1
|
Li J, Wang Y, Dong C, Luo L. Advancements in leukemia management: Bridging diagnosis, prognosis and nanotechnology (Review). Int J Oncol 2024; 65:112. [PMID: 39364739 PMCID: PMC11542963 DOI: 10.3892/ijo.2024.5700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Leukemia is a cancer that starts in blood stem cells in the bone marrow. Today, the proper diagnosis and prognosis of leukemia are essential in mitigating the morbidity and mortality associated with this malignancy. The advent of novel biomarkers, particularly those related to minimal residual disease, has paved the way for personalized therapeutic strategies and enables the quantitative assessment of patient responses to treatment regimens. Novel diagnostic and targeted drug delivery may be helpful for the improved management of leukemia. Genetic clinical parameters, such as chromosomal abnormalities, are crucial in diagnosing and guiding treatment decisions. These genetic markers also provide valuable prognostic information, helping to predict patient outcomes and tailor personalized treatment plans. In the present review, the studies on the diagnostic and prognostic parameters of leukemia were analyzed. The prognosis of leukemia was investigated in most of the studies, and the remaining were performed on diagnosis. The clinical and laboratory prognostic parameters were the most common, followed by diagnostic hematological parameters, diagnostic blood parameter studies, and diagnostic immunological parameters. Clinical and laboratory prognostic and hematologic parameters were the most extensively studied. The methods used to diagnose and prognose the leukemia cases in these studies were predominantly clinical hematology. Numerous surface proteins and receptors, including CD45, CD27, CD29, CD38, CD27, CD123, CD56 and CD25, react similarly in various kinds of leukemia, which are ideal for targeted drug delivery. Drug delivery to leukemia cells encounters several significant obstacles, including heterogeneity, that hinder the effectiveness of treatment. Nanocarriers play a critical role in targeted drug delivery for leukemia by enhancing the precision of treatments directed at surface proteins and receptors. Additionally, they can be functionalized with targeting drugs and antibodies to target specific tissues and cells.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yingxue Wang
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Chunli Dong
- Department of Critical Care Medicine, Jilin People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
2
|
Huang H, Gu J, Kuang X, Yu Y, Rao B, Fang S, Lu J, Qiu F. An integrative pan-cancer analysis of WWC family genes and functional validation in lung cancer. Cell Signal 2024; 115:111034. [PMID: 38190957 DOI: 10.1016/j.cellsig.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
The WW and C2 domain containing (WWC) protein family functions as scaffolds regulating cell proliferation and organ growth control through the Hippo signaling pathway. However, their pan-cancer dysregulation and mechanistic roles in signaling transduction have remained unclear. We performed integrated pan-cancer analyses of WWC family gene expression using data from The Cancer Genome Atlas (TCGA) across 33 different cancer types. Prognostic relevance was evaluated by survival analyses. WWC genetic alterations, DNA methylation, pathway activities, drug response, and tumor immunology were analyzed using online databases. Furthermore, we examined the functional roles of WWCs in lung cancer cells. We observed aberrant WWC expression in various cancers, which associated with patient prognosis. WWC hypermethylation occurred in many cancers and exhibited negative correlation with expression, alongside mutations linked to poor outcomes. Pathway analysis implicated WWCs as Hippo pathway scaffolds, while drug sensitivity analysis suggested associations with diverse chemotherapies. Additionally, pan-cancer analyses elucidated vital immunomodulatory roles for WWC through heterogeneous correlations with immune cell infiltrates, checkpoint molecules, tumor mutation burden, microsatellite instability, and chemokine pathways across cancers. Experimentally, WWCs suppressed lung cancer cell proliferation, migration, and invasion while enhancing apoptosis and paclitaxel chemosensitivity. Mechanistically, WWCs bound large tumor suppressor 1 and 2 (LATS1/2) kinases to stimulate phosphorylation cascades, thereby inhibiting nuclear translocation of the Yes-associated protein (YAP) oncoprotein. Taken together, our multi-omics characterization provides comprehensive evidence for WWCs as putative tumor suppressors across cancers via Hippo pathway modulation. WWCs may serve as prognostic markers and therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Hongmei Huang
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Jiaji Gu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Xinjie Kuang
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Yonghui Yu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Boqi Rao
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Shenying Fang
- The fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, PR China
| | - Jiachun Lu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Fuman Qiu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
3
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
4
|
Swaroop B SS, Kanumuri R, Ezhil I, Naidu Sampangi JK, Kremerskothen J, Rayala SK, Venkatraman G. KIBRA connects Hippo signaling and cancer. Exp Cell Res 2021; 403:112613. [PMID: 33901448 DOI: 10.1016/j.yexcr.2021.112613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
The Hippo signaling pathway is a tumor suppressor pathway that plays an important role in tissue homeostasis and organ size control. KIBRA is one of the many upstream regulators of the Hippo pathway. It functions as a tumor suppressor by positively regulating the core Hippo kinase cascade. However, there are accumulating shreds of evidence showing that KIBRA has an oncogenic function, which we speculate may arise from its functions away from the Hippo pathway. In this review, we have attempted to provide an overview of the Hippo signaling with a special emphasis on evidence showing the paradoxical role of KIBRA in cancer.
Collapse
Affiliation(s)
- Srikanth Swamy Swaroop B
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Rahul Kanumuri
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Inemai Ezhil
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Jagadeesh Kumar Naidu Sampangi
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India
| | - Joachim Kremerskothen
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India.
| |
Collapse
|
5
|
Sohani M, Rostami S, Azad M, Hojjatipour T, Chahardouli B, Alizadeh S. Promoter Methylation Status and Expression Levels of RASSF1A Gene in Different Phases of Acute Lymphoblastic Leukemia (ALL). Int J Hematol Oncol Stem Cell Res 2021; 15:7-14. [PMID: 33613896 PMCID: PMC7885129 DOI: 10.18502/ijhoscr.v15i1.5245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Although the precise pathogenesis of acute lymphoblastic leukemia (ALL) remains unclear, studying gene-regulating mechanisms during ALL pathogeneses may shed light on the underlying mechanisms driving malignant behavior. There is some evidence showing the promoter hypermethylation and silencing of RASSF1A tumor suppressor gene in ALL cells; however, there is a lack of evidence for whether the gene indeed alters during different phases of ALL or in response to therapy. Thus, the current study aimed to clarify this issue using groups of adult ALL patients who have been scarcely investigated regarding expression levels and promoter methylation status. Materials and Methods: In this case/control study, the expression levels and methylation status of the gene promoter was evaluated using quantitative real-time PCR and methylation-specific PCR (MSP), respectively in adults with ALL. The study included peripheral blood of patients with newly diagnosed ALL (n=10), complete remission (CR) (n=10), or relapse (n=10), and 10 control samples from healthy individuals. Results: MSP results revealed an unmethylated status for almost all patients and control samples, except a case with relapsing ALL, which showed a hemimethylated pattern. RASSF1A also showed no difference in terms of gene expression in the patients compared with the control group (p>0.05). Conclusion: The results revealed an up-regulation of RASSF1A tumor suppressor in adult ALL patients experiencing CR, suggesting this to be a marker of therapy response. However, further investigations using more sensitive methylation detecting tools with larger sample sizes may better clarify the involvement of the promoter methylation of RASSF1A in these patients.
