1
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. A mathematical model of development shows that cell division, short-range signaling and self-activating gene networks increase developmental noise while long-range signaling and epithelial stiffness reduce it. Dev Biol 2025; 518:85-97. [PMID: 39622312 DOI: 10.1016/j.ydbio.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The position of cells during development is constantly subject to noise, i.e. cell-level noise. We do not yet fully understand how cell-level noise coming from processes such as cell division or movement leads to morphological noise, i.e. morphological differences between genetically identical individuals developing in the same environment. To address this question we constructed a large ensemble of random genetic networks regulating cell behaviors (contraction, adhesion, etc.) and cell signaling. We simulated them with a general computational model of development, EmbryoMaker. We identified and studied the dynamics, under cell-level noise, of those networks that lead to the development of animal-like morphologies from simple blastula-like initial conditions. We found that growth by cell division is a major contributor to morphological noise. Self-activating gene network loops also amplified cell-level noise into morphological noise while long-range signaling and epithelial stiffness tended to reduce morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution Group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Darwin St., 2, Fuencarral-El Pardo, 28049, Madrid, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution Group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Centre de Recerca Matemàtica (CRM), Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| |
Collapse
|
2
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. On the origins of developmental robustness: modeling buffering mechanisms against cell-level noise. Development 2023; 150:dev201911. [PMID: 38032004 DOI: 10.1242/dev.201911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
During development, cells are subject to stochastic fluctuations in their positions (i.e. cell-level noise) that can potentially lead to morphological noise (i.e. stochastic differences between morphologies that are expected to be equal, e.g. the right and left sides of bilateral organisms). In this study, we explore new and existing hypotheses on buffering mechanisms against cell-level noise. Many of these hypotheses focus on how the boundaries between territories of gene expression remain regular and well defined, despite cell-level noise and division. We study these hypotheses and how irregular territory boundaries lead to morphological noise. To determine the consistency of the different hypotheses, we use a general computational model of development: EmbryoMaker. EmbryoMaker can implement arbitrary gene networks regulating basic cell behaviors (contraction, adhesion, etc.), signaling and tissue biomechanics. We found that buffering mechanisms based on the orientation of cell divisions cannot lead to regular boundaries but that other buffering mechanisms can (homotypic adhesion, planar contraction, non-dividing boundaries, constant signaling and majority rule hypotheses). We also explore the effects of the shape and size of the territories on morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, Southampton SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centre de Recerca Matemàtica (CRM), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
3
|
Balaghi N, Erdemci-Tandogan G, McFaul C, Fernandez-Gonzalez R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev Cell 2023:S1534-5807(23)00238-1. [PMID: 37295436 DOI: 10.1016/j.devcel.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Gonca Erdemci-Tandogan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Christopher McFaul
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
4
|
Gómez-Gálvez P, Anbari S, Escudero LM, Buceta J. Mechanics and self-organization in tissue development. Semin Cell Dev Biol 2021; 120:147-159. [PMID: 34417092 DOI: 10.1016/j.semcdb.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023]
Abstract
Self-organization is an all-important feature of living systems that provides the means to achieve specialization and functionality at distinct spatio-temporal scales. Herein, we review this concept by addressing the packing organization of cells, the sorting/compartmentalization phenomenon of cell populations, and the propagation of organizing cues at the tissue level through traveling waves. We elaborate on how different theoretical models and tools from Topology, Physics, and Dynamical Systems have improved the understanding of self-organization by shedding light on the role played by mechanics as a driver of morphogenesis. Altogether, by providing a historical perspective, we show how ideas and hypotheses in the field have been revisited, developed, and/or rejected and what are the open questions that need to be tackled by future research.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
5
|
Boundary maintenance in the ancestral metazoan Hydra depends on histone acetylation. Dev Biol 2019; 458:200-214. [PMID: 31738910 DOI: 10.1016/j.ydbio.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
Much of boundary formation during development remains to be understood, despite being a defining feature of many animal taxa. Axial patterning of Hydra, a member of the ancient phylum Cnidaria which diverged prior to the bilaterian radiation, involves a steady-state of production and loss of tissue, and is dependent on an organizer located in the upper part of the head. We show that the sharp boundary separating tissue in the body column from head and foot tissue depends on histone acetylation. Histone deacetylation disrupts the boundary by affecting numerous developmental genes including Wnt components and prevents stem cells from entering the position dependent differentiation program. Overall, our results suggest that reversible histone acetylation is an ancient regulatory mechanism for partitioning the body axis into domains with specific identity, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.
