10/26/2022]
|
37
|
Feng Q, Hui J, Tang N, Liu YM, Zhong H, Li Z, Wang LM, Qu YY, Deng FM, He F. Unexpected role of the human cytomegalovirus contribute to essential hypertension in the Kazakh Chinese population of Xinjiang. Biosci Rep 2018; 38:BSR20171522. [PMID: 29752343 PMCID: PMC6019381 DOI: 10.1042/bsr20171522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/29/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection, chronic inflammation and oxidative stress, the renin-angiotensin system (RAS), endothelial function, and DNA methylation play roles in the pathogenesis of essential hypertension (EH); however, the mechanism by which HCMV predisposes patients to hypertension remain unclear. Our group previously demonstrated an association between EH and HCMV infection in Kazakh Chinese. Here, we investigated the relationship between HCMV infection and other clinicopathological features in 720 Kazakh individuals with or without hypertension (n=360 each; age: 18-80). Multiple linear and logistic regression analyses were used to determine the associations between HCMV infection, clinical characteristics, and EH. Notably, patients with EH, particularly those with HCMV infection, exhibited a marked increase in tumor necrosis factor-α (TNF-α) and 8-hydroxy-2-deoxyguanosine (8-OHDG) levels, but a decrease in endothelial nitric oxide synthase (eNOS) and renin levels. Similarly, elevated TNF-α and 8-OHDG levels were independent predictors of increased HCMV antibody titers, whereas eNOS and renin were negatively correlated with the latter. Moreover, serum angiotensin-converting enzyme (sACE, ACE) methylation was increased, whereas 11-β hydroxysteroid dehydrogenase 2 (HSD11β2; HSD3B2) methylation was decreased in patients with EH who were also infected with HCMV. A positive correlation between HSD3B2 methylation and HCMV IgG titer and blood pressure was additionally observed, whereas angiotensin-converting enzyme (ACE) methylation was inversely correlated with blood pressure. Collectively, these data indicate that HCMV may contribute to EH development in the Kazakh Chinese by increasing TNF-α and 8-OHDG levels, suppressing eNOS and renin, and manipulating HSD3B2 and ACE methylation.
Collapse
Affiliation(s)
- Qian Feng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Jing Hui
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yong-Min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Zhen Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - La-Mei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, China
| | - Yuan-Yuan Qu
- Department of Respiration Medicine, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xijiang, China
| | - Feng-Mei Deng
- Department of Pathophysiology, Chengdu Medical College, Sichuan, China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| |
Collapse
|
38
|
Kerr B, Leiva A, Farías M, Contreras-Duarte S, Toledo F, Stolzenbach F, Silva L, Sobrevia L. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction. Placenta 2018; 69:146-152. [PMID: 29699712 DOI: 10.1016/j.placenta.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
Metabolic-related diseases are attributed to a sedentary lifestyle and eating habits, and there is now an increased awareness regarding pregnancy as a preponderant window in the programming of adulthood health and disease. The developing foetus is susceptible to the maternal environment; hence, any unfavourable condition will result in foetal physiological adaptations that could have a permanent impact on its health. Some of these alterations are maintained via epigenetic modifications capable of modifying gene expression in metabolism-related genes. Children born to mothers with dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus, have a predisposition to develop metabolic alterations during adulthood. CpG methylation-associated alterations to the expression of several genes in the human placenta play a crucial role in the mother-to-foetus transfer of nutrients and macromolecules. Identification of epigenetic modifications in metabolism-related tissues of offspring from metabolic-altered pregnancies is essential to obtain insights into foetal programming controlling newborn, childhood, and adult metabolism. This review points out the importance of the foetal milieu in the programming and development of human disease and provides evidence of this being the underlying mechanism for the development of adulthood metabolic disorders in maternal dyslipidaemia, pregestational or gestational obesity, and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Bredford Kerr
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile.