Collapse
Affiliation(s)
- Mahsa Sohani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Hojjatipour
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Chahardouli
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Höffken V, Hermann A, Pavenstädt H, Kremerskothen J. WWC Proteins: Important Regulators of Hippo Signaling in Cancer. Cancers (Basel) 2021; 13:cancers13020306. [PMID: 33467643 PMCID: PMC7829927 DOI: 10.3390/cancers13020306] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The conserved Hippo pathway regulates cell proliferation and apoptosis via a complex interplay of transcriptional activities, post-translational protein modifications, specific protein–protein interactions and cellular transport processes. Deregulating this highly balanced system can lead to hyperproliferation, organ overgrowth and cancer. Although WWC proteins are known as components of the Hippo signaling pathway, their association with tumorigenesis is often neglected. This review aims to summarize the current knowledge on WWC proteins and their contribution to Hippo signaling in the context of cancer. Abstract The Hippo signaling pathway is known to regulate cell differentiation, proliferation and apoptosis. Whereas activation of the Hippo signaling pathway leads to phosphorylation and cytoplasmic retention of the transcriptional coactivator YAP, decreased Hippo signaling results in nuclear import of YAP and subsequent transcription of pro-proliferative genes. Hence, a dynamic and precise regulation of the Hippo signaling pathway is crucial for organ size control and the prevention of tumor formation. The transcriptional activity of YAP is controlled by a growing number of upstream regulators including the family of WWC proteins. WWC1, WWC2 and WWC3 represent cytosolic scaffolding proteins involved in intracellular transport processes and different signal transduction pathways. Earlier in vitro experiments demonstrated that WWC proteins positively regulate the Hippo pathway via the activation of large tumor suppressor kinases 1/2 (LATS1/2) kinases and the subsequent cytoplasmic accumulation of phosphorylated YAP. Later, reduced WWC expression and subsequent high YAP activity were shown to correlate with the progression of human cancer in different organs. Although the function of WWC proteins as upstream regulators of Hippo signaling was confirmed in various studies, their important role as tumor modulators is often overlooked. This review has been designed to provide an update on the published data linking WWC1, WWC2 and WWC3 to cancer, with a focus on Hippo pathway-dependent mechanisms.
Collapse
|
7
|
Wang Z, Katsaros D, Biglia N, Shen Y, Fu Y, Tiirikainen M, Yu H. Low expression of WWC1, a tumor suppressor gene, is associated with aggressive breast cancer and poor survival outcome. FEBS Open Bio 2019; 9:1270-1280. [PMID: 31102318 PMCID: PMC6609559 DOI: 10.1002/2211-5463.12659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
The WW and C2 domain containing 1 (WWC1) gene encodes a protein named WWC1 (or KIBRA), which is involved in the Hippo signaling pathway. WWC1 is often lost in triple-negative breast cancer and has been shown to suppress tumor metastasis. In this study, 470 breast cancer patients were recruited and WWC1 expression in the tumor samples was measured with quantitative reverse transcriptase PCR. Associations of WWC1 expression with breast cancer survival were analyzed using the Cox proportional hazards regression model and Kaplan-Meier survival analysis. The relationship between WWC1 expression and methylation was evaluated in a dataset from The Cancer Genome Atlas. Using our microarray data on gene expression and the Ingenuity Pathway Analysis, we predicted the WWC1-associated signaling pathways in breast cancer. Our results showed that low expression of WWC1 was significantly associated with advanced-stage diseases, high-grade tumors, and estrogen receptor- or progesterone receptor-negative status. Compared to those with high expression, patients with low WWC1 had higher risk of breast cancer relapse [hazard ratio (HR) = 2.06, 95% confidence interval (CI): 1.26-3.37] and higher risk of death (HR = 2.76, 95% CI: 1.51-5.03). The association with relapse-free survival remained significant after adjustment for disease stage, tumor grade, and hormone receptor status and was replicated in a public dataset. Analysis of high-throughput gene expression data indicated that WWC1 was involved in the Hippo signaling pathway. Online data also suggested that DNA methylation was inversely associated with WWC1 expression. The study confirmed that low WWC1 expression was associated with aggressive breast cancer and poor survival outcomes.
Collapse
Affiliation(s)
- Zhanwei Wang
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Dionyssios Katsaros
- Department of Surgical Sciences, Gynecology, AOU Città della Salute, University of Turin, Italy
| | - Nicoletta Biglia
- Department of Surgical Science, Division of Obstetrics and Gynecology, Mauriziano Hospital, University of Torino School of Medicine, Turin, Italy
| | - Yi Shen
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yuanyuan Fu
- University of Hawaii Cancer Center, Honolulu, HI, USA.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Herbert Yu
- University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
8
|
Liu X, Li C, Zhang R, Xiao W, Niu X, Ye X, Li Z, Guo Y, Tan J, Li Y. The EZH2- H3K27me3-DNMT1 complex orchestrates epigenetic silencing of the wwc1 gene, a Hippo/YAP pathway upstream effector, in breast cancer epithelial cells. Cell Signal 2018; 51:243-256. [PMID: 30121333 DOI: 10.1016/j.cellsig.2018.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
It is well known that epithelial-mesenchymal transition (EMT) can confer cancer cells with invasive and migratory capabilities associated with distant metastasis. As a key upstream factor in the Hippo pathway, Kibra (wwc1 gene) has been shown to suppress EMT in breast cancer cells, and we have found that its expression is reduced or lost completely in both human breast cancer cell lines and clinical tissue samples, particularly in triple negative breast cancer (TNBC). Unfortunately, the molecular mechanisms underlying this progression-associated event remain to be elucidated. Epigenetic gene silencing is one of the most common causes of suppressed expression of tumor suppressor genes. Furthermore, recent studies have demonstrated that EZH2 can recruit DNA methyltransferases, resulting in DNA methylation and subsequent gene silencing in certain circumstances. Thus, we hypothesized that there may exist a link between EZH2 and DNA methylation in association with wwc1 silencing in breast cancer. To test this hypothesis, we performed bisulfite sequencing, shRNA, co-IP, ChIP, MeDIP and ChIP-qPCR. As expected, RG108 or 5-Aza treatment improved the wwc1 gene transcription and Kibra protein expression. Both bisulfite sequencing and MeDIP demonstrated higher CpG methylation of the wwc1 promoter the TNBC cells (MDA-MB-231) than in luminal breast cancer cells (MCF7). It is noteworthy that ChIP and co-IP assays showed that EZH2, H3K27me3 and DNMT1 are enriched at the wwc1 promoter, and there exist physiologically relevant protein-protein interactions between them. We also found that EZH2 knockdown leads to a partial increase in Kibra expression and a considerable reduction in H3K27 and DNMT1 trimethylation. Moreover, ChIP-qPCR revealed more DNA fragments containing the wwc1 promoter in MDA-MB-231 than in MCF7 cells after immunoprecipitation with EZH2, DNMT1 and H3K27me3 antibodies. Collectively, our results reveal crosstalk between H3K27me3 inhibition catalyzed by EZH2 and CpG island methylation mediated by DNMT1 within the wwc1 promoter, which synergistically silence wwc1 gene expression in TNBC. Based on these results, we conclude that EZH2 shows promise as a potential anti-tumor target.
