1
|
Crouse MS, Cushman RA, Redifer CA, Neville BW, Dahlen CR, Caton JS, Diniz WJS, Ward AK. International Symposium on Ruminant Physiology: One-carbon metabolism in beef cattle throughout the production cycle. J Dairy Sci 2024:S0022-0302(24)01390-0. [PMID: 39701525 DOI: 10.3168/jds.2024-25784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
One-carbon metabolism (OCM) is a series of connected pathways involving the methionine-folate cycles, transsulfuration, polyamine synthesis, nucleotide synthesis, free-radical scavenging, and energy metabolism. These pathways functionally depend upon amino acids (methionine, glycine, and serine), vitamins (folate, B2, B6, and B12), and minerals (sulfur, cobalt, and zinc). Growing bodies of research indicate that in beef cattle, physiological stage, nutritional plane, diet, species (Bos taurus vs. indicus), rumen protected vs. not, individual vs. combination supplementation and method of delivery all affect the efficacy of one-carbon metabolite supplementation. Infusion studies showed that supplementing methionine to growing steers improved N retention and altered hepatic activity of methionine synthase; however, only supplementing methionine without folate decreased folate concentrations in circulation. When heifers were supplemented with methionine, choline, folate, and B12 for the first 63 d of gestation, metabolomic analysis revealed increasing OCM analytes to the heifer, but a buffering effect to the fetus with minimal changes seen in hepatic metabolite abundance. Methionine supplementation to heifers during the periconceptual period increased circulating methionine but shifted fetal hepatic metabolism toward the transsulfuration pathway. Periconceptual methionine supplementation to cows increased gain and total-tract digestibility in calves post-weaning. In vitro supplementation of choline to beef cattle embryos results in calves of increased birth and weaning weight. Overall, these data demonstrate that OCM is altered in those cattle receiving one-carbon metabolites, and that a metabolic programming response is elicited in offspring receiving supplements in vitro or during early gestation. Research should be considered to maximize efficiency of beef cattle production at all stages by identifying limiting metabolites or enzymes to maximize efficiency of OCM in beef cattle, as well as to understand the concerted effects of multiple one-carbon metabolites to balance the stoichiometry of the pathway.
Collapse
Affiliation(s)
- Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA..
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Colby A Redifer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Bryan W Neville
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | | | - Joel S Caton
- North Dakota State University, Fargo, ND 58102, USA
| | | | | |
Collapse
|
2
|
Roidor C, Chebli K, Borensztein M. [Epigenetic reprogramming, germline and genomic imprinting]. Med Sci (Paris) 2024; 40:892-903. [PMID: 39705560 DOI: 10.1051/medsci/2024177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
The memory of cellular identity is crucial for the correct development of an individual and is maintained throughout life by the epigenome. Chromatin marks, such as DNA methylation and histone modifications, ensure the stability of gene expression programmes over time and through cell division. Loss of these marks can lead to severe pathologies, including cancer and developmental syndromes. However, reprogramming of cellular identity is also a natural phenomenon that occurs early in mammalian development, particularly in the germ line, which enables the production of mature and functional gametes. The germ line transmits genetic and epigenetic information to the next generation, contributing to the survival of the species. Primordial germ cells (PGCs) undergo extensive chromatin remodelling, including global DNA demethylation and erasure of the parental imprints. This review introduces the concept of epigenetic reprogramming, its discovery and key steps, as well as the transcriptional and chromatin changes that accompany germ cell formation in mice. Finally, we discuss the epigenetic mechanisms of genomic imprinting, its discovery, regulation and relevance to human disease.
Collapse
Affiliation(s)
- Clara Roidor
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Karim Chebli
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
3
|
Leanza C, Cannarella R, Barbagallo F, Gusmano C, Calogero AE. Does Sperm SNRPN Methylation Change with Fertility Status and Age? A Systematic Review and Meta-Regression Analysis. Biomedicines 2024; 12:445. [PMID: 38398047 PMCID: PMC10886537 DOI: 10.3390/biomedicines12020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Background: The Small Nuclear Ribonucleoprotein Polypeptide N (SNRPN) gene is a paternally expressed imprinted gene, whose abnormal methylation appears to be associated with syndromes associated with the use of assisted reproductive techniques (ART), such as Angelman and Prader-Willi. Data present in the literature suggest the association between aberrant sperm SNRPN gene methylation and abnormal sperm parameters. The latest meta-analysis on the methylation pattern of this gene in spermatozoa of infertile patients published in 2017 reported a higher degree of methylation in the spermatozoa of infertile patients compared to fertile controls. Objectives: Here we provide an updated and comprehensive systematic review and meta-analysis of the sperm methylation pattern of the SNRPN gene in patients with abnormal sperm parameters/infertility compared to men with normal sperm parameters/fertile. For the first time in the literature, we performed a meta-regression analysis to evaluate whether age or sperm concentration could influence the methylation status of this gene at the sperm level. Methods: This meta-analysis was registered in PROSPERO (n. CRD42023397056). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P) and the MOOSE guidelines for meta-analyses and systematic reviews of observational studies were strictly followed in our meta-analysis. According to our Population Exposure Comparison Outcome (PECO) question, we included data from original articles assessing the levels of SNRPN gene methylation at the sperm level in infertile patients or patients with abnormalities in one or more sperm parameters compared to fertile or normozoospermic men. Results: Only six of 354 screened studies were included in the quantitative synthesis. Our analysis showed significantly higher levels of SNRPN gene methylation in patients compared to controls. However, significant heterogeneity was found between studies. In sensitivity analysis, no studies were sensitive enough to skew the results. The Egger test showed no publication bias. In the meta-regression analysis, the results were independent of age and sperm concentration in the overall population. The same results were found in the control group. However, when analyzing the patient group, a direct correlation was found between SNRPN methylation and age, indicating that the degree of methylation of the SNRPN gene increases with advancing age. Conclusions: Fertility status or abnormality of sperm parameters is associated with a change in the methylation pattern of the SNRPN gene, with higher levels found in infertile patients or those with abnormal sperm parameters compared to fertile men or men with normal sperm parameters. In the group of infertile patients/patients with abnormal sperm parameters, age was directly correlated to the degree of SNRPN methylation, highlighting the presence of a mechanism that explains the age-related altered sperm quality and the risk of ART. Despite some limitations present in the analyzed studies, our results support the inclusion of SNRPN methylation in the genetic panel of prospective studies aimed at identifying the most representative and cost-effective genes to analyze in couples who want to undergo ART.
Collapse
Affiliation(s)
- Claudia Leanza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (C.L.); (F.B.); (C.G.); (A.E.C.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (C.L.); (F.B.); (C.G.); (A.E.C.)