Collapse
|
6
|
Revell C, Blumenfeld R, Chalut KJ. Force-based three-dimensional model predicts mechanical drivers of cell sorting. Proc Biol Sci 2019; 286:20182495. [PMID: 30963946 PMCID: PMC6364585 DOI: 10.1098/rspb.2018.2495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/03/2019] [Indexed: 01/22/2023] Open
Abstract
Many biological processes, including tissue morphogenesis, are driven by cell sorting. However, the primary mechanical drivers of sorting in multicellular aggregates (MCAs) remain controversial, in part because there is no appropriate computational model to probe mechanical interactions between cells. To address this important issue, we developed a three-dimensional, local force-based simulation based on the subcellular element method. In our method, cells are modelled as collections of locally interacting force-bearing elements. We use the method to investigate the effects of tension and cell-cell adhesion on MCA sorting. We predict a minimum level of adhesion to produce inside-out sorting of two cell types, which is in excellent agreement with observations in several developmental systems. We also predict the level of tension asymmetry needed for robust sorting. The generality and flexibility of the method make it applicable to tissue self-organization in a myriad of other biological processes, such as tumorigenesis and embryogenesis.
Collapse
Affiliation(s)
- Christopher Revell
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Raphael Blumenfeld
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
| | - Kevin J. Chalut
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
7
|
Javaherian S, D'Arcangelo E, Slater B, Londono C, Xu B, McGuigan AP. Modulation of cellular polarization and migration by ephrin/Eph signal-mediated boundary formation. Integr Biol (Camb) 2017; 9:934-946. [PMID: 29120470 DOI: 10.1039/c7ib00176b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compartment boundaries are essential for ensuring proper cell organization during embryo development and in adult tissues, yet the mechanisms underlying boundary establishment are not completely understood. A number of mechanisms, including (i) differential adhesion, (ii) differential tension, and (iii) cell signaling-mediated cell repulsion, are known to contribute and likely a context-dependent balance of each of these dictates boundary implementation. The ephrin/Eph signaling pathway is known to impact boundary formation in higher animals. In different contexts, ephrin/Eph signaling is known to modulate adhesive properties and migratory behavior of cells. Furthermore it has been proposed that ephrin/Eph signaling may modulate cellular tensile properties, leading to boundary implementation. It remains unclear however, whether, in different contexts, ephrin/Eph act through distinct dominant action modes (e.g. differential adhesion vs. cell repulsion), or whether ephrin/Eph signaling elicits multiple cellular changes simultaneously. Here, using micropatterning of cells over-expressing either EphB3 or ephrinB1, we assess the contribution of each these factors in one model. We show that in this system ephrinB1/EphB3-mediated boundaries are accompanied by modulation of tissue-level architecture and polarization of cell migration. These changes are associated with changes in cell shape and cytoskeletal organization also suggestive of altered cellular tension.
Collapse
Affiliation(s)
- Sahar Javaherian
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Buceta J. Finite cell-size effects on protein variability in Turing patterned tissues. J R Soc Interface 2017; 14:20170316. [PMID: 28855385 PMCID: PMC5582127 DOI: 10.1098/rsif.2017.0316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/02/2017] [Indexed: 01/20/2023] Open
Abstract
Herein we present a framework to characterize different sources of protein expression variability in Turing patterned tissues. In this context, we introduce the concept of granular noise to account for the unavoidable fluctuations due to finite cell-size effects and show that the nearest-neighbours autocorrelation function provides the means to measure it. To test our findings, we perform in silico experiments of growing tissues driven by a generic activator-inhibitor dynamics. Our results show that the relative importance of different sources of noise depends on the ratio between the characteristic size of cells and that of the pattern domains and on the ratio between the pattern amplitude and the effective intensity of the biochemical fluctuations. Importantly, our framework provides the tools to measure and distinguish different stochastic contributions during patterning: granularity versus biochemical noise. In addition, our analysis identifies the protein species that buffer the stochasticity the best and, consequently, it can help to determine key instructive signals in systems driven by a Turing instability. Altogether, we expect our study to be relevant in developmental processes leading to the formation of periodic patterns in tissues.