Collapse
Affiliation(s)
- Xiong Liu
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China; Present address: Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun Li
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China; Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Rendong Zhang
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Wenjun Xiao
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Xia Niu
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Xiajun Ye
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Zijia Li
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Yuxian Guo
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Junyu Tan
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China
| | - Yaochen Li
- The central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou 515031, China.
| |
Collapse
|
9
|
Kumaraswamy A, Mamidi A, Desai P, Sivagnanam A, Perumalsamy LR, Ramakrishnan C, Gromiha M, Rajalingam K, Mahalingam S. The non-enzymatic RAS effector RASSF7 inhibits oncogenic c-Myc function. J Biol Chem 2018; 293:15691-15705. [PMID: 30139745 DOI: 10.1074/jbc.ra118.004452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/12/2018] [Indexed: 11/06/2022] Open
Abstract
c-Myc is a proto-oncogene controlling expression of multiple genes involved in cell growth and differentiation. Although the functional role of c-Myc as a transcriptional regulator has been intensively studied, targeting this protein in cancer remains a challenge. Here, we report a trimodal regulation of c-Myc function by the Ras effector, Ras-association domain family member 7 (RASSF7), a nonenzymatic protein modulating protein-protein interactions to regulate cell proliferation. Using HEK293T and HeLa cell lines, we provide evidence that RASSF7 destabilizes the c-Myc protein by promoting Cullin4B-mediated polyubiquitination and degradation. Furthermore, RASSF7 competed with MYC-associated factor X (MAX) in the formation of a heterodimeric complex with c-Myc and attenuated its occupancy on target gene promoters to regulate transcription. Consequently, RASSF7 inhibited c-Myc-mediated oncogenic transformation, and an inverse correlation between the expression levels of the RASSF7 and c-Myc genes was evident in human cancers. Furthermore, we found that RASSF7 interacts with c-Myc via its RA and leucine zipper (LZ) domains and LZ domain peptide is sufficient to inhibit c-Myc function, suggesting that this peptide might be used to target oncogenic c-Myc. These results unveil that RASSF7 and c-Myc are functionally linked in the control of tumorigenesis and open up potential therapeutic avenues for targeting the "undruggable" c-Myc protein in a subset of human cancers.
Collapse
Affiliation(s)
- Anbarasu Kumaraswamy
- From the National Cancer Tissue Biobank, Laboratory of Molecular Cell Biology and
| | - Anitha Mamidi
- From the National Cancer Tissue Biobank, Laboratory of Molecular Cell Biology and
| | - Pavitra Desai
- From the National Cancer Tissue Biobank, Laboratory of Molecular Cell Biology and
| | - Ananthi Sivagnanam
- From the National Cancer Tissue Biobank, Laboratory of Molecular Cell Biology and
| | | | - Chandrasekaran Ramakrishnan
- Protein Bioinformatics Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India and
| | - Michael Gromiha
- Protein Bioinformatics Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India and
| | - Krishnaraj Rajalingam
- the MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, 55131 Mainz, Germany
| | | |
Collapse
|
10
|
The RASSF6 Tumor Suppressor Protein Regulates Apoptosis and Cell Cycle Progression via Retinoblastoma Protein. Mol Cell Biol 2018; 38:MCB.00046-18. [PMID: 29891515 DOI: 10.1128/mcb.00046-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.
Collapse
|
11
|
Mussell AL, Denson KE, Shen H, Chen Y, Yang N, Frangou C, Zhang J. Loss of KIBRA function activates EGFR signaling by inducing AREG. Oncotarget 2018; 9:29975-29984. [PMID: 30042827 PMCID: PMC6057453 DOI: 10.18632/oncotarget.25724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
The Hippo signaling pathway is a central regulator of organ size, tissue homeostasis, and tumorigenesis. KIBRA is a member of the WW domain-containing protein family and has recently been reported to be an upstream protein in the Hippo signaling pathway. However, the clinical significance of KIBRA deregulation and the underlying mechanisms by which KIBRA regulates breast cancer (BC) initiation and progression remain poorly understood. Here, we report that KIBRA knockdown in mammary epithelial cells induced epithelial-to-mesenchymal transition (EMT) and increased cell migration and tumorigenic potential. Mechanistically, we observed that inhibiting KIBRA induced growth factor-independent cell proliferation in 2D and 3D culture due to the secretion of amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand. Also, we show that AREG activation in KIBRA-knockdown cells depended on the transcriptional coactivator YAP1. Significantly, decreased expression of KIBRA is correlated with recurrence and reduced BC patient survival. In summary, this study elucidates the molecular events that underpin the role of KIBRA in BC. As a result, our work provides biological insight into the role of KIBRA as a critical regulator of YAP1-mediated oncogenic growth, and may have clinical potential for facilitating patient stratification and identifying novel therapeutic approaches for BC patients.