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (C.L.); (F.B.); (C.G.); (A.E.C.)
| | - Carmelo Gusmano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (C.L.); (F.B.); (C.G.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (C.L.); (F.B.); (C.G.); (A.E.C.)
| |
Collapse
|
4
|
Verruma CG, Santos RS, Marchesi JAP, Sales SLA, Vila RA, Rios ÁFL, Furtado CLM, Ramos ES. Dynamic methylation pattern of H19DMR and KvDMR1 in bovine oocytes and preimplantation embryos. J Assist Reprod Genet 2024; 41:333-345. [PMID: 38231285 PMCID: PMC10894807 DOI: 10.1007/s10815-023-03011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE This study aimed to evaluate the epigenetic reprogramming of ICR1 (KvDMR1) and ICR2 (H19DMR) and expression of genes controlled by them as well as those involved in methylation, demethylation, and pluripotency. METHODS We collected germinal vesicle (GV) and metaphase II (MII) oocytes, and preimplantation embryos at five stages [zygote, 4-8 cells, 8-16 cells, morula, and expanded blastocysts (ExB)]. DNA methylation was assessed by BiSeq, and the gene expression was evaluated using qPCR. RESULTS H19DMR showed an increased DNA methylation from GV to MII oocytes (68.04% and 98.05%, respectively), decreasing in zygotes (85.83%) until morula (61.65%), and ExB (63.63%). H19 and IGF2 showed increased expression in zygotes, which decreased in further stages. KvDMR1 was hypermethylated in both GV (71.82%) and MII (69.43%) and in zygotes (73.70%) up to morula (77.84%), with a loss of methylation at the ExB (36.64%). The zygote had higher expression of most genes, except for CDKN1C and PHLDA2, which were highly expressed in MII and GV oocytes, respectively. DNMTs showed increased expression in oocytes, followed by a reduction in the earliest stages of embryo development. TET1 was downregulated until 4-8-cell and upregulated in 8-16-cell embryos. TET2 and TET3 showed higher expression in oocytes, and a downregulation in MII oocytes and 4-8-cell embryo. CONCLUSION We highlighted the heterogeneity in the DNA methylation of H19DMR and KvDMR1 and a dynamic expression pattern of genes controlled by them. The expression of DNMTs and TETs genes was also dynamic owing to epigenetic reprogramming.
Collapse
Affiliation(s)
- Carolina G Verruma
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renan S Santos
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Jorge A P Marchesi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sarah L A Sales
- Postgraduate Program in Physiology and Pharmacology, Drug Research and Development Center (NPDM), Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Reginaldo A Vila
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Álvaro F L Rios
- Biotechnology Laboratory, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Goitacazes Campus, Rio de Janeiro, Brazil
| | - Cristiana L M Furtado
- Experimental Biology Center, Graduate Program in Medical Sciences, University of Fortaleza - UNIFOR, Fortaleza, CE, 60811-905, Brazil
- Drug Research and Development Center (NPDM), Postgraduate Program in Translational Medicine, Federal University of Ceara (UFC), Fortaleza, CE, 60430-275, Brazil
| | - Ester S Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
5
|
Adhikari D, Lee IW, Yuen WS, Carroll J. Oocyte mitochondria – Key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod 2022; 106:366-377. [DOI: 10.1093/biolre/ioac024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The development of oocytes and early embryos is dependent on mitochondrial ATP production. This reliance on mitochondrial activity, together with the exclusively maternal inheritance of mitochondria in development, places mitochondria as central regulators of both fertility and transgenerational inheritance mechanisms. Mitochondrial mass and mtDNA content massively increase during oocyte growth. They are highly dynamic organelles and oocyte maturation is accompanied by mitochondrial trafficking around subcellular compartments. Due to their key roles in generation of ATP and reactive oxygen species, oocyte mitochondrial defects have largely been linked with energy deficiency and oxidative stress. Pharmacological treatments and mitochondrial supplementation have been proposed to improve oocyte quality and fertility by enhancing ATP generation and reducing reactive oxygen species levels. More recently, the role of mitochondria-derived metabolites in controlling epigenetic modifiers has provided a mechanistic basis for mitochondria-nuclear crosstalk, allowing adaptation of gene expression to specific metabolic states. Here, we discuss the multi-faceted mechanisms by which mitochondrial function influence oocyte quality, as well as longer-term developmental events within and across generations.
Collapse
Affiliation(s)
| | - In-won Lee
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
6
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
7
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
8
|
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel) 2021; 12:genes12081214. [PMID: 34440388 PMCID: PMC8394515 DOI: 10.3390/genes12081214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in ‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| |
Collapse
|
9
|
Adrian-Kalchhauser I, Sultan SE, Shama LNS, Spence-Jones H, Tiso S, Keller Valsecchi CI, Weissing FJ. Understanding 'Non-genetic' Inheritance: Insights from Molecular-Evolutionary Crosstalk. Trends Ecol Evol 2020; 35:1078-1089. [PMID: 33036806 DOI: 10.1016/j.tree.2020.08.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022]
Abstract
Understanding the evolutionary and ecological roles of 'non-genetic' inheritance (NGI) is daunting due to the complexity and diversity of epigenetic mechanisms. We draw on insights from molecular and evolutionary biology perspectives to identify three general features of 'non-genetic' inheritance systems: (i) they are functionally interdependent with, rather than separate from, DNA sequence; (ii) precise mechanisms vary phylogenetically and operationally; and (iii) epigenetic elements are probabilistic, interactive regulatory factors and not deterministic 'epialleles' with defined genomic locations and effects. We discuss each of these features and offer recommendations for future empirical and theoretical research that implements a unifying inherited gene regulation (IGR) approach to studies of 'non-genetic' inheritance.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Centre for Fish and Wildlife Health, Department for Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List, Germany
| | - Helen Spence-Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St. Andrews, UK
| | - Stefano Tiso
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | | | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
10
|
Hu W, Wang G, He B, Hu S, Luo H, Wen Y, Chen L, Wang H. Effects of prenatal nicotine exposure on hepatic glucose and lipid metabolism in offspring rats and its hereditability. Toxicology 2020; 432:152378. [PMID: 31972234 DOI: 10.1016/j.tox.2020.152378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/26/2019] [Accepted: 01/18/2020] [Indexed: 12/18/2022]
Abstract
Prenatal nicotine exposure (PNE) could induce an increased susceptibility to multiple chronic diseases in adult offspring, that mainly caused by intrauterine maternal glucocorticoid (GC) over-exposure. We investigated the changes and inheritability of hepatic glucose and lipid metabolism caused by PNE, to decipher the possible intrauterine programming mechanism. Pregnant Wistar rats were administered subcutaneously with 2 mg/kg·d nicotine from gestational day (GD) 9∼20, and second-generation (F2) were set according to the mating between control females and PNE males. The results showed that serum phenotypes and hepatic enzymes of glucose and lipid metabolism were lower in F1 fetal rats of PNE but higher in the F1 adult rats. Meanwhile, the activated states of hepatic glucocorticoid-activation system, including type 1 and type 2 11β-hydroxysteroid dehydrogenases (Hsd11b1/2), nuclear receptor subfamily 3, group C, member 1 (Nr3c1) and CCAAT enhancer binding protein α (Cebpa), were positively correlated with serum corticosterone levels but negatively correlated with the histone acetylation (H3K27ac) and expression levels of insulin-like growth factor 1 (Igf1) before and after birth. Furthermore, serum phenotypes and hepatic enzymes of glucose and lipid metabolism were lower in both F2 fetal and adult rats of PNE, which were consistent with the hepatic changes of GC-IGF1 axis and the glucocorticoid-activation system. In conclusion, PNE could lead to inheritable changes of hepatic glucose and lipid metabolism, which are related to the intrauterine programming of GC-IGF1 axis induced by the glucocorticoid-activation system.
