1
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
2
|
Epigenome-wide analysis reveals functional modulators of drug sensitivity and post-treatment survival in chronic lymphocytic leukaemia. Br J Cancer 2020; 124:474-483. [PMID: 33082556 PMCID: PMC7852668 DOI: 10.1038/s41416-020-01117-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Background Chronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy. Methods Epigenome-wide analysis of DNA methylation was performed for 20 patients at two timepoints during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 163 patients. Their functional role in drug sensitivity was assessed in vitro. Results We identified 490 DMRs following exposure to therapy, of which 31 were CLL-specific and independent of changes occurring in normal B-cell development. Seventeen DMR-associated genes were identified as differentially expressed following treatment in an independent cohort. Methylation of the HOXA4, MAFB and SLCO3A1 DMRs was associated with post-treatment patient survival, with HOXA4 displaying the strongest association. Re-expression of HOXA4 in cell lines and primary CLL cells significantly increased apoptosis in response to treatment with fludarabine, ibrutinib and idelalisib. Conclusion Our study demonstrates enrichment for multiple CLL-specific epigenetic traits in response to chemotherapy that predict patient outcomes, and particularly implicate epigenetic silencing of HOXA4 in reducing the sensitivity of CLL cells to therapy.
Collapse
|
3
|
Wernig-Zorc S, Yadav MP, Kopparapu PK, Bemark M, Kristjansdottir HL, Andersson PO, Kanduri C, Kanduri M. Global distribution of DNA hydroxymethylation and DNA methylation in chronic lymphocytic leukemia. Epigenetics Chromatin 2019; 12:4. [PMID: 30616658 PMCID: PMC6322269 DOI: 10.1186/s13072-018-0252-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/23/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) has been a good model system to understand the functional role of 5-methylcytosine (5-mC) in cancer progression. More recently, an oxidized form of 5-mC, 5-hydroxymethylcytosine (5-hmC) has gained lot of attention as a regulatory epigenetic modification with prognostic and diagnostic implications for several cancers. However, there is no global study exploring the role of 5-hydroxymethylcytosine (5-hmC) levels in CLL. Herein, using mass spectrometry and hMeDIP-sequencing, we analysed the dynamics of 5-hmC during B cell maturation and CLL pathogenesis. RESULTS We show that naïve B-cells had higher levels of 5-hmC and 5-mC compared to non-class switched and class-switched memory B-cells. We found a significant decrease in global 5-mC levels in CLL patients (n = 15) compared to naïve and memory B cells, with no changes detected between the CLL prognostic groups. On the other hand, global 5-hmC levels of CLL patients were similar to memory B cells and reduced compared to naïve B cells. Interestingly, 5-hmC levels were increased at regulatory regions such as gene-body, CpG island shores and shelves and 5-hmC distribution over the gene-body positively correlated with degree of transcriptional activity. Importantly, CLL samples showed aberrant 5-hmC and 5-mC pattern over gene-body compared to well-defined patterns in normal B-cells. Integrated analysis of 5-hmC and RNA-sequencing from CLL datasets identified three novel oncogenic drivers that could have potential roles in CLL development and progression. CONCLUSIONS Thus, our study suggests that the global loss of 5-hmC, accompanied by its significant increase at the gene regulatory regions, constitute a novel hallmark of CLL pathogenesis. Our combined analysis of 5-mC and 5-hmC sequencing provided insights into the potential role of 5-hmC in modulating gene expression changes during CLL pathogenesis.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mukesh Pratap Yadav
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hallgerdur Lind Kristjansdottir
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg University, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg University, Gothenburg, Sweden.,Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
