1
|
Li S, Xu F, Zhang Y, Gao Z, Han Z, Feng C. Identification and characteristic analysis of an extracellular signal-regulated kinase from Ostrinia furnacalis Guenée. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22077. [PMID: 38288489 DOI: 10.1002/arch.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
The extracellular signal-regulated kinase (ERK) pathway, a critical genetic determinant, controls diverse physiological functions, including innate immunity, development, and stress response. In the current study, a full-length cDNA (1592bp) encoding the ERK gene (OfERK) was cloned from Ostrinia furnacalis Guenée (GenBank accession number: MF797866). The open reading frame of the OfERK gene encoded 364 amino acids and shared 96.43%-98.08% amino acid identities with other insect mitogen-activated protein kinases. For spatiotemporal analysis of the expression pattern, OfERK exhibited a significant peak expression on the 3rd day of the pupa stage and showed the highest expression in hemocytes specifically. Indirect immunofluorescence assays and immuno-electron microscopy revealed a wide distribution of the OfERK protein in hemocytes and epidermis. Moreover, the results demonstrated that the Bt Cry1Ab-activated toxin significantly induces the expression of OfERK. Other genes related to immune response, development, and stress response exhibited dynamic changes in expression after Cry1Ab oral treatment. The expression of OfERK was downregulated through RNA interference, and the correlation of its expression with other related genes was verified using quantitative real-time polymerase chain reaction. Our study provides valuable insights into the regulatory mechanism of ERK in insects for future studies.
Collapse
Affiliation(s)
- Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuqiang Xu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yiqiang Zhang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zupeng Gao
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyang Han
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Wu X, Zhou C, Li X, Lin J, Aguila LCR, Wen F, Wang L. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera). BMC Genomics 2023; 24:344. [PMID: 37349677 DOI: 10.1186/s12864-023-09446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.
Collapse
Affiliation(s)
- Xiaozhu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239099, China
| | - Chenghua Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000, China.
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Schisanhenol improves early porcine embryo development by regulating the phosphorylation level of MAPK. Theriogenology 2021; 175:34-43. [PMID: 34481228 DOI: 10.1016/j.theriogenology.2021.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
Schisanhenol (SAL), a biphenyl cyclooctene-type lignin compound which can be extracted and isolated from many plants of the Schisandra family, exhibits a variety of biological activities including anti chronic cough, night sweating, thirst, diabetes, and obesity. However, its effects on the female reproductive system are unclear. Previous studies showed that SAL had potential antioxidant activity in heart, liver, and brain. Therefore, we hypothesized that SAL could improve porcine early development by reducing oxidative stress. The purpose of this study was to investigate the effects of SAL on preimplantation porcine embryos and the potential mechanisms. In this study, we analyzed the effects of SAL on embryo quality, reactive oxygen species (ROS) accumulation, mitochondrial function, cell proliferation and apoptosis, and the activation of MAPK pathway. The results showed that 10 μM SAL significantly increased the blastocyst formation rate, proliferation ability, and mitochondrial activity while reducing ROS accumulation and apoptosis level. During this process, the phosphorylation levels of ERK1/2, JNK1/2/3, and p38 were decreased. In summary, 10 μM SAL improves porcine preimplantation embryo development by reducing ROS accumulation.
Collapse
|
4
|
Gu L, Xia C. Cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes. BMC Evol Biol 2019; 19:9. [PMID: 30621595 PMCID: PMC6325677 DOI: 10.1186/s12862-018-1323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene and genome duplication play important roles in the evolution of gene function. Compared to individual duplicated genes, gene clusters attract particular attention considering their frequent associations with innovation and adaptation. Here, we report for the first time the expansion of the apolipoprotein D (ApoD) ligand-transporter genes in a cluster manner specific to teleost fishes. RESULTS Based on comparative genomic and transcriptomic analyses, protein 3D structure comparison, positive selection detection and breakpoints detection, the single ApoD gene in the ancestor expanded into two clusters following a dynamic evolutionary pattern in teleost fishes. Orthologous genes show conserved expression patterns, whereas lineage-specific duplicated genes show tissue-specific expression patterns and even evolve new gene expression profiles. Positive selection occurred in branches before and after gene duplication, especially for lineage-specific duplicated genes. Cluster analyses based on protein 3D structure comparisons, especially comparisons of the four loops at the opening side, show gene duplication-segregating patterns. Duplicated ApoD genes are predicted to be associated with forkhead transcription factors and MAPK genes. ApoD clusters are located next to the breakpoints of genome rearrangements. CONCLUSIONS Here, we report the expansion of ApoD genes specific to teleost fishes in a cluster manner for the first time. Neofunctionalization and subfunctionalization were observed at both the protein and expression levels after duplication. Evidence from different aspects-i.e., abnormal expression-induced disease in humans, fish-specific expansion, predicted associations with forkhead transcription factors and MAPK genes, specific expression patterns in tissues related to sexual selection and adaptation, duplicated genes under positive selection and their location next to the breakpoints of genome rearrangements-suggests the potentially advantageous roles of ApoD genes in teleost fishes. The cluster expansion of ApoD genes specific to teleost fishes provides thus an ideal evo-devo model for studying gene duplication, cluster maintenance and new gene function emergence.