Collapse
Affiliation(s)
- Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Guihua Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Bo He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
11
|
Wang L, Hand JM, Fu L, Smith GW, Yao J. DNA methylation and miRNA-1296 act in concert to mediate spatiotemporal expression of KPNA7 during bovine oocyte and early embryonic development. BMC DEVELOPMENTAL BIOLOGY 2019; 19:23. [PMID: 31787077 PMCID: PMC6886206 DOI: 10.1186/s12861-019-0204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/27/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Epigenetic regulation of oocyte-specific maternal factors is essential for oocyte and early embryonic development. KPNA7 is an oocyte-specific maternal factor, which controls transportation of nuclear proteins important for early embryonic development. To elucidate the epigenetic mechanisms involved in the controlled expression of KPNA7, both DNA methylation associated transcriptional silencing and microRNA (miRNA)-mediated mRNA degradation of KPNA7 were examined. RESULTS Comparison of DNA methylation profiles at the proximal promoter of KPNA7 gene between oocyte and 6 different somatic tissues identified 3 oocyte-specific differentially methylated CpG sites. Expression of KPNA7 mRNA was reintroduced in bovine kidney-derived CCL2 cells after treatment with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza-CdR). Analysis of the promoter region of KPNA7 gene in CCL2 cells treated with 5-Aza-CdR showed a lighter methylation rate in all the CpG sites. Bioinformatic analysis predicted 4 miRNA-1296 binding sites in the coding region of KPNA7 mRNA. Ectopic co-expression of miRNA-1296 and KPNA7 in HEK293 cells led to reduced expression of KPNA7 protein. Quantitative real time PCR (RT-qPCR) analysis revealed that miRNA-1296 is expressed in oocytes and early stage embryos, and the expression reaches a peak level in 8-cell stage embryos, coincident with the time of embryonic genome activation and the start of declining of KPNA7 expression. CONCLUSIONS These results suggest that DNA methylation may account for oocyte-specific expression of KPNA7, and miRNA-1296 targeting the coding region of KPNA7 is a potential mechanism for KPNA7 transcript degradation during the maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jacqelyn M Hand
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Liyuan Fu
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Departments of Animal Science and Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
12
|
Tesarik J. Acquired Sperm DNA Modifications: Causes, Consequences, and Potential Solutions. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA of human spermatozoa can be subject to various kinds of modifications acquired throughout life. Put simply, two basic types of acquired sperm DNA modifications can be distinguished: genetic and epigenetic. Genetic modifications cause alterations of the DNA sequence and mainly result from the formation of breakpoints leading to sperm DNA fragmentation. Epigenetic modifications include a vast spectrum of events that influence the expression of different genes without altering their DNA sequence. Both the genetic and the epigenetic modifications of sperm DNA can negatively influence embryonic development, cause miscarriages, and be the origin of different health problems for the offspring. As to sperm DNA fragmentation, reliable diagnostic methods are currently available. On the other hand, the detection of potentially harmful epigenetic modifications in spermatozoa is a much more complicated issue. Different treatment options can be chosen to solve problems associated with sperm DNA fragmentation. Some are relatively simple and noninvasive, based on oral treatments with antioxidants and other agents, depending on the underlying cause. In other cases, the recourse to different micromanipulation-assisted in vitro fertilisation techniques is necessary to select spermatozoa with minimal DNA damage to be injected into oocytes. The treatment of cases with epigenetic DNA modifications is still under investigation. Preliminary data suggest that some of the techniques used in cases of extensive DNA fragmentation can also be of help in those of epigenetic modifications; however, further progress will depend on the availability of more reliable diagnostic methods with which it will be possible to evaluate the effects of different therapeutic interventions.
Collapse
|
13
|
Bell AM, Hellmann JK. An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:97-118. [PMID: 36046014 PMCID: PMC9427003 DOI: 10.1146/annurev-ecolsys-110218-024613] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multi-generational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Program in Neuroscience and Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
14
|
Lobo J, Gillis AJM, Jerónimo C, Henrique R, Looijenga LHJ. Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic. Int J Mol Sci 2019; 20:E258. [PMID: 30634670 PMCID: PMC6359418 DOI: 10.3390/ijms20020258] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 02/03/2023] Open
Abstract
Current (high throughput omics-based) data support the model that human (malignant) germ cell tumors are not initiated by somatic mutations, but, instead through a defined locked epigenetic status, representative of their cell of origin. This elegantly explains the role of both genetic susceptibility as well as environmental factors in the pathogenesis, referred to as 'genvironment'. Moreover, it could also explain various epidemiological findings, including the rising incidence of this type of cancer in Western societies. In addition, it allows for identification of clinically relevant and informative biomarkers both for diagnosis and follow-up of individual patients. The current status of these findings will be discussed, including the use of high throughput DNA methylation profiling for determination of differentially methylated regions (DMRs) as well as chromosomal copy number variation (CNV). Finally, the potential value of methylation-specific tumor DNA fragments (i.e., XIST promotor) as well as embryonic microRNAs as molecular biomarkers for cancer detection in liquid biopsies will be presented.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Ad J M Gillis
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal;.
| | - Leendert H J Looijenga
- Laboratory of Experimental Patho-Oncology (LEPO), Josephine Nefkens Building, Erasmus MC, Department of Pathology, University Medical Center, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| |
Collapse
|
15
|
Morgan HL, Watkins AJ. Transgenerational Impact of Environmental Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:71-89. [PMID: 31471795 DOI: 10.1007/978-3-030-23633-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to adapt to changing environmental conditions is critical for any species to survive. Many environmental changes occur too rapidly for an organism's genome to adapt in time. Accordingly, being able to modify either its own phenotype, or the phenotype of its offspring to better suit future anticipated environmental conditions could afford an organism a significant advantage. However, a range of animal models and human epidemiological data sets are now showing that environmental factors such as changes in the quality or quantity of an individual's diet, temperature, stress or exposure to pollutants can all adversely affect the quality of parental gametes, the development of the preimplantation embryo and the health and wellbeing of offspring over multiple generations. This chapter will examine transgenerational effects of both maternal and paternal environmental factors on offspring development and wellbeing in both human and animal model studies. Changes in the epigenetic status of either parental or grand-parental gametes provide one candidate mechanism through which the impacts of environmental experience can be passed from one generation to another. This chapter will therefore also focus on the impact of parental and grand-parental diet on epigenetic transgenerational inheritance and offspring phenotype.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
16
|
Abstract
Epigenetic mechanisms allow the establishment and maintenance of multiple cellular phenotypes from a single genomic code. At the initiation of development, the oocyte and spermatozoa provide their fully differentiated chromatin that soon after fertilization undergo extensive remodeling, resulting in a totipotent state that can then drive cellular differentiation towards all cell types. These remodeling involves different epigenetic modifications, including DNA methylation, post-translational modifications of histones, non-coding RNAs, and large-scale chromatin conformation changes. Moreover, epigenetic remodeling is responsible for reprogramming somatic cells to totipotency upon somatic cell nuclear transfer/cloning, which is often incomplete and inefficient. Given that environmental factors, such as assisted reproductive techniques (ARTs), can affect epigenetic remodeling, there is interest in understanding the mechanisms driving these changes. We describe and discuss our current understanding of mechanisms responsible for the epigenetic remodeling that ensues during preimplantation development of mammals, presenting findings from studies of mouse embryos and when available comparing them to what is known for human and cattle embryos.