Collapse
Affiliation(s)
- Ashley L Mussell
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kayla E Denson
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: Frontier Science Foundation, Amherst, NY, USA
| | - He Shen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yanmin Chen
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Nuo Yang
- Department of Anesthesiology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Costa Frangou
- Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, MA, USA
| | - Jianmin Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
12
|
Wang T, Qin ZY, Wen LZ, Guo Y, Liu Q, Lei ZJ, Pan W, Liu KJ, Wang XW, Lai SJ, Sun WJ, Wei YL, Liu L, Guo L, Chen YQ, Wang J, Xiao HL, Bian XW, Chen DF, Wang B. Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death Differ 2018; 25:2086-2100. [PMID: 29555977 DOI: 10.1038/s41418-018-0095-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Hippo signaling pathway is a key regulator of stem cell self-renewal, differentiation, and organ size. While alterations in Hippo signaling are causally linked to uncontrolled cell growth and a broad range of malignancies, genetic mutations in the Hippo pathway are uncommon and it is unclear how the tumor suppressor function of the Hippo pathway is disrupted in human cancers. Here, we report a novel epigenetic mechanism of Hippo inactivation in the context of hepatocellular carcinoma (HCC). We identify a member of the microrchidia (MORC) protein family, MORC2, as an inhibitor of the Hippo pathway by controlling upstream Hippo regulators, neurofibromatosis 2 (NF2) and kidney and brain protein (KIBRA). Mechanistically, MORC2 forms a complex with DNA methyltransferase 3A (DNMT3A) at the promoters of NF2 and KIBRA, leading to their DNA hyper-methylation and transcriptional repression. As a result, NF2 and KIBRA are crucial targets of MORC2 to regulate confluence-induced activation of Hippo signaling and contact inhibition of cell growth under both physiological and pathological conditions. The MORC2-NF2/KIBRA axis is critical for maintaining self-renewal, sorafenib resistance, and oncogenicity of HCC cells in vitro and in nude mice. Furthermore, MORC2 expression is elevated in HCC tissues, associated with stem-like properties of cancer cells, and disease progression in patients. Collectively, MORC2 promotes cancer stemness and tumorigenesis by facilitating DNA methylation-dependent silencing of Hippo signaling and could be a potential molecular target for cancer therapeutics.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Zhong-Yi Qin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Yan Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Qin Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Zeng-Jie Lei
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Wei Pan
- Department of Medical Genetics, Second Military Medical University (Navy Medical University), 200433, Shanghai, China
| | - Kai-Jun Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Xing-Wei Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Shu-Jie Lai
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Wen-Jing Sun
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Yan-Ling Wei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Lei Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Ling Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Yu-Qin Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Hua-Liang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Dong-Feng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China.
| | - Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), 400042, Chongqing, China.
| |
Collapse
|
13
|
Abstract
KIBRA has been suggested as a key regulator of the hippo pathway, regulating organ size, cell contact inhibition as well as tissue regeneration and tumorigenesis. Recently, alterations of KIBRA expression caused by promotor methylation have been reported for several types of cancer. Our current study aimed to design an artificial transcription factor capable of re-activating expression of the tumor suppressor KIBRA and the hippo pathway. We engineered a new gene named 'ZFP226' encoding for a ~23 kDa fusion protein. ZFP226 belongs to the Cys2-His2 zinc finger type and recognizes a nine base-pair DNA sequence 5'-GGC-GGC-GGC-3' in the KIBRA core promoter P1a. ZFP226 showed nuclear localization in human immortalized kidney epithelial cells and activated the KIBRA core promoter (p < 0.001) resulting in significantly increased KIBRA mRNA and protein levels (p < 0.001). Furthermore, ZFP226 led to activation of hippo signaling marked by elevated YAP and LATS phosphorylation. In Annexin V flow cytometry assays ZFP226 overexpression showed strong pro-apoptotic capacity on MCF-7 breast cancer cells (p < 0.01 early-, p < 0.001 late-apoptotic cells). We conclude that the artificial transcription factor ZFP226 can be used for target KIBRA and hippo pathway activation. This novel molecule may represent a molecular tool for the development of future applications in cancer treatment.
Collapse
|
14
|
Schelleckes K, Schmitz B, Ciarimboli G, Lenders M, Pavenstädt HJ, Herrmann E, Brand SM, Brand E. Promoter methylation inhibits expression of tumor suppressor KIBRA in human clear cell renal cell carcinoma. Clin Epigenetics 2017; 9:109. [PMID: 29046731 PMCID: PMC5639574 DOI: 10.1186/s13148-017-0415-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/02/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND KIBRA has been suggested as a key regulator of the Hippo signaling pathway, regulating organ size, cell contact inhibition, tissue regeneration as well as tumorigenesis and cystogenesis. We recently reported that human KIBRA expression depends on a complex alternative CpG-rich promoter system. Our current study aimed at the identification of epigenetic mechanisms associated with alterations in KIBRA expression regulation. RESULTS We identified two separated methylation-sensitive CpG islands located to independent KIBRA promoter regions. In vitro promoter methylation analysis using human neuroblastoma (SH-SY5Y) and immortalized kidney cells (IHKE) revealed that total promoter methylation by CpG methyltransferase SssI resulted in complete abrogation of transcriptional activity (p < 0.001), while partial methylation by HpaII selectively repressed KIBRA core promoter activity in kidney cells (p < 0.001). Cell culture-based experiments demonstrated that 5-azacitidine may be used to restore KIBRA mRNA and protein levels, while overexpression of transcription factor SP1 also induced KIBRA upregulation (all p < 0.001). Furthermore, SP1 transactivation of KIBRA transcription was largely prevented by methylation of KIBRA regulatory elements (p < 0.001). Analysis of human kidney biopsies revealed that KIBRA promoter methylation was associated with human clear cell renal cell carcinoma (ccRCC; n = 8 vs 16 controls, OR = 1.921, [CI 95% = 1.369-2.695]). The subsequent determination of KIBRA mRNA levels by real-time PCR in a larger patient sample confirmed significantly reduced KIBRA expression in ccRCC (n = 32) compared to non-neoplastic human kidney tissue samples (controls, n = 32, p < 0.001). CONCLUSION We conclude that epigenetic downregulation of tumor suppressor KIBRA may involve impaired SP1 binding to functional methylation-sensitive KIBRA promoter elements as observed in human kidney clear cell carcinoma. Our findings provide a pathophysiological basis for future studies on altered KIBRA regulation in clinical disease entities such as renal cancer.