Collapse
Affiliation(s)
- Javier Buceta
- Department of Bioengineering, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
9
|
Javaherian S, D'Arcangelo E, Slater B, Zulueta-Coarasa T, Fernandez-Gonzalez R, McGuigan AP. An in vitro model of tissue boundary formation for dissecting the contribution of different boundary forming mechanisms. Integr Biol (Camb) 2015; 7:298-312. [DOI: 10.1039/c4ib00272e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Separation of phenotypically distinct cell populations is necessary to ensure proper organization and function of tissues and organs therefore understanding fundamental mechanisms that drive this cell segregation is important. In this work, authors present an in vivo model system that accurately recapitulates important aspects of cell segregation in vivo and allows dissection of cell behaviours driving cell segregation.
Collapse
Affiliation(s)
- Sahar Javaherian
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Benjamin Slater
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
| | | | | | - Alison P. McGuigan
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
- Institute of Biomaterials and Biomedical Engineering
| |
Collapse
|
10
|
Umetsu D, Dunst S, Dahmann C. An RNA interference screen for genes required to shape the anteroposterior compartment boundary in Drosophila identifies the Eph receptor. PLoS One 2014; 9:e114340. [PMID: 25473846 PMCID: PMC4256218 DOI: 10.1371/journal.pone.0114340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/07/2014] [Indexed: 12/01/2022] Open
Abstract
The formation of straight compartment boundaries separating groups of cells with distinct fates and functions is an evolutionarily conserved strategy during animal development. The physical mechanisms that shape compartment boundaries have recently been further elucidated, however, the molecular mechanisms that underlie compartment boundary formation and maintenance remain poorly understood. Here, we report on the outcome of an RNA interference screen aimed at identifying novel genes involved in maintaining the straight shape of the anteroposterior compartment boundary in Drosophila wing imaginal discs. Out of screening 3114 transgenic RNA interference lines targeting a total of 2863 genes, we identified a single novel candidate that interfered with the formation of a straight anteroposterior compartment boundary. Interestingly, the targeted gene encodes for the Eph receptor tyrosine kinase, an evolutionarily conserved family of signal transducers that has previously been shown to be important for maintaining straight compartment boundaries in vertebrate embryos. Our results identify a hitherto unknown role of the Eph receptor tyrosine kinase in Drosophila and suggest that Eph receptors have important functions in shaping compartment boundaries in both vertebrate and insect development.
Collapse
Affiliation(s)
- Daiki Umetsu
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Dunst
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
11
|
Abstract
Changes in cell shape are one of the driving forces of tissue morphogenesis. Contractile cytoskeletal assemblies based on actomyosin networks have emerged as a main player that can drive these changes. Different types of actomyosin networks have been identified, with distinct subcellular localizations, including apical junctional and apicomedial actomyosin. A further specialization of junctional actomyosin are so-called actomyosin 'cables', supracellular arrangements that appear to stretch over many cell diameters. Such actomyosin cables have been shown to serve several important functions, in processes such as wound healing, epithelial morphogenesis and maintenance of compartment identities during development. In the Drosophila embryo, we have recently identified a function for a circumferential actomyosin cable in assisting tube formation. Here, I will briefly summarize general principles that have emerged from the analysis of such cables.
Collapse
Affiliation(s)
- Katja Röper
- MRC-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
12
|
Morozov KI, Pismen LM. Cytoskeleton fluidization versus resolidification: prestress effect. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051920. [PMID: 21728584 DOI: 10.1103/physreve.83.051920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/15/2011] [Indexed: 05/31/2023]
Abstract
The differential elastic modulus of an active actomyosin network is computed as a function of applied stress, taking into account both thermal and motor contributions to filament compliance in the low-frequency domain. It is shown that, due to a dual nature of motor activity, increasing motor concentration may either stiffen the network due to stronger prestress or soften it due to motor agitation, in accordance with experimental data. Prestress anisotropy, which may be induced by redistribution of motors triggered by external force, causes anisotropy of the elastic moduli. This helps to explain the contradictory phenomena of cell fluidization and resolidification in response to transient stretch observed in recent experiments.