Collapse
Affiliation(s)
- Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Rafael V Sampaio
- Department of Animal Science, University of California Davis, Davis, CA, United States.,Department of Animal Science, University of California Davis, Davis, CA, United States
| |
Collapse
|
17
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Pegoraro M, Marshall H, Lonsdale ZN, Mallon EB. Do social insects support Haig's kin theory for the evolution of genomic imprinting? Epigenetics 2018; 12:725-742. [PMID: 28703654 PMCID: PMC5739101 DOI: 10.1080/15592294.2017.1348445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.
Collapse
Affiliation(s)
- Mirko Pegoraro
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Hollie Marshall
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Zoë N Lonsdale
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Eamonn B Mallon
- a Department of Genetics and Genome Biology , University of Leicester , UK
| |
Collapse
|
19
|
SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 2018; 99:252-262. [PMID: 29462489 PMCID: PMC6044325 DOI: 10.1093/biolre/ioy036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
DNA methylation is an essential epigenetic mark crucial for normal mammalian development. This modification controls the expression of a unique class of genes, designated as imprinted, which are expressed monoallelically and in a parent-of-origin-specific manner. Proper parental allele-specific DNA methylation at imprinting control regions (ICRs) is necessary for appropriate imprinting. Processes that deregulate DNA methylation of imprinted loci cause disease in humans. DNA methylation patterns dramatically change during mammalian development: first, the majority of the genome, with the exception of ICRs, is demethylated after fertilization, and subsequently undergoes genome-wide de novo DNA methylation. Secondly, after primordial germ cells are specified in the embryo, another wave of demethylation occurs, with ICR demethylation occurring late in the process. Lastly, ICRs reacquire DNA methylation imprints in developing germ cells. We describe the past discoveries and current literature defining these crucial dynamics in relation to imprinted genes and the rest of the genome.
Collapse
Affiliation(s)
- Jennifer M SanMiguel
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Western PS. Epigenomic drugs and the germline: Collateral damage in the home of heritability? Mol Cell Endocrinol 2018; 468:121-133. [PMID: 29471014 DOI: 10.1016/j.mce.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
The testis and ovary provide specialised environments that nurture germ cells and facilitate their maturation, culminating in the production of mature gametes that can found the following generation. The sperm and egg not only transmit genetic information, but also epigenetic modifications that affect the development and physiology of offspring. Importantly, the epigenetic information contained in mature sperm and oocytes can be influenced by a range of environmental factors, such as diet, chemicals and drugs. An increasing range of studies are revealing how gene-environment interactions are mediated through the germline. Outside the germline, altered epigenetic state is common in a range of diseases, including many cancers. As epigenetic modifications are reversible, pharmaceuticals that directly target epigenetic modifying proteins have been developed and are delivering substantial benefits to patients, particularly in oncology. While providing the most effective patient treatment is clearly the primary concern, some patients will want to conceive children after treatment. However, the impacts of epigenomic drugs on the male and female gametes are poorly understood and whether these drugs will have lasting effects on patients' germline epigenome and subsequent offspring remains largely undetermined. Currently, evidence based clinical guidelines for use of epigenomic drugs in patients of reproductive age are limited in this context. Developing a deeper understanding of the epigenetic mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is required to determine how specific epigenomic drugs might affect the germline and inheritance. Understanding these potential effects will facilitate the development of informed clinical guidelines appropriate for the use of epigenomic drugs in patients of reproductive age, ultimately improving the safety of these therapies in the clinic.
Collapse
Affiliation(s)
- Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
21
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
22
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
23
|
The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception? Stem Cell Rev Rep 2017; 12:276-84. [PMID: 26892267 DOI: 10.1007/s12015-016-9648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essential contribution of multiple maternal factors to early mammalian development is rapidly altering the view that mammals have a unique pattern of development compared to other species. Currently, over 60 maternal-effect mutations have been described in mammalian systems, including critical determinants of pluripotency. This data, combined with the evidence for lineage bias and differential gene expression in early blastomeres, strongly suggests that mammalian development is to some extent mosaic from the four-cell stage onward.
Collapse
|
24
|
Luo J, Zhang Y, Guo Y, Tang H, Wei H, Liu S, Wang X, Wang L, Zhou P. TRIM28 regulates Igf2-H19 and Dlk1-Gtl2 imprinting by distinct mechanisms during sheep fibroblast proliferation. Gene 2017; 637:152-160. [PMID: 28947302 DOI: 10.1016/j.gene.2017.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
Abstract
DNA methylation is an essential epigenetic modification involved in regulating gene expression and maintaining epigenetic information across generations. However, how these marks are recognized and interpreted to activate or repress imprinted genes is not fully understood. Preliminary evidence describes the transcriptional repressor TRIM28 as a key regulator of imprinted gene expression during and after early genome-wide reprogramming. Aberrant expression of imprinted genes maybe one possible cause of incomplete epigenetic reprogramming and low efficiency in somatic cell nuclear transfer. Here, we perform a series of experiments to determine whether knockdown of Trim28 alters imprinted gene expression and DMR methylation in sheep embryonic fibroblast (SEF) cells. siRNA-mediated Trim28 silencing in SEF cells resulted in significantly decreased expression of Gtl2 to 30% and increased expression of Dlk1 (~1.7-fold). Moreover, knocking down Trim28 induced DNA methylation at the IG-DMR and the Gtl2 promoter was disrupted. Here, we uncover an important role for Trim28 in the maintenance of DNA methylation at IG-DMR during replication-dependent dilution of methylated cytosine during cellular proliferation. Unlike Dlk1-Gtl2 however, knocking down Trim28 does not affect DMR methylation in the Igf2-H19 gene cluster, yet results in increased expression of Igf2 and H19. Interestingly, Peg3 expression decreased by 60% in Trim28 knockdown cells. PEG3 as a transcriptional repressor to the H19-ICR that interacts with the co-repressor protein TRIM28 through KRAB-A. Trim28 therefore appears to control the Igf2-H19 imprinted cluster indirectly via PEG3, which is distinct from its classical role in preserving DNA methylation during DNA replication. Our results therefore indicate that Trim28 regulates imprinted gene expression through at least two distinct mechanisms during cells proliferation.