Collapse
Affiliation(s)
- Katrin Schelleckes
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Horstmarer Landweg 39, 48149 Muenster, Germany
| | - Giuliano Ciarimboli
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Malte Lenders
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Hermann J. Pavenstädt
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Edwin Herrmann
- Clinic for Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Horstmarer Landweg 39, 48149 Muenster, Germany
| | - Eva Brand
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| |
Collapse
|
15
|
Younesian S, Shahkarami S, Ghaffari P, Alizadeh S, Mehrasa R, Ghavamzadeh A, Ghaffari SH. DNA hypermethylation of tumor suppressor genes RASSF6 and RASSF10 as independent prognostic factors in adult acute lymphoblastic leukemia. Leuk Res 2017; 61:33-38. [PMID: 28869817 DOI: 10.1016/j.leukres.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Hypermethylation of Ras association domain family (RASSF) often plays a key role in malignant progression of solid tumors; however, their impact on the prognosis and survival of adult ALL patients remain elusive. METHODS The frequency of the promoter methylation pattern of RASSF6 and RASSF10 were analyzed in the peripheral blood (PB) samples taken at the time of diagnosis of 45 ALL patients. The methylation-specific PCR (MSP) assay was used to detect the DNA methylation patterns. RESULTS RASSF6 was frequently hypermethylated in patients diagnosed with pre-B-ALL (90.9%) and B-ALL (87.5%), followed by T-ALL (66.7%); whereas, RASSF10 methylation was more confined to T-ALL (80%) as compared to B-ALL (25%) and pre-B ALL (9.1%) patients. Moreover, hypermethylation of RASSF6 was significantly associated with a poor prognosis and shorter overall survival (OS) in patients with pre-B-ALL (log-rank test; P=0.041). CONCLUSION RASSF6 and RASSF10 were frequently hypermethylated in the samples at the time of diagnosis of adult ALL patients. Our study represents the first report of methylation of RASSF6 at a high frequency in patients with pre-B ALL. Furthermore, hypermethylation of RASSF6 was significantly associated with inferior overall survival in pre-B ALL patients. It may suggest that the frequent epigenetic inactivation of RASSF6 plays an important role in the pathogenesis and progression of pre-B-ALL.
Collapse
Affiliation(s)
- Samareh Younesian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Hematology, School of Allied Medical Sciences, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Mehrasa
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Han Q, Lin X, Zhang X, Jiang G, Zhang Y, Miao Y, Rong X, Zheng X, Han Y, Han X, Wu J, Kremerskothen J, Wang E. WWC3 regulates the Wnt and Hippo pathways via Dishevelled proteins and large tumour suppressor 1, to suppress lung cancer invasion and metastasis. J Pathol 2017; 242:435-447. [PMID: 28543074 DOI: 10.1002/path.4919] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Qiang Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Xuyong Lin
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Guiyang Jiang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Yong Zhang
- Department of Pathology; Cancer Hospital of China Medical University; Shenyang PR China
| | - Yuan Miao
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Xuezhu Rong
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Xiaoying Zheng
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Yong Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Xu Han
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Jingjing Wu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| | - Joachim Kremerskothen
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology; University Hospital Münster; Münster Germany
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital; China Medical University; Shenyang PR China
| |
Collapse
|
17
|
Hou J, Zhou J. WWC3 downregulation correlates with poor prognosis and inhibition of Hippo signaling in human gastric cancer. Onco Targets Ther 2017; 10:2931-2942. [PMID: 28652775 PMCID: PMC5476718 DOI: 10.2147/ott.s124790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the clinicopathological significance and biological roles of WWC3 in human gastric cancer (GC). Clinical significance of WWC3 in human GCs was examined by using immunohistochemistry (IHC). WWC3 was downregulated in 48 of 111 human GCs, and its downregulation was associated with advanced stage, positive nodal status, and higher relapse rate. Importantly, WWC3 downregulation correlated with poor survival. It was also found that WWC3 protein expression was downregulated in GC cell lines compared with normal cell line GES-1. On one hand, WWC3 overexpression inhibited the cell growth rate and invading ability in HGC-27 cell line. On the other hand, depleting WWC3 by small interfering RNA (siRNA) promoted proliferation rate and invading ability in the SGC-7901 cell line. In addition, cell cycle analysis showed that WWC3 overexpression inhibited while its depletion accelerated cell cycle progression at the G1/S transition. Western blot (WB) analysis demonstrated that WWC3 repressed cyclin D1 and cyclin E while upregulated p27 expression. Luciferase reporter assay showed that WWC3 activated Hippo signaling pathway by suppressing TEAD transcription activity, with downregulation of total and nuclear YAP and its target CTGF. WWC3 siRNA depletion exhibited the opposite effects. In conclusion, this study indicates that WWC3 serves as a tumor suppressor in GC by activating Hippo signaling.
Collapse
Affiliation(s)
- Jiabin Hou
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Jin Zhou
- The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
18
|
Paziewska A, Habior A, Rogowska A, Zych W, Goryca K, Karczmarski J, Dabrowska M, Ambrozkiewicz F, Walewska-Zielecka B, Krawczyk M, Cichoz-Lach H, Milkiewicz P, Kowalik A, Mucha K, Raczynska J, Musialik J, Boryczka G, Wasilewicz M, Ciecko-Michalska I, Ferenc M, Janiak M, Kanikowska A, Stankiewicz R, Hartleb M, Mach T, Grzymislawski M, Raszeja-Wyszomirska J, Wunsch E, Bobinski T, Mikula M, Ostrowski J. A novel approach to genome-wide association analysis identifies genetic associations with primary biliary cholangitis and primary sclerosing cholangitis in Polish patients. BMC Med Genomics 2017; 10:2. [PMID: 28056976 PMCID: PMC5217265 DOI: 10.1186/s12920-016-0239-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are forms of hepatic autoimmunity, and risk for both diseases has a strong genetic component. This study aimed to define the genetic architecture of PBC and PSC within the Polish population. METHODS Subjects were 443 women with PBC, 120 patients with PSC, and 934 healthy controls recruited from Gastroenterology Departments in various Polish hospitals. Allelotyping employed a pooled-DNA sample-based genome-wide association study (GWAS) approach, using Illumina Human Omni2.5-Exome BeadChips and the following novel selection criteria for risk loci: blocks of at least 10 single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium, where the distance between each adjacent SNP pair in the block was less than 30 kb, and each SNP was associated with disease at a significance level of P < 0.005. A selected index SNP from each block was validated using TaqMan SNP genotyping assays. RESULTS Nineteen and twenty-one SNPs were verified as associated with PBC and PSC, respectively, by individual genotyping; 19 (10/9, PBC/PSC) SNPs reached a stringent (corrected) significance threshold and a further 21 (9/12, PBC/PSC) reached a nominal level of significance (P < 0.05 with odds ratio (OR) > 1.2 or < 0.83), providing suggestive evidence of association. The SNPs mapped to seven (1p31.3, 3q13, 6p21, 7q32.1, 11q23.3, 17q12, 19q13.33) and one (6p21) chromosome region previously associated with PBC and PSC, respectively. The SNP, rs35730843, mapping to the POLR2G gene promoter (P = 1.2 × 10-5, OR = 0.39) demonstrated the highest effect size, and was protective for PBC, whereas for PSC respective SNPs were: rs13191240 in the intron of ADGRB3 gene (P = 0.0095, OR = 0.2) and rs3822659 (P = 0.0051, OR = 0.236) along with rs9686714 (P = 0.00077, OR = 0.2), both located in the WWC1 gene. CONCLUSIONS Our cost-effective GWAS approach followed by individual genotyping confirmed several previously identified associations and discovered new susceptibility loci associated with PBC and/or PSC in Polish patients. However, further functional studies are warranted to understand the roles of these newly identified variants in the development of the two disorders.