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Farías
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Francisca Stolzenbach
- Laboratory of Biology, Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile; Faculty of Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
39
|
Akinyemiju T, Do AN, Patki A, Aslibekyan S, Zhi D, Hidalgo B, Tiwari HK, Absher D, Geng X, Arnett DK, Irvin MR. Epigenome-wide association study of metabolic syndrome in African-American adults. Clin Epigenetics 2018; 10:49. [PMID: 29643945 PMCID: PMC5891946 DOI: 10.1186/s13148-018-0483-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
Background The high prevalence of obesity among US adults has resulted in significant increases in associated metabolic disorders such as diabetes, dyslipidemia, and high blood pressure. Together, these disorders constitute metabolic syndrome, a clinically defined condition highly prevalent among African-Americans. Identifying epigenetic alterations associated with metabolic syndrome may provide additional information regarding etiology beyond current evidence from genome-wide association studies. Methods Data on metabolic syndrome and DNA methylation was assessed on 614 African-Americans from the Hypertension Genetic Epidemiology Network (HyperGEN) study. Metabolic syndrome was defined using the joint harmonized criteria, and DNA methylation was assessed using the Illumina HumanMethylation450K Bead Chip assay on DNA extracted from buffy coat. Linear mixed effects regression models were used to examine the association between CpG methylation at > 450,000 CpG sites and metabolic syndrome adjusted for study covariates. Replication using DNA from a separate sample of 69 African-Americans, as well as meta-analysis combining both cohorts, was conducted. Results Two differentially methylated CpG sites in the IGF2BP1 gene on chromosome 17 (cg06638433; p value = 3.10 × 10− 7) and the ABCG1 gene on chromosome 21 (cg06500161; p value = 2.60 × 10− 8) were identified. Results for the ABCG1 gene remained statistically significant in the replication dataset and meta-analysis. Conclusion Metabolic syndrome was consistently associated with increased methylation in the ABCG1 gene in the discovery and replication datasets, a gene that encodes a protein in the ATP-binding cassette transporter family and is involved in intra- and extra-cellular signaling and lipid transport. Electronic supplementary material The online version of this article (10.1186/s13148-018-0483-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomi Akinyemiju
- 1Department of Epidemiology, University of Kentucky, Lexington, KY USA
| | - Anh N Do
- 2Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Amit Patki
- 3Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Stella Aslibekyan
- 2Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Degui Zhi
- 4School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX USA.,5School of Public Health, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Bertha Hidalgo
- 2Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Hemant K Tiwari
- 3Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Devin Absher
- 6HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Xin Geng
- 4School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Donna K Arnett
- 7College of Public Health, University of Kentucky, Lexington, KY USA
| | - Marguerite R Irvin
- 2Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
40
|
Duan L, Hu J, Xiong X, Liu Y, Wang J. The role of DNA methylation in coronary artery disease. Gene 2018; 646:91-97. [DOI: 10.1016/j.gene.2017.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023]
|
41
|
Duan L, Liu C, Hu J, Liu Y, Wang J, Chen G, Li Z, Chen H. Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med 2017; 28:311-319. [PMID: 29366539 DOI: 10.1016/j.tcm.2017.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality. CAD has both genetic and environmental causes. In the past two decades, the understanding of epigenetics has advanced swiftly and vigorously. It has been demonstrated that epigenetic modifications are associated with the onset and progression of CAD. This review aims to improve the understanding of the epigenetic mechanisms closely related to CAD and to provide a novel perspective on the onset and development of CAD. Epigenetic changes include DNA methylation, histone modification, microRNA and lncRNA, which are interrelated with critical genes and influence the expression of those genes. In addition, miRNA plays a diverse role in the pathological process of CAD. Numerous studies have found that some cardiac-specific miRNAs have potential as certain diagnostic biomarkers and treatment targets for CAD. In this review, the aberrant epigenetic mechanisms that contribute to CAD will be discussed. We will also provide novel insight into the epigenetic mechanisms that target CAD.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Chao Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China.