Collapse
Affiliation(s)
- Jian Luo
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Yiyuan Zhang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Yanhua Guo
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Hong Tang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Haixia Wei
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shouren Liu
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinhua Wang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Limin Wang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; Department of Animal Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269, USA
| | - Ping Zhou
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
25
|
Song X, Li F, Jiang Z, Sun Y, Li H, Gao S, Zhang L, Xue B, Zhao G, Li J, Liu Z, He H, Huan Y. Imprinting disorder in donor cells is detrimental to the development of cloned embryos in pigs. Oncotarget 2017; 8:72363-72374. [PMID: 29069793 PMCID: PMC5641136 DOI: 10.18632/oncotarget.20390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023] Open
Abstract
Imprinting disorder during somatic cell nuclear transfer usually leads to the abnormality of cloned animals and low cloning efficiency. However, little is known about the role of donor cell imprinting in the development of cloned embryos. Here, we demonstrated that the imprinting (H19/Igf2) in porcine fetus fibroblasts derived from the morphologically abnormal cloned fetuses (the abnormal imprinting group) was more hypomethylated, and accordingly, significantly higher H19 transcription and lower Igf2 expression occurred in comparison with those in fibroblasts derived from morphologically normal cloned fetuses (the normal imprinting group) or donor fetus fibroblasts (the control group). When these fibroblasts were used as donor cells, the abnormal imprinting group displayed an even lower imprinting methylation level, in correspondence to the significantly downregulated expression of Dnmt1, Dnmt3a and Zfp57, and a markedly reduced blastocyst rate, while the normal imprinting group took on the similar patterns of imprinting, gene expression and embryo development to the control group. When 5-aza-dC was applied to reduce the fibroblasts imprinting methylation level in the normal imprinting group, cloned embryos displayed the more severely impaired imprinting and significantly lower blastocyst rate. While the upregulated H19 transcription in the abnormal imprinting group was knocked down, the imprinting statuses were partly rescued, and the cleavage and blastocyst rates significantly increased in cloned embryos. In all, donor cell imprinting disorder reduced the developmental efficiency of cloned embryos. This work provides a new insight into understanding the molecular mechanism of donor cells regulating the cloned embryo development.
Collapse
Affiliation(s)
- Xuexiong Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Fangzheng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhongling Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yueping Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Huatao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Shansong Gao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Liping Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Binghua Xue
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Guimin Zhao
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
26
|
Morales-Lara D, De-la-Peña C, Murillo-Rodríguez E. Dad's Snoring May Have Left Molecular Scars in Your DNA: the Emerging Role of Epigenetics in Sleep Disorders. Mol Neurobiol 2017; 55:2713-2724. [PMID: 28155201 DOI: 10.1007/s12035-017-0409-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
The sleep-wake cycle is a biological phenomena under the orchestration of neurophysiological, neurochemical, neuroanatomical, and genetical mechanisms. Moreover, homeostatic and circadian processes participate in the regulation of sleep across the light-dark period. Further complexity of the understanding of the genesis of sleep engages disturbances which have been characterized and classified in a variety of sleep-wake cycle disorders. The most prominent sleep alterations include insomnia as well as excessive daytime sleepiness. On the other side, several human diseases have been linked with direct changes in DNA, such as chromatin configuration, genomic imprinting, DNA methylation, histone modifications (acetylation, methylation, ubiquitylation or sumoylation, etc.), and activating RNA molecules that are transcribed from DNA but not translated into proteins. Epigenetic theories primarily emphasize the interaction between the environment and gene expression. According to these approaches, the environment to which mammals are exposed has a significant role in determining the epigenetic modifications occurring in chromosomes that ultimately would influence not only development but also the descendants' physiology and behavior. Thus, what makes epigenetics intriguing is that, unlike genetic variation, modifications in DNA are altered directly by the environment and, in some cases, these epigenetic changes may be inherited by future generations. Thus, it is likely that epigenetic phenomena might contribute to the homeostatic and/or circadian control of sleep and, possibly, have an undescribed link with sleep disorders. An exciting new horizon of research is arising between sleep and epigenetics since it represents the relevance of the study of how the genome learns from its experiences and modulates behavior, including sleep.
Collapse
Affiliation(s)
- Daniela Morales-Lara
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5, A.P. 96 Cordemex, C.P. 97310, Mérida, Yucatán, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C, Mérida, Yucatán, Mexico
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5, A.P. 96 Cordemex, C.P. 97310, Mérida, Yucatán, Mexico. .,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico. .,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.
| |
Collapse
|
27
|
Ross PJ, Canovas S. Mechanisms of epigenetic remodelling during preimplantation development. Reprod Fertil Dev 2017; 28:25-40. [PMID: 27062872 DOI: 10.1071/rd15365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in understanding the nature and mechanisms of epigenetic remodelling that ensue after fertilisation.
Collapse
Affiliation(s)
- Pablo Juan Ross
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramación Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Campanillas, Malaga 29590, Spain
| |
Collapse
|
28
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
29
|
Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol 2016; 214:559-65. [PMID: 26829510 DOI: 10.1016/j.ajog.2016.01.182] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 01/22/2016] [Indexed: 01/18/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous chemicals, or mixtures of chemicals, that can interfere with any aspect of hormone action. The field of endocrine disruption is historically rooted in wildlife biology and reproductive endocrinology where EDCs are demonstrated contributors to infertility, premature puberty, endometriosis, and other disorders. Recently, EDCs have been implicated in metabolic syndrome and obesity. Adipose tissue is a true endocrine organ and, therefore, an organ that is highly susceptible to disturbance by EDCs. A subset of EDCs, called "obesogens," promote adiposity by altering programming of fat cell development, increasing energy storage in fat tissue, and interfering with neuroendocrine control of appetite and satiety. Obesity adds more than $200 billion to US healthcare costs and the number of obese individuals continues to increase. Hence, there is an urgent, unmet need to understand the mechanisms underlying how exposures to certain EDCs may predispose our population to be obese. In this review, we discuss the history of obesogen discovery from its origins in reproductive biology to its latest role in the transgenerational inheritance of obesity in mice. We discuss the development of adipose tissue in an embryo, maintenance of adipocyte number in adults, how EDC disruption programs stem cells to preferentially make more adipocytes, the mechanisms by which chemicals can permanently alter the germline epigenome, and whether there are barriers to EDCs in the gametes.
Collapse
Affiliation(s)
- Amanda S Janesick
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California.
| |
Collapse
|
30
|
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous chemicals, or mixtures of chemicals, that can interfere with any aspect of hormone action. The field of endocrine disruption is historically rooted in wildlife biology and reproductive endocrinology where EDCs are demonstrated contributors to infertility, premature puberty, endometriosis, and other disorders. Recently, EDCs have been implicated in metabolic syndrome and obesity. Adipose tissue is a true endocrine organ and, therefore, an organ that is highly susceptible to disturbance by EDCs. A subset of EDCs, called "obesogens," promote adiposity by altering programming of fat cell development, increasing energy storage in fat tissue, and interfering with neuroendocrine control of appetite and satiety. Obesity adds more than $200 billion to US healthcare costs and the number of obese individuals continues to increase. Hence, there is an urgent, unmet need to understand the mechanisms underlying how exposures to certain EDCs may predispose our population to be obese. In this review, we discuss the history of obesogen discovery from its origins in reproductive biology to its latest role in the transgenerational inheritance of obesity in mice. We discuss the development of adipose tissue in an embryo, maintenance of adipocyte number in adults, how EDC disruption programs stem cells to preferentially make more adipocytes, the mechanisms by which chemicals can permanently alter the germline epigenome, and whether there are barriers to EDCs in the gametes.