Collapse
Affiliation(s)
- Langyu Gu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Ashok D, Sood TJ, Sah S, Palta P, Mukesh M, Chauhan MS, Manik RS, Singla SK. Buffalo SCNT embryos exhibit abnormal gene expression of ERK/MAPK pathway and DNA methylation. Reprod Domest Anim 2018; 53:1247-1252. [PMID: 30051511 DOI: 10.1111/rda.13217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022]
Abstract
Inhibition of ERK/MAPK pathway has been shown to decrease DNA methylation via down-regulation of DNA methyltransferases (DNMTs) in several studies suggesting that this pathway plays an important role in regulation of DNA methylation. We examined the relative expression level of seven important genes related to ERK/MAPK pathway and DNMTs (DNMT1, DNMT3a and DNMT3b) by quantitative real-time PCR in buffalo blastocysts produced by Hand-made cloning and compared it with that in blastocyst-stage embryos produced by in vitro fertilization (IVF). The expression level of six of seven genes related to ERK/MAPK pathway examined i.e., p21RAS, RAF1, AKT1, ERK2, PIK3R2 and c-Myc was significantly higher (p < 0.05) in cloned than in IVF embryos. However, the expression level of FOS was lower (p < 0.005) in cloned than in IVF embryos. The relative expression level of DNMT3a and DNMT3b but not that of DNMT1 was significantly higher (p < 0.05) in cloned than in IVF embryos. These results indicate that the cloned embryos exhibit an abnormal expression of several important genes related to ERK/MAPK pathway and DNMTs. Although a direct link between ERK/MAPK pathway and DNMTs was not examined in the present study, it can be speculated that ERK/MAPK pathway may have a role in regulating the expression of DNMTs in embryos, as also observed in other tissues.
Collapse
Affiliation(s)
- Disha Ashok
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tanushri Jerath Sood
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Shrutika Sah
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Manishi Mukesh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Radhey Sham Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Piala AT, Humphreys JM, Goldsmith EJ. MAP kinase modules: the excursion model and the steps that count. Biophys J 2015; 107:2006-15. [PMID: 25418086 DOI: 10.1016/j.bpj.2014.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023] Open
Abstract
MAP kinase modules propagate diverse extracellular signals to downstream effectors. The two dual phosphorylation reactions catalyzed by the modules are thought to control the switch behavior of the pathway. Here we review recent approaches to understand these pathways through signal-to-response studies in cells and in vitro. These data are reconciled with physical models as well as predictions made on mathematical and theoretical grounds. Biochemical analysis has shown recently that the dual phosphorylation reactions catalyzed by MAP kinase modules are sequential at both levels of the cascade. The observed order of phosphorylation events suggests an excursion from the Ser/Thr kinase activity of the MAP3K into Tyr kinase activity of the central dual specificity MAP2K. How the order of events might be encoded in the structures and interactions is discussed. The ordered mechanism confirms predictions that reactions should be sequential to generate the steep signal-to-response curves and delayed responses observed in cells.
Collapse
Affiliation(s)
- Alexander T Piala
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - John M Humphreys
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.
| |
Collapse
|
7
|
Jiao Q, Wu A, Shao G, Peng H, Wang M, Ji S, Liu P, Zhang J. The latest progress in research on triple negative breast cancer (TNBC): risk factors, possible therapeutic targets and prognostic markers. J Thorac Dis 2014; 6:1329-35. [PMID: 25276378 DOI: 10.3978/j.issn.2072-1439.2014.08.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/28/2014] [Indexed: 12/28/2022]
Abstract
Triple negative breast cancer (TNBC) is one type of breast cancer (BC), which is defined as negative for estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (Her2). Its origins and development seem to be elusive. And for now, drugs like tamoxifen or trastuzumab which specifically apply to ER, PR or Her2 positive BC seem unforeseeable in TNBC clinical treatment. Due to its extreme malignancy, high recurrence rate and poor prognosis, a lot of work on the research of TNBC is needed. This review aims to summarize the latest findings in TNBC in risk factors, possible therapeutic targets and possible prognostic makers.
Collapse
Affiliation(s)
- Qingli Jiao
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Aiguo Wu
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Guoli Shao
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Haoyu Peng
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengchuan Wang
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Shufeng Ji
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Liu
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Zhang
- 1 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China ; 2 Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China ; 3 Department of Breast Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Pereira AM, Tudor C, Pouille PA, Shekhar S, Kanger JS, Subramaniam V, Martín-Blanco E. Plasticity of the MAPK signaling network in response to mechanical stress. PLoS One 2014; 9:e101963. [PMID: 25025279 PMCID: PMC4099004 DOI: 10.1371/journal.pone.0101963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK) cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity.