4
|
Bhoi S, Ljungström V, Baliakas P, Mattsson M, Smedby KE, Juliusson G, Rosenquist R, Mansouri L. Prognostic impact of epigenetic classification in chronic lymphocytic leukemia: The case of subset #2. Epigenetics 2016; 11:449-55. [PMID: 27128508 DOI: 10.1080/15592294.2016.1178432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Based on the methylation status of 5 single CpG sites, a novel epigenetic classification of chronic lymphocytic leukemia (CLL) was recently proposed, classifying CLL patients into 3 clinico-biological subgroups with different outcome, termed memory like CLL (m-CLL), naïve like CLL (n-CLL), and a third intermediate CLL subgroup (i-CLL). While m-CLL and n-CLL patients at large corresponded to patients carrying mutated and unmutated IGHV genes, respectively, limited information exists regarding the less defined i-CLL group. Using pyrosequencing, we investigated the prognostic impact of the proposed 5 CpG signature in a well-characterized CLL cohort (135 cases), including IGHV-mutated and unmutated patients as well as clinically aggressive stereotyped subset #2 patients. Overall, we confirmed the signature's association with established prognostic markers. Moreover, in the presence of the IGHV mutational status, the epigenetic signature remained independently associated with both time-to-first-treatment and overall survival in multivariate analyses. As a prime finding, we observed that subset #2 patients were predominantly classified as i-CLL, probably reflecting their borderline IGHV mutational status (97-99% germline identity), though having a similarly poor prognosis as n-CLL patients. In summary, we validated the epigenetic classifier as an independent factor in CLL prognostication and provide further evidence that subset #2 is a member of the i-CLL group, hence supporting the existence of a third, intermediate epigenetic subgroup.
Collapse
Affiliation(s)
- Sujata Bhoi
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Viktor Ljungström
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Panagiotis Baliakas
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Mattias Mattsson
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden.,b Department of Medical Sciences , Uppsala University , Uppsala , Sweden
| | - Karin E Smedby
- c Department of Medicine Solna , Clinical Epidemiology Unit, Karolinska Institutet , Stockholm , Sweden
| | - Gunnar Juliusson
- d Department of Laboratory Medicine , Stem Cell Center, Hematology and Transplantation, Lund University , Lund , Sweden
| | - Richard Rosenquist
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Larry Mansouri
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| |
Collapse
|
5
|
van Otterdijk SD, Norden J, Dickinson AM, Pearce MS, Relton CL, Mathers JC, Strathdee G. Aberrations in DNA methylation are detectable during remission of acute lymphoblastic leukemia and predict patient outcome. Epigenomics 2015; 7:35-45. [PMID: 25687464 DOI: 10.2217/epi.14.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Aberrant DNA methylation patterns are a hallmark of cancer, although the extent to which they underlie cancer development is unknown. In this study, we aimed to determine whether acute lymphoblastic leukemia (ALL) patients in clinical remission retained abnormal DNA methylation patters and whether these were associated with patient outcome. MATERIALS & METHODS We investigated CpG island methylation of genes known to exhibit hypermethylation in leukemia using quantitative pyrosequencing analysis. RESULTS Although methylation levels were reduced in remission samples, they remained significantly higher than those seen in healthy controls. This retained methylation was not related to low levels of residual leukemia cells still present at remission. Methylation levels were also stable (or increased) during continuous remission and significantly correlated with long-term survival in adult ALL patients. CONCLUSION This study determined that abnormalities in DNA methylation are retained during ALL remission and may represent a novel prognostic marker for adult ALL patients.