Collapse
Affiliation(s)
- Amanda S Janesick
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California.
| |
Collapse
|
31
|
Leseva M, Knowles BB, Messerschmidt DM, Solter D. Erase-Maintain-Establish: Natural Reprogramming of the Mammalian Epigenome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:155-163. [PMID: 26763985 DOI: 10.1101/sqb.2015.80.027441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genetic information is largely identical across most cell types in a given organism but the epigenome, which controls expression of the genome, is cell type- and context-dependent. Although most mature mammalian cells appear to have a stable, heritable epigenome, a dynamic intricate process reshapes it as these cells transition from soma to germline and back again. During normal embryogenesis, primordial germ cells, of somatic origin, are set aside to become gametes. In doing so their genome is reprogrammed-that is, the epigenome of specific regions is replaced in a sex-specific fashion as they terminally differentiate into oocytes or spermatocytes in the gonads. Upon union of these gametes, reprogramming of the new organism's epigenome is initiated, which eventually leads, through pluripotent cells, to the cell lineages required for proper embryonic development to a sexually mature adult. This never-ending cycle of birth and rebirth is accomplished through methylation and demethylation of specific genomic sites within the gametes and pluripotent cells of an organism. This enigmatic process of natural epigenomic reprogramming is now being dissected in vivo, focusing on specific genomic regions-that is, imprinted genes and retrotransposons, where TRIM28 molecular complexes appear to guide the transition from gamete to embryo.
Collapse
Affiliation(s)
- Milena Leseva
- Department for Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | | | - Daniel M Messerschmidt
- Department for Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - Davor Solter
- Emeritus Member and Director, Max-Planck Institute of Immunobiology and Epigenetics, 79180 Freiburg, Germany
| |
Collapse
|
32
|
Abstract
Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.
Collapse
Affiliation(s)
- Wolf Reik
- The Babraham Institute, Babraham Research Campus, Cambridge CB2 3EG, United Kingdom Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
33
|
Alexander KA, Wang X, Shibata M, Clark AG, García-García MJ. TRIM28 Controls Genomic Imprinting through Distinct Mechanisms during and after Early Genome-wide Reprogramming. Cell Rep 2015; 13:1194-1205. [PMID: 26527006 DOI: 10.1016/j.celrep.2015.09.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023] Open
Abstract
Genomic imprinting depends on the establishment and maintenance of DNA methylation at imprinting control regions. However, the mechanisms by which these heritable marks influence allele-specific expression are not fully understood. By analyzing maternal, zygotic, maternal-zygotic, and conditional Trim28 mutants, we found that the transcription factor TRIM28 controls genomic imprinting through distinct mechanisms at different developmental stages. During early genome-wide reprogramming, both maternal and zygotic TRIM28 are required for the maintenance of methylation at germline imprints. However, in conditional Trim28 mutants, Gtl2-imprinted gene expression was lost despite normal methylation levels at the germline IG-DMR. These results provide evidence that TRIM28 controls imprinting after early embryonic reprogramming through a mechanism other than the maintenance of germline imprints. Additionally, our finding that secondary imprints were hypomethylated in TRIM28 mutants uncovers a requirement of TRIM28 after genome-wide reprogramming for interpreting germline imprints and regulating DNA methylation at imprinted gene promoters.
Collapse
Affiliation(s)
- Katherine A Alexander
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maho Shibata
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - María J García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Prokopuk L, Western PS, Stringer JM. Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics 2015; 7:829-46. [PMID: 26367077 DOI: 10.2217/epi.15.36] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epigenetic modifications direct the way DNA is packaged into the nucleus, making genes more or less accessible to transcriptional machinery and influencing genomic stability. Environmental factors have the potential to alter the epigenome, allowing genes that are silenced to be activated and vice versa. This ultimately influences disease susceptibility and health in an individual. Furthermore, altered chromatin states can be transmitted to subsequent generations, thus epigenetic modifications may provide evolutionary mechanisms that impact on adaptation to changed environments. However, the mechanisms involved in establishing and maintaining these epigenetic modifications during development remain unclear. This review discusses current evidence for transgenerational epigenetic inheritance, confounding issues associated with its study, and the biological relevance of altered epigenetic states for subsequent generations.
Collapse
Affiliation(s)
- Lexie Prokopuk
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Patrick S Western
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Jessica M Stringer
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
35
|
The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy. Clin Epigenetics 2015; 7:87. [PMID: 26300992 PMCID: PMC4546204 DOI: 10.1186/s13148-015-0120-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023] Open
Abstract
Today, there is growing interest in the potential epigenetic risk related to assisted reproductive technologies (ART). Much evidence in the literature supports the hypothesis that adverse pregnancy outcomes linked to ART are associated with abnormal trophoblastic invasion. The aim of this review is to investigate the relationship between epigenetic dysregulation caused by ART and subsequent placental response. The dialogue between the endometrium and the embryo is a crucial step to achieve successful trophoblastic invasion, thus ensuring a non-complicated pregnancy and healthy offspring. However, as described in this review, ART could impair both actors involved in this dialogue. First, ART may induce epigenetic defects in the conceptus by modifying the embryo environment. Second, as a result of hormone treatments, ART may impair endometrial receptivity. In some cases, it results in embryonic growth arrest but, when the development of the embryo continues, the placenta could bring adaptive responses throughout pregnancy. Amongst the different mechanisms, epigenetics, especially thanks to a finely tuned network of imprinted genes stimulated by foetal signals, may modify nutrient transfer, placental growth and vascularization. If these coping mechanisms are overwhelmed, improper maternal-foetal exchanges occur, potentially leading to adverse pregnancy outcomes such as abortion, preeclampsia or intra-uterine growth restriction. But in most cases, successful placental adaptation enables normal progress of the pregnancy. Nevertheless, the risks induced by these modifications during pregnancy are not fully understood. Metabolic diseases later in life could be exacerbated through the memory of epigenetic adaptation mechanisms established during pregnancy. Thus, more research is still needed to better understand abnormal interactions between the embryo and the milieu in artificial conditions. As trophectoderm cells are in direct contact with the environment, they deserve to be studied in more detail. The ultimate goal of these studies will be to render ART protocols safer. Optimization of the environment will be the key to improving the dialogue between the endometrium and embryo, so as to ensure that placentation after ART is similar to that following natural conception.
Collapse
|
36
|
Rijlaarsdam MA, Tax DMJ, Gillis AJM, Dorssers LCJ, Koestler DC, de Ridder J, Looijenga LHJ. Genome wide DNA methylation profiles provide clues to the origin and pathogenesis of germ cell tumors. PLoS One 2015; 10:e0122146. [PMID: 25859847 PMCID: PMC4479500 DOI: 10.1371/journal.pone.0122146] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/07/2015] [Indexed: 12/18/2022] Open
Abstract
The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809).