Collapse
Affiliation(s)
- Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Andrzej Habior
- Department of Gastroenterology, Hepatology and Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Agnieszka Rogowska
- Department of Gastroenterology, Hepatology and Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Włodzimierz Zych
- Department of Gastroenterology, Hepatology and Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Gastroenterology, Hepatology and Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Bozena Walewska-Zielecka
- Department of Public Health, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Milkiewicz
- Department of General, Liver and Internal Medicine Unit, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | | | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Raczynska
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Musialik
- Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Boryczka
- Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
| | - Michal Wasilewicz
- Department of General, Liver and Internal Medicine Unit, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Irena Ciecko-Michalska
- Department of Gastroenterology and Infectious Diseases, Collegium Medicum Jagiellonian University, Krakow, Poland
| | - Malgorzata Ferenc
- Department of Gastroenterology, Provincial Hospital, Olsztyn, Poland
| | - Maria Janiak
- Department of Gastroenterology and Hepatology, Medical University of Gdansk, Gdansk, Poland
| | - Alina Kanikowska
- Department of Internal and Metabolic Diseases and Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Rafal Stankiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marek Hartleb
- Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
| | - Tomasz Mach
- Department of Gastroenterology and Infectious Diseases, Collegium Medicum Jagiellonian University, Krakow, Poland
| | - Marian Grzymislawski
- Department of Internal and Metabolic Diseases and Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Raszeja-Wyszomirska
- Department of General, Liver and Internal Medicine Unit, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Wunsch
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Bobinski
- Department of Gastroenterology, Provincial Hospital, Ostroleka, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| |
Collapse
|
19
|
Wang F, Feng Y, Li P, Wang K, Feng L, Liu YF, Huang H, Guo YB, Mao QS, Xue WJ. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget 2016; 7:4279-97. [PMID: 26701853 PMCID: PMC4826205 DOI: 10.18632/oncotarget.6654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/04/2015] [Indexed: 01/12/2023] Open
Abstract
Methylation of the Ras-association domain family 10 (RASSF10) promoter region correlates with clinicopathological characteristics and poor prognosis in several human cancers. Here, we examined RASSF10 expression in hepatocellular carcinoma (HCC) and its role in hepatocarcinogenesis. RASSF10 mRNA and protein levels were downregulated in both HCC cell lines and patient tissue samples. In patient tissues, low RASSF10 levels correlated with hepatocirrhosis, poor tumor differentiation, tumor thrombus and Barcelona Clinic Liver Cancer stage, and were indicative of increased tumor recurrence and reduced patient survival. Low RASSF10 expression was associated with promoter hypermethylation, which was in turn associated with polycyclic aromatic hydrocarbon and aflatoxin B1 exposure, but not DNA methyltransferase expression. Overexpression of RASSF10 in HCC cell lines suppressed cell growth and colony formation, and induced apoptosis by up- or down-regulating specific Bcl-2 family proteins. RASSF10 overexpression increased pro-apoptotic Bax and Bad levels, but decreased anti-apoptotic Bcl-2 and Bcl-xl expression. Overexpression also inhibited tumor formation in nude mice and reduced cell migration and invasion by inhibiting the epithelial-mesenchymal transition. RASSF10 knockdown promoted cell growth. Our results show that RASSF10 is frequently hypermethylated and down-regulated in HCC and can potentially serve as a useful biomarker predictive of HCC patient prognosis.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Ying Feng
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Kun Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu, China
| | - Liang Feng
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Yi-Fei Liu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Hua Huang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Yi-Bing Guo
- Department of Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Qin-Sheng Mao
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Wan-Jiang Xue
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| |
Collapse
|
20
|
Wilson KE, Yang N, Mussell AL, Zhang J. The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond. Genes (Basel) 2016; 7:genes7060023. [PMID: 27240404 PMCID: PMC4929422 DOI: 10.3390/genes7060023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to the development of cancer. Complex networks of intracellular and extracellular signaling pathways that modulate YAP and TAZ activities have recently been identified. Among them, KIBRA and PTPN14 are two evolutionarily-conserved and important YAP/TAZ upstream regulators. They can negatively regulate YAP/TAZ functions separately or in concert. In this review, we summarize the current and emerging regulatory roles of KIBRA and PTPN14 in the Hippo pathway and their functions in cancer.
Collapse
Affiliation(s)
- Kayla E Wilson
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Nuo Yang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Ashley L Mussell
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Jianmin Zhang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
21
|
Bhoi S, Ljungström V, Baliakas P, Mattsson M, Smedby KE, Juliusson G, Rosenquist R, Mansouri L. Prognostic impact of epigenetic classification in chronic lymphocytic leukemia: The case of subset #2. Epigenetics 2016; 11:449-55. [PMID: 27128508 DOI: 10.1080/15592294.2016.1178432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Based on the methylation status of 5 single CpG sites, a novel epigenetic classification of chronic lymphocytic leukemia (CLL) was recently proposed, classifying CLL patients into 3 clinico-biological subgroups with different outcome, termed memory like CLL (m-CLL), naïve like CLL (n-CLL), and a third intermediate CLL subgroup (i-CLL). While m-CLL and n-CLL patients at large corresponded to patients carrying mutated and unmutated IGHV genes, respectively, limited information exists regarding the less defined i-CLL group. Using pyrosequencing, we investigated the prognostic impact of the proposed 5 CpG signature in a well-characterized CLL cohort (135 cases), including IGHV-mutated and unmutated patients as well as clinically aggressive stereotyped subset #2 patients. Overall, we confirmed the signature's association with established prognostic markers. Moreover, in the presence of the IGHV mutational status, the epigenetic signature remained independently associated with both time-to-first-treatment and overall survival in multivariate analyses. As a prime finding, we observed that subset #2 patients were predominantly classified as i-CLL, probably reflecting their borderline IGHV mutational status (97-99% germline identity), though having a similarly poor prognosis as n-CLL patients. In summary, we validated the epigenetic classifier as an independent factor in CLL prognostication and provide further evidence that subset #2 is a member of the i-CLL group, hence supporting the existence of a third, intermediate epigenetic subgroup.