Collapse
Affiliation(s)
- Sanne D van Otterdijk
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Baer C, Oakes CC, Ruppert AS, Claus R, Kim-Wanner SZ, Mertens D, Zenz T, Stilgenbauer S, Byrd JC, Plass C. Epigenetic silencing of miR-708 enhances NF-κB signaling in chronic lymphocytic leukemia. Int J Cancer 2015; 137:1352-61. [PMID: 25704289 DOI: 10.1002/ijc.29491] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and their deregulation is involved in tumor development. Epigenetic gene silencing in cancer by DNA methylation contributes to the silencing of tumor-suppressor genes, including miRNAs. We have recently shown that the promoter of miR-708 is aberrantly methylated in chronic lymphocytic leukemia (CLL). To characterize the molecular signaling networks that are influenced by miR-708, we performed a luciferase-based screen evaluating the effects of ectopic miR-708 expression on leukemia-relevant signaling pathways. We found that miR-708 strongly repressed NF-κB signaling, a pathway known to be deregulated in CLL. Among the predicted miR-708 targets was IKKβ (inhibitor of kappa light polypeptide gene enhancer in B cells, kinase-β/IKBKB), a key kinase facilitating NF-κB signaling. We validated the interaction of miR-708 with the 3'-untranslated region of IKKβ and found that miR-708 overexpression represses endogenous IKKβ. Phosphorylation of the IKKβ target IκBα and expression of known NF-κB target genes were impaired by miR-708. Furthermore, we identified an enhancer region downstream of the miR-708 promoter that displays a distinct DNA methylation status in CLL. High enhancer methylation is significantly correlated with lower miR-708 expression and is predominantly found in patients with poor prognosis and shorter time to treatment. These results demonstrate that miR-708 regulates the NF-κB pathway by targeting IKKβ, and that methylation of a key enhancer region contributes to its suppression in CLL.
Collapse
Affiliation(s)
- Constance Baer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher C Oakes
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amy S Ruppert
- Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, OH
| | - Rainer Claus
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany
| | - Soo-Zin Kim-Wanner
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Mertens
- Cooperation Unit Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University of Ulm, Germany
| | - Thorsten Zenz
- Department of Translational Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - John C Byrd
- Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, OH
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Gabriel AS, Lafta FM, Schwalbe EC, Nakjang S, Cockell SJ, Iliasova A, Enshaei A, Schwab C, Rand V, Clifford SC, Kinsey SE, Mitchell CD, Vora A, Harrison CJ, Moorman AV, Strathdee G. Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia. Epigenetics 2015; 10:717-26. [PMID: 26237075 PMCID: PMC4622588 DOI: 10.1080/15592294.2015.1061174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
Although children with acute lymphoblastic leukemia (ALL) generally have a good outcome, some patients do relapse and survival following relapse is poor. Altered DNA methylation is highly prevalent in ALL and raises the possibility that DNA methylation-based biomarkers could predict patient outcome. In this study, genome-wide methylation analysis, using the Illumina Infinium HumanMethylation450 BeadChip platform, was carried out on 52 diagnostic patient samples from 4 genetic subtypes [ETV6-RUNX1, high hyperdiploidy (HeH), TCF3-PBX1 and dic(9;20)(p11-13;q11)] in a 1:1 case-control design with patients who went on to relapse (as cases) and patients achieving long-term remission (as controls). Pyrosequencing assays for selected loci were used to confirm the array-generated data. Non-negative matrix factorization consensus clustering readily clustered samples according to genetic subgroups and gene enrichment pathway analysis suggested that this is in part driven by epigenetic disruption of subtype specific signaling pathways. Multiple bioinformatics approaches (including bump hunting and individual locus analysis) were used to identify CpG sites or regions associated with outcome. However, no associations with relapse were identified. Our data revealed that ETV6-RUNX1 and dic(9;20) subtypes were mostly associated with hypermethylation; conversely, TCF3-PBX1 and HeH were associated with hypomethylation. We observed significant enrichment of the neuroactive ligand-receptor interaction pathway in TCF3-PBX1 as well as an enrichment of genes involved in immunity and infection pathways in ETV6-RUNX1 subtype. Taken together, our results suggest that altered DNA methylation may have differential impacts in distinct ALL genetic subtypes.