Collapse
Affiliation(s)
- Martin A. Rijlaarsdam
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David M. J. Tax
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jeroen de Ridder
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
O'Doherty AM, Magee DA, O'Shea LC, Forde N, Beltman ME, Mamo S, Fair T. DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:13. [PMID: 25881176 PMCID: PMC4363183 DOI: 10.1186/s12861-015-0060-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Background In mammals, maternal differentially methylated regions (DMRs) acquire DNA methylation during the postnatal growth stage of oogenesis, with paternal DMRs acquiring DNA methylation in the perinatal prospermatagonia. Following fusion of the male and female gametes, it is widely accepted that murine DNA methylation marks at the DMRs of imprinted genes are stable through embryogenesis and early development, until they are reprogrammed in primordial germ cells. However, the DNA methylation dynamics at DMRs of bovine imprinted genes during early stages of development remains largely unknown. The objective of this investigation was to analyse the methylation dynamics at imprinted gene DMRs during bovine embryo development, from blastocyst stage until implantation. Results To this end, pyrosequencing technology was used to quantify DNA methylation at DMR-associated CpG dinucleotides of six imprinted bovine genes (SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) using bisulfite-modified genomic DNA isolated from individual blastocysts (Day 7); ovoid embryos (Day 14); filamentous embryos (Day 17) and implanting conceptuses (Day 25). For all genes, the degree of DNA methylation was most variable in Day 7 blastocysts compared to later developmental stages (P < 0.05). Furthermore, mining of RNA-seq transcriptomic data and western blot analysis revealed a specific window of expression of DNA methylation machinery genes (including DNMT3A, DNMT3B, TRIM28/KAP1 and DNMT1) and proteins (DNMT3A, DNMT3A2 and DNMT3B) by bovine embryos coincident with imprint stabilization. Conclusion The findings of this study suggest that the DNA methylation status of bovine DMRs might be variable during the early stages of embryonic development, possibly requiring an active period of imprint stabilization. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0060-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alan M O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland. .,School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David A Magee
- College of Agriculture, Health and Natural Resources, Animal Science, University of Connecticut, Connecticut, USA.
| | - Lynee C O'Shea
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Marijke E Beltman
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Solomon Mamo
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
38
|
Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update 2014; 21:194-208. [PMID: 25416302 DOI: 10.1093/humupd/dmu061] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Traditional studies focused on DNA as the heritable information carrier that passes the phenotype from parents to offspring. However, increasing evidence suggests that information, that is independent of the DNA sequence, termed epigenetic information, can be inherited between generations. Recently, in our lab, we found that prediabetes in fathers increases the susceptibility to diabetes in offspring through gametic cytosine methylation changes. Paternal prediabetes changed overall methylation patterns in sperm, and a large portion of differentially methylated loci can be transmitted to pancreatic islets of offspring up to the second generation. In this review, we survey the extensive examples of environmentally induced epigenetic inheritance in various species, ranging from Caenorhabditis elegans to humans. We focus mainly on elucidating the molecular basis of environmental epigenetic inheritance through gametes, which is an emerging theme and has important implications for explaining the prevalence of obesity, type 2 diabetes and other chronic non-genetic diseases, which is also important for understanding the influence of environmental exposures on reproductive and overall health in offspring. METHODS For this review, we included relevant data and information obtained through a PubMed database search for all English language articles published up to August 2014 which included the term 'environmental epigenetic inheritance' and 'transgenerational epigenetic inheritance'. We focused on research papers using animal models including Drosophila, C. elegans, mouse and rat. Human data were also included. RESULTS Evidence from animal models suggests that environmental epigenetic inheritance through gametes exists in various species. Extensive molecular evidence suggests that epigenetic information carriers including DNA methylation, non-coding RNAs and chromatin proteins in gametes play important roles in the transmission of phenotypes from parents to offspring. CONCLUSIONS Given the large number of experimental evidence from various organisms, it is clear that parental environmental alterations can affect the phenotypes of offspring through gametic epigenetic alterations. This more recent thinking based on new data may have implications in explaining the prevalence of obesity, type 2 diabetes and other chronic non-genetic diseases. This also implies that, in the near future, epigenetic factors which are heritable should be regarded important in determining the risk of certain diseases. Moreover, identification of epigenetic markers in gametes (polar body or sperm) may hold great promise for predicting susceptibility to and preventing certain non-genetic diseases in offspring, as well as providing indications on parental environmental exposures.
Collapse
Affiliation(s)
- Yanchang Wei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Xu L, Chen YC, Chong J, Fin A, McCoy LS, Xu J, Zhang C, Wang D. Pyrene-based quantitative detection of the 5-formylcytosine loci symmetry in the CpG duplex content during TET-dependent demethylation. Angew Chem Int Ed Engl 2014; 53:11223-7. [PMID: 25159856 DOI: 10.1002/anie.201406220] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Indexed: 01/19/2023]
Abstract
Methylcytosine (5mC) is mostly symmetrically distributed in CpG sites. Ten-eleven-translocation (TET) proteins are the key enzymes involved in active DNA demethylation through stepwise oxidation of 5mC. However, oxidation pathways of TET enzymes in the symmetrically methylated CpG context are still elusive. Employing the unique fluorescence properties of pyrene group, we designed and synthesized a sensitive fluorescence-based probe not only to target 5-formylcytosine (5fC) sites, but also to distinguish symmetric from asymmetric 5fC sites in the double stranded DNA context during TET-dependent 5mC oxidation process. Using this novel probe, we revealed dominant levels of symmetric 5fC among total 5fC sites during in vitro TET-dependent 5mC oxidation and novel mechanistic insights into the TET-dependent 5mC oxidation in the mCpG context.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu L, Chen YC, Chong J, Fin A, McCoy LS, Xu J, Zhang C, Wang D. Pyrene-Based Quantitative Detection of the 5-Formylcytosine Loci Symmetry in the CpG Duplex Content during TET-Dependent Demethylation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Abstract
Since the human genome was sequenced, the term "epigenetics" is increasingly being associated with the hope that we are more than just the sum of our genes. Might what we eat, the air we breathe, or even the emotions we feel influence not only our genes but those of descendants? The environment can certainly influence gene expression and can lead to disease, but transgenerational consequences are another matter. Although the inheritance of epigenetic characters can certainly occur-particularly in plants-how much is due to the environment and the extent to which it happens in humans remain unclear.
Collapse
|
43
|
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014; 28:812-28. [PMID: 24736841 PMCID: PMC4003274 DOI: 10.1101/gad.234294.113] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methylation of DNA is an essential epigenetic control mechanism in mammals. Messerschmidt et al. review the current understanding of epigenetic dynamics regulating the molecular processes that prepare the mammalian embryo for normal development. Methylation of DNA is an essential epigenetic control mechanism in mammals. During embryonic development, cells are directed toward their future lineages, and DNA methylation poses a fundamental epigenetic barrier that guides and restricts differentiation and prevents regression into an undifferentiated state. DNA methylation also plays an important role in sex chromosome dosage compensation, the repression of retrotransposons that threaten genome integrity, the maintenance of genome stability, and the coordinated expression of imprinted genes. However, DNA methylation marks must be globally removed to allow for sexual reproduction and the adoption of the specialized, hypomethylated epigenome of the primordial germ cell and the preimplantation embryo. Recent technological advances in genome-wide DNA methylation analysis and the functional description of novel enzymatic DNA demethylation pathways have provided significant insights into the molecular processes that prepare the mammalian embryo for normal development.