Collapse
Affiliation(s)
- Sujata Bhoi
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Viktor Ljungström
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Panagiotis Baliakas
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Mattias Mattsson
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden.,b Department of Medical Sciences , Uppsala University , Uppsala , Sweden
| | - Karin E Smedby
- c Department of Medicine Solna , Clinical Epidemiology Unit, Karolinska Institutet , Stockholm , Sweden
| | - Gunnar Juliusson
- d Department of Laboratory Medicine , Stem Cell Center, Hematology and Transplantation, Lund University , Lund , Sweden
| | - Richard Rosenquist
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| | - Larry Mansouri
- a Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Sweden
| |
Collapse
|
22
|
Stauffer S, Chen X, Zhang L, Chen Y, Dong J. KIBRA promotes prostate cancer cell proliferation and motility. FEBS J 2016; 283:1800-11. [PMID: 27220053 DOI: 10.1111/febs.13718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/27/2022]
Abstract
KIBRA is a regulator of the Hippo-yes-associated protein (YAP) pathway, which plays a critical role in tumorigenesis. In the present study, we show that KIBRA is a positive regulator in prostate cancer cell proliferation and motility. We found that KIBRA is transcriptionally upregulated in androgen-insensitive LNCaPC4-2 and LNCaP-C81 cells compared to parental androgen-sensitive LNCaP cells. Ectopic expression of KIBRA enhances cell proliferation, migration and invasion in both immortalized and cancerous prostate epithelial cells. Accordingly, knockdown of KIBRA reduces migration, invasion and anchorage-independent growth in LNCaP-C4-2/C81 cells. Moreover, KIBRA expression is induced by androgen signaling and KIBRA is partially required for androgen receptor signaling activation in prostate cancer cells. In line with these findings, we further show that KIBRA is overexpressed in human prostate tumors. Our studies uncover unexpected results and identify KIBRA as a tumor promoter in prostate cancer.
Collapse
Affiliation(s)
- Seth Stauffer
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xingcheng Chen
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lin Zhang
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
23
|
Targeting the Hippo pathway: Clinical implications and therapeutics. Pharmacol Res 2015; 103:270-8. [PMID: 26678601 DOI: 10.1016/j.phrs.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
The Hippo pathway plays a critical role in tissue and organ size regulation by restraining cell proliferation and apoptosis under homeostatic conditions. Deregulation of this pathway can promote tumorigenesis in multiple malignant human tumor types, including sarcoma, breast, lung and liver cancers. In this review, we summarize the current understanding of Hippo pathway function, it's role in human cancer, and address the potential of Hippo pathway member proteins as therapeutic targets for a variety of tumors.
Collapse
|
24
|
FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells. Blood 2014; 124:3431-40. [PMID: 25267198 DOI: 10.1182/blood-2014-01-553412] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The forkhead transcription factor FOXP1 is involved in B-cell development and function and is generally regarded as an oncogene in activated B-cell-like subtype of diffuse large B-cell lymphoma (DLBCL) and mucosa-associated lymphoid tissue lymphoma, lymphomas relying on constitutive nuclear factor κB (NF-κB) activity for survival. However, the mechanism underlying its putative oncogenic activity has not been established. By gene expression microarray, upon overexpression or silencing of FOXP1 in primary human B cells and DLBCL cell lines, combined with chromatin immunoprecipitation followed by next-generation sequencing, we established that FOXP1 directly represses a set of 7 proapoptotic genes. Low expression of these genes, encoding the BH3-only proteins BIK and Harakiri, the p53-regulatory proteins TP63, RASSF6, and TP53INP1, and AIM2 and EAF2, is associated with poor survival in DLBCL patients. In line with these findings, we demonstrated that FOXP1 promotes the expansion of primary mature human B cells by inhibiting caspase-dependent apoptosis, without affecting B-cell proliferation. Furthermore, FOXP1 is dependent upon, and cooperates with, NF-κB signaling to promote B-cell expansion and survival. Taken together, our data indicate that, through direct repression of proapoptotic genes, (aberrant) expression of FOXP1 complements (constitutive) NF-κB activity to promote B-cell survival and can thereby contribute to B-cell homeostasis and lymphomagenesis.
Collapse
|
25
|
Zhang L, Yang S, Wennmann DO, Chen Y, Kremerskothen J, Dong J. KIBRA: In the brain and beyond. Cell Signal 2014; 26:1392-9. [PMID: 24642126 DOI: 10.1016/j.cellsig.2014.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/28/2014] [Indexed: 01/16/2023]
Abstract
In mammals, the KIBRA locus has been associated with memory performance and cognition by genome-wide single nucleotide polymorphism screening. Genetic studies in Drosophila and human cells have identified KIBRA as a novel regulator of the Hippo signaling pathway, which plays a critical role in human tumorigenesis. Recent studies also indicated that KIBRA is involved in other physiological processes including cell polarity, membrane/vesicular trafficking, mitosis and cell migration. At the biochemical level, KIBRA protein is highly phosphorylated by various kinases in epithelial cells. Here, we discuss the updates concerning the function and regulation of KIBRA in the brain and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuping Yang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
26
|
A 92-gene cancer classifier predicts the site of origin for neuroendocrine tumors. Mod Pathol 2014; 27:44-54. [PMID: 23846576 DOI: 10.1038/modpathol.2013.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/08/2013] [Accepted: 05/11/2013] [Indexed: 01/04/2023]
Abstract
A diagnosis of neuroendocrine carcinoma is often morphologically straight-forward; however, the tumor site of origin may remain elusive in a metastatic presentation. Neuroendocrine tumor subtyping has important implications for staging and patient management. In this study, the novel use and performance of a 92-gene molecular cancer classifier for determination of the site of tumor origin are described in a series of 75 neuroendocrine tumors (44 metastatic, 31 primary; gastrointestinal (n=12), pulmonary (n=22), Merkel cell (n=10), pancreatic (n=10), pheochromocytoma (n=10), and medullary thyroid carcinoma (n=11)). Formalin-fixed, paraffin-embedded samples passing multicenter pathologist adjudication were blinded and tested by a 92-gene molecular assay that predicts tumor type/subtype based upon relative quantitative PCR expression measurements for 87 tumor-related and 5 reference genes. The 92-gene assay demonstrated 99% (74/75; 95% confidence interval (CI) 0.93-0.99) accuracy for classification of neuroendocrine carcinomas and correctly subtyped the tumor site of origin in 95% (71/75; 95% CI 0.87-0.98) of cases. Analysis of gene expression subsignatures within the 92-gene assay panel showed 4 genes with promising discriminatory value for tumor typing and 15 genes for tumor subtyping. The 92-gene classifier demonstrated excellent accuracy for classifying and determining the site of origin in tumors with neuroendocrine differentiation. These results show promise for use of this test to aid in classifying neuroendocrine tumors of indeterminate primary site, particularly in the metastatic setting.