Collapse
Affiliation(s)
- Alem S Gabriel
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Fadhel M Lafta
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Department of Applied Sciences; Northumbria University; Newcastle upon Tyne, UK
| | - Sirintra Nakjang
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Bioinformatics Support Unit; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Simon J Cockell
- Bioinformatics Support Unit; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Alice Iliasova
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Department of Applied Sciences; Northumbria University; Newcastle upon Tyne, UK
| | - Amir Enshaei
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Claire Schwab
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Vikki Rand
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Steven C Clifford
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Sally E Kinsey
- Department of Pediatric Haematology and Oncology; Leeds General Infirmary; Leeds, UK
| | - Chris D Mitchell
- Department of Pediatric Oncology; John Radcliffe Hospital; Oxford, UK
| | - Ajay Vora
- Department of Pediatric Oncology; John Radcliffe Hospital; Oxford, UK
| | - Christine J Harrison
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Anthony V Moorman
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Gordon Strathdee
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Department of Haematology; Great Ormond Street Hospital; London, UK
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Next-generation sequencing of whole genomes, exomes and DNA methylomes in chronic lymphocytic leukemia (CLL) has provided the first comprehensive view of somatic mutations and methylation changes in this disease. This review summarizes the recent findings in this field and their impact on our current understanding of this neoplasm. RECENT FINDINGS Genomic studies have revealed a remarkable molecular heterogeneity of the disease, with only few genes mutated in up to 10-15% of the patients and a relatively large number of genes recurrently mutated at low frequency. The mutated genes tend to cluster in different pathways that include NOTCH1 signaling, RNA splicing, processing and transport machinery, innate inflammatory response, and DNA damage and cell cycle control, among others. NOTCH1 and SF3B1 mutations are emerging as new drivers of aggressive forms of the disease. Genome-wide methylation studies have shown that CLL transformation is associated with a massive hypomethylation phenomenon frequently affecting the enhancer regions. This epigenetic reprogramming maintains an imprint of the putative cell of origin from naïve and memory B-cells. SUMMARY Genomic and epigenomic studies of CLL are reshaping our understanding of the disease and provide new perspective for a more individualized diagnosis and new potential therapeutic targets.
Collapse
|
9
|
Cosialls AM, Santidrián AF, Coll-Mulet L, Iglesias-Serret D, González-Gironès DM, Pérez-Perarnau A, Rubio-Patiño C, González-Barca E, Alonso E, Pons G, Gil J. Epigenetic profile in chronic lymphocytic leukemia using methylation-specific multiplex ligation-dependent probe amplification. Epigenomics 2013; 4:491-501. [PMID: 23130831 DOI: 10.2217/epi.12.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To analyze the methylation status of 35 tumor suppressor genes using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in chronic lymphocytic leukemia (CLL). MATERIALS & METHODS The DNA of 37 samples from patients with CLL, six healthy donors, and Jurkat and Ramos cell lines was analyzed by MS-MLPA. RESULTS Our results confirm that hypermethylation is a common and not randomly distributed event in CLL, and some genes, such as WT1, CDH13, IGSF4/TSLC1, GATA5, DAPK1 and RARB, are hypermethylated in more than 25% of the analyzed samples. Importantly, MS-MLPA also detected hypermethylation of some genes not reported previously in CLL, and their methylation status was confirmed by bisulfite sequencing. CONCLUSION These results indicate that MS-MLPA is a useful technique for the detection of methylation in CLL samples. Selecting CLL-specific methylation targets in order to generate a CLL-specific MS-MLPA probe set could enhance its usefulness as a tool in studies of risk stratification and guiding the best therapeutic decision.
Collapse
Affiliation(s)
- Ana M Cosialls
- Departament de Ciències Fisiològiques II, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cahill N, Rosenquist R. Uncovering the DNA methylome in chronic lymphocytic leukemia. Epigenetics 2013; 8:138-48. [PMID: 23321535 DOI: 10.4161/epi.23439] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the past two decades, aberrant DNA methylation has emerged as a key player in the pathogenesis of chronic lymphocytic leukemia (CLL), and knowledge regarding its biological and clinical consequences in this disease has evolved rapidly. Since the initial studies relating DNA hypomethylation to genomic instability in CLL, a plethora of reports have followed showing the impact of DNA hypermethylation in silencing vital single gene promoters and the reversible nature of DNA methylation through inhibitor drugs. With the recognition that DNA hypermethylation events could potentially act as novel prognostic and treatment targets in CLL, the search for aberrantly methylated genes, gene families and pathways has ensued. Subsequently, the advent of microarray and next-generation sequencing technologies has supported the hunt for such targets, allowing exploration of the methylation landscape in CLL at an unprecedented scale. In light of these analyses, we now understand that different CLL prognostic subgroups are characterized by differential methylation profiles; we recognize DNA methylation of a number of signaling pathways genes to be altered in CLL, and acknowledge the role of DNA methylation outside of traditional CpG island promoters as fundamental players in the regulation of gene expression. Today, the significance and timing of altered DNA methylation within the complex epigenetic network of concomitant epigenetic messengers such as histones and miRNAs is an intensive area of research. In CLL, it appears that DNA methylation is a rather stable epigenetic mark occurring rather early in the disease pathogenesis. However, other consequences, such as how and why aberrant methylation marks occur, are less explored. In this review, we will not only provide a comprehensive summary of the current literature within the epigenetics field of CLL, but also highlight some of the novel findings relating to when, where, why and how altered DNA methylation materializes in CLL.