| | - Guang Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Zhaoling Li
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| |
Collapse
|
42
|
Huang JY, Siscovick DS, Hochner H, Friedlander Y, Enquobahrie DA. Maternal gestational weight gain and DNA methylation in young women: application of life course mediation methods. Epigenomics 2017; 9:1559-1571. [PMID: 29106309 PMCID: PMC5704089 DOI: 10.2217/epi-2017-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
AIM To investigate the role of maternal gestational weight gain (GWG) and prepregnancy BMI on programming offspring DNA methylation. METHODS Among 589 adult (age = 32) women participants of the Jerusalem Perinatal Study, we quantified DNA methylation in five candidate genes. We used inverse probability-weighting and parametric g-formula to estimate direct effects of maternal prepregnancy BMI and GWG on methylation. RESULTS Higher maternal GWG, but not prepregnancy BMI, was inversely related to offspring ABCA1 methylation (β = -1.1% per quartile; 95% CI: -2.0, -0.3) after accounting for ancestry, parental and offspring exposures. Total and controlled direct effects were nearly identical suggesting included offspring exposures did not mediate this relationship. Results were robust to sensitivity analyses for missing data and model specification. CONCLUSION We find some support for epigenetic programming and highlight strengths and limitations of these methods relative to other prevailing approaches.
Collapse
Affiliation(s)
- Jonathan Y Huang
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, Biostatistics and Occupational Health; Institute for Health & Social Policy; McGill University, Montreal, QC, Canada
| | | | - Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | |
Collapse
|
43
|
Couture F, Sabbagh R, Kwiatkowska A, Desjardins R, Guay SP, Bouchard L, Day R. PACE4 Undergoes an Oncogenic Alternative Splicing Switch in Cancer. Cancer Res 2017; 77:6863-6879. [DOI: 10.1158/0008-5472.can-17-1397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/25/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
|
44
|
Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx017. [PMID: 29119010 PMCID: PMC5672952 DOI: 10.1093/eep/dvx017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 05/25/2023]
Abstract
Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
45
|
Hautefort A, Chesné J, Preussner J, Pullamsetti SS, Tost J, Looso M, Antigny F, Girerd B, Riou M, Eddahibi S, Deleuze JF, Seeger W, Fadel E, Simonneau G, Montani D, Humbert M, Perros F. Pulmonary endothelial cell DNA methylation signature in pulmonary arterial hypertension. Oncotarget 2017; 8:52995-53016. [PMID: 28881789 PMCID: PMC5581088 DOI: 10.18632/oncotarget.18031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/09/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and incurable pulmonary vascular disease. One of the primary origins of PAH is pulmonary endothelial dysfunction leading to vasoconstriction, aberrant angiogenesis and smooth muscle cell proliferation, endothelial-to-mesenchymal transition, thrombosis and inflammation. Our objective was to study the epigenetic variations in pulmonary endothelial cells (PEC) through a specific pattern of DNA methylation. DNA was extracted from cultured PEC from idiopathic PAH (n = 11), heritable PAH (n = 10) and controls (n = 18). DNA methylation was assessed using the Illumina HumanMethylation450 Assay. After normalization, samples and probes were clustered according to their methylation profile. Differential clusters were functionally analyzed using bioinformatics tools. Unsupervised hierarchical clustering allowed the identification of two clusters of probes that discriminates controls and PAH patients. Among 147 differential methylated promoters, 46 promoters coding for proteins or miRNAs were related to lipid metabolism. Top 10 up and down-regulated genes were involved in lipid transport including ABCA1, ABCB4, ADIPOQ, miR-26A, BCL2L11. NextBio meta-analysis suggested a contribution of ABCA1 in PAH. We confirmed ABCA1 mRNA and protein downregulation specifically in PAH PEC by qPCR and immunohistochemistry and made the proof-of-concept in an experimental model of the disease that its targeting may offer novel therapeutic options. In conclusion, DNA methylation analysis identifies a set of genes mainly involved in lipid transport pathway which could be relevant to PAH pathophysiology.