Collapse
Affiliation(s)
- Konstantin I Morozov
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
13
|
Schilling S, Willecke M, Aegerter-Wilmsen T, Cirpka OA, Basler K, von Mering C. Cell-sorting at the A/P boundary in the Drosophila wing primordium: a computational model to consolidate observed non-local effects of Hh signaling. PLoS Comput Biol 2011; 7:e1002025. [PMID: 21490725 PMCID: PMC3072364 DOI: 10.1371/journal.pcbi.1002025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/16/2011] [Indexed: 12/31/2022] Open
Abstract
Non-intermingling, adjacent populations of cells define compartment boundaries;
such boundaries are often essential for the positioning and the maintenance of
tissue-organizers during growth. In the developing wing primordium of
Drosophila melanogaster, signaling by the secreted protein
Hedgehog (Hh) is required for compartment boundary maintenance. However, the
precise mechanism of Hh input remains poorly understood. Here, we combine
experimental observations of perturbed Hh signaling with computer simulations of
cellular behavior, and connect physical properties of cells to their Hh
signaling status. We find that experimental disruption of Hh signaling has
observable effects on cell sorting surprisingly far from the compartment
boundary, which is in contrast to a previous model that confines Hh influence to
the compartment boundary itself. We have recapitulated our experimental
observations by simulations of Hh diffusion and transduction coupled to
mechanical tension along cell-to-cell contact surfaces. Intriguingly, the best
results were obtained under the assumption that Hh signaling cannot alter the
overall tension force of the cell, but will merely re-distribute it locally
inside the cell, relative to the signaling status of neighboring cells. Our
results suggest a scenario in which homotypic interactions of a putative Hh
target molecule at the cell surface are converted into a mechanical force. Such
a scenario could explain why the mechanical output of Hh signaling appears to be
confined to the compartment boundary, despite the longer range of the Hh
molecule itself. Our study is the first to couple a cellular vertex model
describing mechanical properties of cells in a growing tissue, to an explicit
model of an entire signaling pathway, including a freely diffusible component.
We discuss potential applications and challenges of such an approach. In developing animal tissues, cells can often re-arrange locally and mix
relatively freely. However, in some stereotypic and crucially important
instances during body development, cells will strictly not intermingle, and
instead form sharp boundaries along which they will sort out from each other.
This mechanism helps organisms to establish signaling centers and to maintain
distinct cellular identities. Often, cells at such boundaries will remain in
close physical contact and are morphologically alike. Thus, the boundary itself
can be difficult to observe unless the expression status of specific marker
genes is monitored experimentally. How are these ‘compartment
boundaries’ established? Here we devise a computational model that aims to
describe one such boundary in a well-studied animal tissue: the developing wing
primordium of Drosophila melanogaster. We model the production,
diffusion and local sensing of an essential signaling molecule, the
Hedgehog protein. We reveal one possible mechanism by which
Hedgehog sensing can influence the mechanical properties of cells, and compare
the simulated outcome to observations in experimentally perturbed, actual wing
discs. Our relatively simple model suffices to establish a straight and stable
compartment boundary.
Collapse
Affiliation(s)
- Sabine Schilling
- Institute of Molecular Life Sciences, University of Zurich, Zurich,
Switzerland
- Swiss Institute of Bioinformatics, University of Zurich, Zurich,
Switzerland
| | - Maria Willecke
- Institute of Molecular Life Sciences, University of Zurich, Zurich,
Switzerland
| | | | - Olaf A. Cirpka
- Center for Applied Geoscience, University of Tuebingen, Tuebingen,
Germany
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich,
Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zurich, Zurich,
Switzerland
- Swiss Institute of Bioinformatics, University of Zurich, Zurich,
Switzerland
- * E-mail:
| |
Collapse
|