Collapse
Affiliation(s)
- Nicola Cahill
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala, Sweden
| | | |
Collapse
|
11
|
Taylor KH, Briley A, Wang Z, Cheng J, Shi H, Caldwell CW. Aberrant Epigenetic Gene Regulation in Lymphoid Malignancies. Semin Hematol 2013; 50:38-47. [DOI: 10.1053/j.seminhematol.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Gene expression and epigenetic deregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:133-50. [PMID: 24014295 DOI: 10.1007/978-1-4614-8051-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The last decade resulted in many scientific discoveries illuminating epigenetic mechanisms of gene regulation and genome organization. DNA methylation emerged as playing a pivotal role in development and cancer. Genome-wide changes in DNA methylation, including hypermethylation of tumor suppressor genes and genome-wide loss of methylation, are two dominant mechanisms that deregulate gene expression and contribute to chromosomal instability. In this chapter we give an overview of how methylation patterns are established during B-cell development and what machinery is necessary to maintain those patterns. We summarize the current state of knowledge of aberrant changes taking place during and contributing to lymphoid transformation in general and to the development of CLL in particular. We discuss key deregulated biomarkers extensively studied using single-gene approaches and give an overview of a wealth of data that became available from genome-wide approaches, focusing on pathways that are critical for lymphomagenesis. We also highlight epigenetic differences between known prognostic groups of CLL.
Collapse
|
13
|
HOXA4 gene promoter hypermethylation as an epigenetic mechanism mediating resistance to imatinib mesylate in chronic myeloid leukemia patients. BIOMED RESEARCH INTERNATIONAL 2012; 2013:129715. [PMID: 23484077 PMCID: PMC3591123 DOI: 10.1155/2013/129715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/26/2012] [Indexed: 11/17/2022]
Abstract
Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673–12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
Collapse
|
14
|
Florean C, Schnekenburger M, Grandjenette C, Dicato M, Diederich M. Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics 2012; 3:581-609. [PMID: 22126248 DOI: 10.2217/epi.11.73] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leukemogenesis is a multistep process in which successive transformational events enhance the ability of a clonal population arising from hematopoietic progenitor cells to proliferate, differentiate and survive. Clinically and pathologically, leukemia is subdivided into four main categories: chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphocytic leukemia and acute myeloid leukemia. Leukemia has been previously considered only as a genetic disease. However, in recent years, significant advances have been made in the elucidation of the leukemogenesis-associated processes. Thus, we have come to understand that epigenetic alterations including DNA methylation, histone modifications and miRNA are involved in the permanent changes of gene expression controlling the leukemia phenotype. In this article, we will focus on the epigenetic defects associated with leukemia and their implications as biomarkers for diagnostic, prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire de Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
15
|
Hanoun M, Eisele L, Suzuki M, Greally JM, Hüttmann A, Aydin S, Scholtysik R, Klein-Hitpass L, Dührsen U, Dürig J. Epigenetic silencing of the circadian clock gene CRY1 is associated with an indolent clinical course in chronic lymphocytic leukemia. PLoS One 2012; 7:e34347. [PMID: 22470559 PMCID: PMC3314606 DOI: 10.1371/journal.pone.0034347] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/26/2012] [Indexed: 12/31/2022] Open
Abstract