Collapse
Affiliation(s)
- Daniel M Messerschmidt
- Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 138673 Singapore,
| | | | | |
Collapse
|
44
|
Reig-Viader R, Vila-Cejudo M, Vitelli V, Buscà R, Sabaté M, Giulotto E, Caldés MG, Ruiz-Herrera A. Telomeric Repeat-Containing RNA (TERRA) and Telomerase Are Components of Telomeres During Mammalian Gametogenesis1. Biol Reprod 2014; 90:103. [DOI: 10.1095/biolreprod.113.116954] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
45
|
Cruvinel E, Budinetz T, Germain N, Chamberlain S, Lalande M, Martins-Taylor K. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 2014; 23:4674-85. [PMID: 24760766 DOI: 10.1093/hmg/ddu187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prader-Willi syndrome (PWS), a disorder of genomic imprinting, is characterized by neonatal hypotonia, hypogonadism, small hands and feet, hyperphagia and obesity in adulthood. PWS results from the loss of paternal copies of the cluster of SNORD116 C/D box snoRNAs and their host transcript, 116HG, on human chromosome 15q11-q13. We have investigated the mechanism of repression of the maternal SNORD116 cluster and 116HG. Here, we report that the zinc-finger protein ZNF274, in association with the histone H3 lysine 9 (H3K9) methyltransferase SETDB1, is part of a complex that binds to the silent maternal but not the active paternal alleles. Knockdown of SETDB1 in PWS-specific induced pluripotent cells (iPSCs) causes a decrease in the accumulation of H3K9 trimethylation (H3K9me3) at 116HG and corresponding accumulation of the active chromatin mark histone H3 lysine 4 dimethylation (H3K4me2). We also show that upon knockdown of SETDB1 in PWS-specific iPSCs, expression of maternally silenced 116HG RNA is partially restored. SETDB1 knockdown in PWS iPSCs also disrupts DNA methylation at the PWS-IC where a decrease in 5-methylcytosine is observed in association with a concomitant increase in 5-hydroxymethylcytosine. This observation suggests that the ZNF274/SETDB1 complex bound to the SNORD116 cluster may protect the PWS-IC from DNA demethylation during early development. Our findings reveal novel epigenetic mechanisms that function to repress the maternal 15q11-q13 region.
Collapse
Affiliation(s)
- Estela Cruvinel
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tara Budinetz
- Center for Advanced Reproductive Services, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
| | - Noelle Germain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Stormy Chamberlain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Marc Lalande
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Kristen Martins-Taylor
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| |
Collapse
|
46
|
Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev 2014; 23:796-812. [PMID: 24368070 PMCID: PMC3991987 DOI: 10.1089/scd.2013.0364] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/23/2013] [Indexed: 02/03/2023] Open
Abstract
There is surprising confusion surrounding the concept of biological totipotency, both within the scientific community and in society at large. Increasingly, ethical objections to scientific research have both practical and political implications. Ethical controversy surrounding an area of research can have a chilling effect on investors and industry, which in turn slows the development of novel medical therapies. In this context, clarifying precisely what is meant by "totipotency" and how it is experimentally determined will both avoid unnecessary controversy and potentially reduce inappropriate barriers to research. Here, the concept of totipotency is discussed, and the confusions surrounding this term in the scientific and nonscientific literature are considered. A new term, "plenipotent," is proposed to resolve this confusion. The requirement for specific, oocyte-derived cytoplasm as a component of totipotency is outlined. Finally, the implications of twinning for our understanding of totipotency are discussed.
Collapse
Affiliation(s)
- Maureen L Condic
- Department of Neurobiology, School of Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|
47
|
78495111110.1016/j.cell.2014.02.045" />
|
48
|
Xu L, Chen YC, Nakajima S, Chong J, Wang L, Lan L, Zhang C, Wang D. A Chemical Probe Targets DNA 5-Formylcytosine Sites and Inhibits TDG Excision, Polymerases Bypass, and Gene Expression. Chem Sci 2014; 5:567-574. [PMID: 24883182 DOI: 10.1039/c3sc51849c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation and faithful maintenance of proper DNA methylation patterns are essential for many cellular functions. 5-Formylcytosine (5fC), a newly discovered oxidized form of methylcytosine (mC) is involved in active DNA demethylation process. The latest progresses suggest exciting novel functional roles of this residue. Chemical tools are desired to further elucidate the functional roles of 5fC and to modulate dynamics of DNA demethylation and downstream biological processes. Here we designed and constructed a chemical probe, consisting of an aldehyde targeting group and an intercalation group. This molecule can selectively react with 5fC and subsequently inhibit base excision by thymine DNA glycosylase (TDG) and cause significant pausing for both DNA and RNA polymerase elongation. Further investigation using a GFP reporter system in living cells revealed that the ligand modification in 5fC sites at 5'-UTR of the GFP gene greatly inhibited the GFP expression level. These results altogether confirmed our successful design and established a new approach for generating functional ligands that target the formylcytosine sites and modulate 5fC-related biological processes.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, United States
| | - Ying-Chu Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Satoshi Nakajima
- Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania 15213, United States ; University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, United States
| | - Lanfeng Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, United States
| | - Li Lan
- Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania 15213, United States ; University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chao Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, United States
| |
Collapse
|
49
|
Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF, Solter D, Messerschmidt DM. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 2013; 341:1110-2. [PMID: 24009393 DOI: 10.1126/science.1240617] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epigenetic alterations are increasingly recognized as causes of human cancers and disease. These aberrations are likely to arise during genomic reprogramming in mammalian preimplantation embryos, when their epigenomes are most vulnerable. However, this process is only partially understood because of the experimental inaccessibility of early-stage embryos. Here, we introduce a methodologic advance, probing single cells for various DNA-methylation errors at multiple loci, to reveal failed maintenance of epigenetic mark results in chimeric mice, which display unpredictable phenotypes leading to developmental arrest. Yet we show that mouse pronuclear transfer can be used to ameliorate such reprogramming defects. This study not only details the epigenetic reprogramming dynamics in early mammalian embryos but also suggests diagnostic and potential future therapeutic applications.
Collapse
|
50
|
Analysis of allele-specific expression in mouse liver by RNA-Seq: a comparison with Cis-eQTL identified using genetic linkage. Genetics 2013; 195:1157-66. [PMID: 24026101 DOI: 10.1534/genetics.113.153882] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report an analysis of allele-specific expression (ASE) and parent-of-origin expression in adult mouse liver using next generation sequencing (RNA-Seq) of reciprocal crosses of heterozygous F1 mice from the parental strains C57BL/6J and DBA/2J. We found a 60% overlap between genes exhibiting ASE and putative cis-acting expression quantitative trait loci (cis-eQTL) identified in an intercross between the same strains. We discuss the various biological and technical factors that contribute to the differences. We also identify genes exhibiting parental imprinting and complex expression patterns. Our study demonstrates the importance of biological replicates to limit the number of false positives with RNA-Seq data.
Collapse
|