Collapse
Affiliation(s)
- Aurélie Hautefort
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Julie Chesné
- UMR_S 1087 CNRS UMR_6291, Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - Jens Preussner
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Soni S Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Jorg Tost
- Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Mario Looso
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Fabrice Antigny
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Barbara Girerd
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marianne Riou
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Saadia Eddahibi
- INSERM U1046, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France
| | | | - Werner Seeger
- Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Elie Fadel
- Hôpital Marie Lannelongue, Service de Chirurgie Thoracique et Vasculaire, Le Plessis Robinson, France
| | - Gerald Simonneau
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
- Univ Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
46
|
Promoter hypomethylation of microRNA223 gene is associated with atherosclerotic cerebral infarction. Atherosclerosis 2017; 263:237-243. [DOI: 10.1016/j.atherosclerosis.2017.06.924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023]
|
47
|
Istas G, Declerck K, Pudenz M, Szic KSV, Lendinez-Tortajada V, Leon-Latre M, Heyninck K, Haegeman G, Casasnovas JA, Tellez-Plaza M, Gerhauser C, Heiss C, Rodriguez-Mateos A, Berghe WV. Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Sci Rep 2017; 7:5120. [PMID: 28698603 PMCID: PMC5506022 DOI: 10.1038/s41598-017-03434-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Genome-wide Illumina InfiniumMethylation 450 K DNA methylation analysis was performed on blood samples from clinical atherosclerosis patients (n = 8) and healthy donors (n = 8) in the LVAD study (NCT02174133, NCT01799005). Multiple differentially methylated regions (DMR) could be identified in atherosclerosis patients, related to epigenetic control of cell adhesion, chemotaxis, cytoskeletal reorganisations, cell proliferation, cell death, estrogen receptor pathways and phagocytic immune responses. Furthermore, a subset of 34 DMRs related to impaired oxidative stress, DNA repair, and inflammatory pathways could be replicated in an independent cohort study of donor-matched healthy and atherosclerotic human aorta tissue (n = 15) and human carotid plaque samples (n = 19). Upon integrated network analysis, BRCA1 and CRISP2 DMRs were identified as most central disease-associated DNA methylation biomarkers. Differentially methylated BRCA1 and CRISP2 regions were verified by MassARRAY Epityper and pyrosequencing assays and could be further replicated in blood, aorta tissue and carotid plaque material of atherosclerosis patients. Moreover, methylation changes at BRCA1 and CRISP2 specific CpG sites were consistently associated with subclinical atherosclerosis measures (coronary calcium score and carotid intima media thickness) in an independent sample cohort of middle-aged men with subclinical cardiovascular disease in the Aragon Workers’ Health Study (n = 24). Altogether, BRCA1 and CRISP2 DMRs hold promise as novel blood surrogate markers for early risk stratification and CVD prevention.
Collapse
Affiliation(s)
- Geoffrey Istas
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Düsseldorf University, Düsseldorf, Germany.,Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| | - Ken Declerck
- Laboratory of Protein chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Antwerp (Wilrijk), Belgium
| | - Maria Pudenz
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katarzyna Szarc Vel Szic
- Division of Hematology, Oncology and Stem Cell Transplantation, Center for Translational Cell Research, The University Medical Center Freiburg, Freiburg, Germany
| | - Veronica Lendinez-Tortajada
- Genomic and Genetic Diagnosis Unit, Institute for Biomedical Research Hospital Clinic de Valencia, Valencia, Spain
| | | | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Jose A Casasnovas
- IIS de Aragon, Zaragoza, Spain.,Instituto Aragonés de Ciencias de Salud, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - Maria Tellez-Plaza
- Workgroup Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic de Valencia, Valencia, Spain
| | - Clarissa Gerhauser
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Düsseldorf University, Düsseldorf, Germany
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Düsseldorf University, Düsseldorf, Germany.,Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| | - Wim Vanden Berghe
- Laboratory of Protein chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Antwerp (Wilrijk), Belgium. .,Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium.