Disruption of circadian rhythm is believed to play a critical role in cancer development. Cryptochrome 1 (CRY1) is a core component of the mammalian circadian clock and we have previously shown its deregulated expression in a subgroup of patients with chronic lymphocytic leukemia (CLL). Using real-time RT-PCR in a cohort of 76 CLL patients and 35 normal blood donors we now demonstrate that differential CRY1 mRNA expression in high-risk (HR) CD38+/immunoglobulin variable heavy chain gene (IgVH) unmutated patients as compared to low-risk (LR) CD38−/IgVH mutated patients can be attributed to down-modulation of CRY1 in LR CLL cases. Analysis of the DNA methylation profile of the CRY1 promoter in a subgroup of 57 patients revealed that CRY1 expression in LR CLL cells is silenced by aberrant promoter CpG island hypermethylation. The methylation pattern of the CRY1 promoter proved to have high prognostic impact in CLL where aberrant promoter methylation predicted a favourable outcome. CRY1 mRNA transcript levels did not change over time in the majority of patients where sequential samples were available for analysis. We also compared the CRY1 expression in CLL with other lymphoid malignancies and observed epigenetic silencing of CRY1 in a patient with B cell acute lymphoblastic leukemia (B-ALL).
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Adult
- Aged
- Aged, 80 and over
- Circadian Clocks/genetics
- CpG Islands
- Cryptochromes/genetics
- Cryptochromes/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Female
- Gene Silencing
- Genes, Immunoglobulin Heavy Chain
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/metabolism
- Male
- Middle Aged
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Maher Hanoun
- Department of Hematology, University Hospital, Essen, Germany
| | - Lewin Eisele
- Department of Hematology, University Hospital, Essen, Germany
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States America
| | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States America
| | | | - Semra Aydin
- Department of Hematology, University Hospital, Essen, Germany
| | - René Scholtysik
- Institute of Cell Biology, University of Essen, Duisburg, Germany
| | | | - Ulrich Dührsen
- Department of Hematology, University Hospital, Essen, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital, Essen, Germany
- * E-mail:
| |
Collapse
|
16
|
Strathdee G. Methylation markers in the clinical management of leukemia patients: wave of the future or just damp squib? Epigenomics 2011; 3:391-4. [PMID: 22126198 DOI: 10.2217/epi.11.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118:3470-8. [PMID: 21765022 PMCID: PMC3574275 DOI: 10.1182/blood-2011-06-275610] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
This review highlights a decade of investigations into the role of CD38 in CLL. CD38 is accepted as a dependable marker of unfavorable prognosis and as an indicator of activation and proliferation of cells when tested. Leukemic clones with higher numbers of CD38(+) cells are more responsive to BCR signaling and are characterized by enhanced migration. In vitro activation through CD38 drives CLL proliferation and chemotaxis via a signaling pathway that includes ZAP-70 and ERK1/2. Finally, CD38 is under a polymorphic transcriptional control after external signals. Consequently, CD38 appears to be a global molecular bridge to the environment, promoting survival/proliferation over apoptosis. Together, this evidence contributes to the current view of CLL as a chronic disease in which the host's microenvironment promotes leukemic cell growth and also controls the sequential acquisition and accumulation of genetic alterations. This view relies on the existence of a set of surface molecules, including CD38, which support proliferation and survival of B cells on their way to and after neoplastic transformation. The second decade of studies on CD38 in CLL will tell if the molecule is an effective target for antibody-mediated therapy in this currently incurable leukemia.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/physiology
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Models, Biological
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Research/trends
- Time Factors
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Fabio Malavasi
- Department of Genetics, Biology and Biochemistry, University of Torino School of Medicine, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Gunnarsson R, Rosenquist R. New insights into the pathobiology of chronic lymphocytic leukemia. J Hematop 2011. [DOI: 10.1007/s12308-011-0091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|