Collapse
|
27
|
Richter AM, Haag T, Walesch S, Herrmann-Trost P, Marsch WC, Kutzner H, Helmbold P, Dammann RH. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma. Cancers (Basel) 2013; 5:1566-76. [PMID: 24252868 PMCID: PMC3875954 DOI: 10.3390/cancers5041566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/23/2013] [Accepted: 11/08/2013] [Indexed: 12/03/2022] Open
Abstract
Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis.
Collapse
Affiliation(s)
- Antje M. Richter
- Institute for Genetics, University of Giessen, Giessen D-35392, Germany; E-Mails: (A.M.R.); (T.H.); (S.W.)
| | - Tanja Haag
- Institute for Genetics, University of Giessen, Giessen D-35392, Germany; E-Mails: (A.M.R.); (T.H.); (S.W.)
| | - Sara Walesch
- Institute for Genetics, University of Giessen, Giessen D-35392, Germany; E-Mails: (A.M.R.); (T.H.); (S.W.)
| | | | - Wolfgang C. Marsch
- Department of Dermatology, University of Halle, Halle D-06120, Germany; E-Mail:
| | | | - Peter Helmbold
- Department of Dermatology, University of Heidelberg, Heidelberg D-69120, Germany; E-Mail: Peter.
| | - Reinhard H. Dammann
- Institute for Genetics, University of Giessen, Giessen D-35392, Germany; E-Mails: (A.M.R.); (T.H.); (S.W.)
| |
Collapse
|
28
|
Cahill N, Rosenquist R. Uncovering the DNA methylome in chronic lymphocytic leukemia. Epigenetics 2013; 8:138-48. [PMID: 23321535 DOI: 10.4161/epi.23439] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the past two decades, aberrant DNA methylation has emerged as a key player in the pathogenesis of chronic lymphocytic leukemia (CLL), and knowledge regarding its biological and clinical consequences in this disease has evolved rapidly. Since the initial studies relating DNA hypomethylation to genomic instability in CLL, a plethora of reports have followed showing the impact of DNA hypermethylation in silencing vital single gene promoters and the reversible nature of DNA methylation through inhibitor drugs. With the recognition that DNA hypermethylation events could potentially act as novel prognostic and treatment targets in CLL, the search for aberrantly methylated genes, gene families and pathways has ensued. Subsequently, the advent of microarray and next-generation sequencing technologies has supported the hunt for such targets, allowing exploration of the methylation landscape in CLL at an unprecedented scale. In light of these analyses, we now understand that different CLL prognostic subgroups are characterized by differential methylation profiles; we recognize DNA methylation of a number of signaling pathways genes to be altered in CLL, and acknowledge the role of DNA methylation outside of traditional CpG island promoters as fundamental players in the regulation of gene expression. Today, the significance and timing of altered DNA methylation within the complex epigenetic network of concomitant epigenetic messengers such as histones and miRNAs is an intensive area of research. In CLL, it appears that DNA methylation is a rather stable epigenetic mark occurring rather early in the disease pathogenesis. However, other consequences, such as how and why aberrant methylation marks occur, are less explored. In this review, we will not only provide a comprehensive summary of the current literature within the epigenetics field of CLL, but also highlight some of the novel findings relating to when, where, why and how altered DNA methylation materializes in CLL.
Collapse
Affiliation(s)
- Nicola Cahill
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala, Sweden
| | | |
Collapse
|
29
|
Phospho-regulation of KIBRA by CDK1 and CDC14 phosphatase controls cell-cycle progression. Biochem J 2012; 447:93-102. [DOI: 10.1042/bj20120751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
KIBRA (kidney- and brain-expressed protein) is a novel regulator of the Hippo pathway, which controls tissue growth and tumorigenesis by regulating both cell proliferation and apoptosis. In mammals, KIBRA is associated with memory performance. The physiological function and regulation of KIBRA in non-neuronal cells remain largely unclear. We reported recently that KIBRA is phosphorylated by the mitotic kinases Aurora-A and -B. In the present study, we have expanded our analysis of KIBRA's role in cell-cycle progression. We show that KIBRA is also phosphorylated by CDK1 (cyclin-dependent kinase 1) in response to spindle damage stress. We have identified KIBRA Ser542 and Ser931 as main phosphorylation sites for CDK1 both in vitro and in vivo. Moreover, we found that the CDC (cell division cycle) 14A/B phosphatases associate with KIBRA, and CDK1-non-phosphorylatable KIBRA has greatly reduced interaction with CDC14B. CDC14A/B dephosphorylate CDK1-phosphorylated KIBRA in vitro and in cells. By using inducible-expression cell lines, we show further that phospho-regulation of KIBRA by CDK1 and CDC14 is involved in mitotic exit under spindle stress. Our results reveal a new mechanism through which KIBRA regulates cell-cycle progression.
Collapse
|
30
|
Zhang L, Iyer J, Chowdhury A, Ji M, Xiao L, Yang S, Chen Y, Tsai MY, Dong J. KIBRA regulates aurora kinase activity and is required for precise chromosome alignment during mitosis. J Biol Chem 2012; 287:34069-77. [PMID: 22904328 DOI: 10.1074/jbc.m112.385518] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway controls organ size and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. KIBRA was recently identified as a novel regulator of the Hippo pathway. Several of the components of the Hippo pathway are important regulators of mitosis-related cell cycle events. We recently reported that KIBRA is phosphorylated by the mitotic kinases Aurora-A and -B. However, the role KIBRA plays in mitosis has not been established. Here, we show that KIBRA activates the Aurora kinases and is required for full activation of Aurora kinases during mitosis. KIBRA also promotes the phosphorylation of large tumor suppressor 2 (Lats2) on Ser(83) by activating Aurora-A, which controls Lats2 centrosome localization. However, Aurora-A is not required for KIBRA to associate with Lats2. We also found that Lats2 inhibits the Aurora-mediated phosphorylation of KIBRA on Ser(539), probably via regulating protein phosphatase 1. Consistent with playing a role in mitosis, siRNA-mediated knockdown of KIBRA causes mitotic abnormalities, including defects of spindle and centrosome formation and chromosome misalignment. We propose that the KIBRA-Aurora-Lats2 protein complexes form a novel axis that regulates precise mitosis.
Collapse
Affiliation(s)
- Lin Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | |
Collapse
|