| |
Collapse
|
48
|
Bayoumy NMK, El-Shabrawi MM, Leheta OF, Omar HH. α-Adducin gene promoter DNA methylation and the risk of essential hypertension. Clin Exp Hypertens 2017; 39:764-768. [DOI: 10.1080/10641963.2017.1324481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nervana M. K. Bayoumy
- Physiology Department, College of Medicine, Center of Excellence in Thrombosis & Hemostasis, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed M. El-Shabrawi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ola Farouk Leheta
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hamdy Hassan Omar
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
49
|
Zhou S, Gao X, Sun J, Lin Z, Huang Y. DNA Methylation of thePDGFDGene Promoter Increases the Risk for Intracranial Aneurysms and Brain Arteriovenous Malformations. DNA Cell Biol 2017; 36:436-442. [PMID: 28346846 DOI: 10.1089/dna.2016.3499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Zhiqing Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
50
|
Li Y, Jiang B, Liang P, Tong Z, Liu M, Lv Q, Liu Y, Liu X, Tang Y, Xiao X. Nucleolin protects macrophages from oxLDL-induced foam cell formation through up-regulating ABCA1 expression. Biochem Biophys Res Commun 2017; 486:364-371. [PMID: 28315324 DOI: 10.1016/j.bbrc.2017.03.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
Our recent studies have indicated that nucleolin, as a multifunctional RNA-binding protein, exerts protective effects in the myocardial cells and endothelial cells under the condition of oxidative stress. However, the function of nucleolin and its potential mechanism in macrophage-derived foam cell formation remain largely unexplored. ApoE-/- mice were fed with a high-fat diet (HFD) for 10-24 weeks. Protein expression was measured by western blotting or immunofluorescence, and gene expression at the mRNA level was detected by qRT-PCR. The level of lipid in macrophages was examined by Oil Red O staining, high-performance liquid chromatography (HPLC) and NBD-cholesterol. Actinomycin D (Act D) was used to determine the stability of ABCA1 mRNA in macrophages. The interaction of nucleolin with ABCA1 mRNA was assessed using co-immunoprecipitation (co-IP). The aortas advanced plaques demonstrated significantly lower levels of nucleolin protein compared with early plaques in ApoE-/- mice, in which the macrophage foam cells occupied main body. Nucleolin expression at the mRNA and protein levels in RAW264.7 macrophages was significantly reduced by oxidized low-density lipoprotein (oxLDL) in a dose- and time-dependent manner. Furthermore, nucleolin overexpression markedly attenuated lipid accumulation in oxLDL-challenged macrophages through increasing cholesterol efflux. In addition, nucleolin overexpression significantly increased the expression of ATP-binding cassette transporter A1 (ABCA1) at the mRNA and protein levels without affecting expressions of scavenger receptors (SR)-A, SR-B1, CD36 and ATP-binding cassette transporter G1 (ABCG1) at the mRNA level. Moreover, nucleolin overexpression increased the stability of ABCA1 mRNA in macrophages, whereas nucleolin ablation abrogated the oxLDL-induced up-regulation of ABCA1. The up-regulation of ABCA1 by nucleolin resulted from its protein-RNA interaction. Our data suggested that nucleolin inhibited foam cell formation through enhancing stability of ABCA1 mRNA and subsequently increasing cholesterol efflux.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biological Transport/drug effects
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cell Differentiation
- Cell Line
- Cholesterol/metabolism
- Diet, High-Fat
- Dose-Response Relationship, Drug
- Foam Cells/drug effects
- Foam Cells/metabolism
- Foam Cells/pathology
- Gene Expression Regulation
- Hyperlipidemias/etiology
- Hyperlipidemias/genetics
- Hyperlipidemias/metabolism
- Hyperlipidemias/pathology
- Lipoproteins, LDL/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Knockout
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Signal Transduction
- Nucleolin
Collapse
Affiliation(s)
- Yuanbin Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China.
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhongyi Tong
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Qinglan Lv
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Yanjuan Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Xuanyou Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Xianzhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|