Collapse
Affiliation(s)
- Andrea M. Pereira
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10–12, Barcelona, Spain
| | - Cicerone Tudor
- Nanobiophysics, MESA+ Institute for Nanotechnology & MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Philippe-Alexandre Pouille
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10–12, Barcelona, Spain
| | - Shashank Shekhar
- Nanobiophysics, MESA+ Institute for Nanotechnology & MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Johannes S. Kanger
- Nanobiophysics, MESA+ Institute for Nanotechnology & MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics, MESA+ Institute for Nanotechnology & MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- * E-mail: (VS); (EMB)
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10–12, Barcelona, Spain
- * E-mail: (VS); (EMB)
| |
Collapse
|
9
|
Zhang J, Zhang J, Zhao C, Shen R, Guo X, Li C, Ling X, Liu C. Analysis of transcription factor Stk40 expression and function during mouse pre-implantation embryonic development. Mol Med Rep 2013; 9:535-40. [PMID: 24276375 DOI: 10.3892/mmr.2013.1828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/14/2013] [Indexed: 11/06/2022] Open
Abstract
Determining the molecular mechanisms in the regulation of early embryonic development is crucial for assisted reproductive technology clinical applications. Serine/threonine protein kinase 40 (Stk40) is a member of the serine/threonine kinase family. It is essential in diverse signaling pathways associated with a wide range of cellular activities, including proliferation, differentiation, survival and apoptosis. However, its involvement and molecular mechanisms in pre‑implantation embryonic development have not been well‑defined. In the present study, it was demonstrated that Stk40 was involved in the development of mouse pre‑implantation embryos. Immunofluorescence and confocal microscopy analyses showed that Stk40 was equally expressed in the nuclei and cytoplasm during all stages of pre‑implantation mouse embryos of imprinting control region mice. Reverse transcription‑polymerase chain reaction showed a significantly higher transcription rate of Stk40 mRNA in the two‑cell stage. The results demonstrated that Stk40 downregulation by microinjection of small interfering RNA into the mouse zygote markedly decreased the blastulation compared with that in the control (Stk40i‑1 vs. control: 65.2% and 77.0%, P<0.05 and Stk40i‑2 vs. control: 49.8% and 70.1%, respectively, P<0.05). In addition, silencing of Stk40 significantly increased the transcription rate of reticulocalbin‑2, whereas that of the homeobox protein, Cdx2, was decreased. In conclusion, the results suggested that Stk40 may be critical in the development of pre‑implantation embryos.
Collapse
Affiliation(s)
- Junqiang Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| | - Juanjuan Zhang
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chun Zhao
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Rong Shen
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Xirong Guo
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chaojun Li
- Key Laboratory of Model Animals for Disease Study of Ministry of Education, Model Animal Research Centre, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiufeng Ling
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
10
|
Radivojevic A, Chachuat B, Bonvin D, Hatzimanikatis V. Exploration of trade-offs between steady-state and dynamic properties in signaling cycles. Phys Biol 2012; 9:045010. [PMID: 22872041 DOI: 10.1088/1478-3975/9/4/045010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the intracellular signaling networks that regulate important cell processes, the base pattern comprises the cycle of reversible phosphorylation of a protein, catalyzed by kinases and opposing phosphatases. Mathematical modeling and analysis have been used for gaining a better understanding of their functions and to capture the rules governing system behavior. Since biochemical parameters in signaling pathways are not easily accessible experimentally, it is necessary to explore possibilities for both steady-state and dynamic responses in these systems. While a number of studies have focused on analyzing these properties separately, it is necessary to take into account both of these responses simultaneously in order to be able to interpret a broader range of phenotypes. This paper investigates the trade-offs between optimal characteristics of both steady-state and dynamic responses. Following an inverse sensitivity analysis approach, we use systematic optimization methods to find the biochemical and biophysical parameters that simultaneously achieve optimal steady-state and dynamic performance. Remarkably, we find that even a single covalent modification cycle can simultaneously and robustly achieve high ultrasensitivity, high amplification and rapid signal transduction. We also find that the response rise and decay times can be modulated independently by varying the activating- and deactivating-enzyme-to-interconvertible-protein ratios.
Collapse
Affiliation(s)
- A Radivojevic
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
11
|
Distinguishing graded and ultrasensitive signalling cascade kinetics by the shape of morphogen gradients in Drosophila. J Theor Biol 2011; 285:136-46. [PMID: 21729706 DOI: 10.1016/j.jtbi.2011.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/11/2011] [Accepted: 06/14/2011] [Indexed: 11/22/2022]
Abstract
Recently, signalling gradients in cascades of two-state reaction-diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose-response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared.
Collapse
|
12
|
Wang H, Zhang H, Wong YH, Voolstra C, Ravasi T, B. Bajic V, Qian PY. Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina. Proteomics 2010; 10:2972-81. [DOI: 10.1002/pmic.201000056] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|