1
|
O’Neill BF, Boeckman C, LeRoy K, Linderblood C, Olson T, Woods R, Challender M. An environmental risk assessment of IPD079Ea: a protein derived from Ophioglossum pendulum with activity against Diabrotica spp.In maize. GM CROPS & FOOD 2024; 15:15-31. [PMID: 38238889 PMCID: PMC10802193 DOI: 10.1080/21645698.2023.2299503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Bridget F. O’Neill
- Corteva Agriscience™, Regulatory and Stewardship institution, Indianapolis, IN, USA
| | - Chad Boeckman
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Kristine LeRoy
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | | | - Taylor Olson
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Rachel Woods
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| | - Mary Challender
- Corteva Agriscience™, Regulatory and Stewardship, Johnston, IA, USA
| |
Collapse
|
2
|
Boeckman CJ, Ballou S, Gunderson T, Huang E, Linderblood C, Olson T, Stolte B, LeRoy K, Walker C, Wang Y, Woods R, Zhang J. Characterization of the Spectrum of Activity of IPD079Ea: A Protein Derived From Ophioglossum pendulum (Ophioglossales: Ophioglossaceae) With Activity Against Western Corn Rootworm [Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)]. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1531-1538. [PMID: 35640234 PMCID: PMC9554786 DOI: 10.1093/jee/toac079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 06/15/2023]
Abstract
Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a major pest of corn in both North America and Europe and as such presents significant challenges for farmers. IPD079Ea protein is encoded by the ipd079Ea gene from Ophioglossum pendulum (a species of fern) and was found to have activity against western corn rootworm in multiple corn events transformed to express the IPD079Ea protein. In chronic laboratory hazard studies, IPD079Ea protein was fed to eleven species in the order Coleoptera and four species in the order Lepidoptera to assess the spectrum of activity. Activity was observed on certain species of the Chrysomelidae and Coccinellidae families, with western corn rootworm as the most sensitive insect tested. No adverse effects on mortality or other sublethal endpoints were observed on any species within Lepidoptera. Overall, IPD079Ea protein appears not to have broad insecticidal properties and has potential value as an effective trait to control western corn rootworm in agricultural systems.
Collapse
Affiliation(s)
| | - Stephan Ballou
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Tim Gunderson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Emily Huang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | | | - Taylor Olson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Brian Stolte
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Kristine LeRoy
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Carl Walker
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Yiwei Wang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Rachel Woods
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - John Zhang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| |
Collapse
|
3
|
Boeckman CJ, Anderson JA, Linderblood C, Olson T, Roper J, Sturtz K, Walker C, Woods R. Environmental risk assessment of the DvSSJ1 dsRNA and the IPD072Aa protein to non-target organisms. GM CROPS & FOOD 2021; 12:459-478. [PMID: 34904520 PMCID: PMC8820247 DOI: 10.1080/21645698.2021.1982348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Event DP-Ø23211-2 (hereafter referred to as DP23211) maize expresses the DvSSJ1 double-stranded RNA (DvSSJ1 dsRNA) and the IPD072Aa protein, encoded by the ipd072Aa gene. DvSSJ1 dsRNA and the IPD072Aa protein each provide control of corn rootworms (Diabrotica spp.) when expressed in plants. As part of the environmental risk assessment (ERA), the potential hazard to non-target organisms (NTOs) exposed to the DvSSJ1 dsRNA and the IPD072Aa protein expressed in DP23211 maize was assessed. Worst-case estimated environmental concentrations (EECs) for different NTO functional groups (pollinators and pollen feeders, soil dwelling detritivores, predators and parasitoids, aquatic detritivores, insectivorous birds, and wild mammals) were calculated using worst-case assumptions. Several factors that reduce exposure to NTOs under more realistic environmental conditions were applied, when needed to provide more environmentally relevant EECs. Laboratory bioassays were conducted to assess the activity of DvSSJ1 dsRNA or the IPD072Aa protein against selected surrogate species, and margins of exposure (MOEs) were calculated by comparing the Tier I hazard study results to worst-case or refined EECs. Based on specificity and MOE values, DvSSJ1 dsRNA and the IPD072Aa protein expressed in DP23211 maize are not expected to be harmful to NTO populations at environmentally relevant concentrations.
Collapse
|
4
|
Roberts A, Boeckman CJ, Mühl M, Romeis J, Teem JL, Valicente FH, Brown JK, Edwards MG, Levine SL, Melnick RL, Rodrigues TB, Vélez AM, Zhou X, Hellmich RL. Sublethal Endpoints in Non-target Organism Testing for Insect-Active GE Crops. Front Bioeng Biotechnol 2020; 8:556. [PMID: 32582674 PMCID: PMC7295912 DOI: 10.3389/fbioe.2020.00556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Historically, genetically engineered (GE) plants that have incorporated genes conferring insect protection have primarily used Cry proteins derived from Bacillus thuringiensis (Bt) to achieve their insecticidal phenotype. As a result, regulators have developed a level of familiarity and confidence in reviewing plants incorporating these insecticidal proteins. However, new technologies have been developed that produce GE plants that incorporate pest protection by triggering an RNA interference (RNAi) response or proteins other than Bt Cry proteins. These technologies have new modes of action. Although the overall assessment paradigm for GE plants is robust, there are ongoing discussions about the appropriate tests and measurement endpoints needed to inform non-target arthropod assessment for technologies that have a different mode of action than the Bt Cry proteins. As a result, increasing attention is being paid to the use of sublethal endpoints and their value for environmental risk assessment (ERA). This review focuses on the current status and history of sublethal endpoint use in insect-active GE crops, and evaluates the future use of sublethal endpoints for new and emerging technologies. It builds upon presentations made at the Workshop on Sublethal Endpoints for Non-target Organism Testing for Non-Bt GE Crops (Washington DC, USA, 4-5 March 2019), and the discussions of government, academic and industry scientists convened for the purpose of reviewing the progress and status of sublethal endpoint testing in non-target organisms.
Collapse
Affiliation(s)
- Andrew Roberts
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Marina Mühl
- Ministerio de Agricultura, Ganadería y Pesca, Dirección de Biotecnología, Buenos Aires, Argentina
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - John L Teem
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Rachel L Melnick
- Agriculture and Food Systems Institute, Washington, DC, United States
| | | | - Ana M Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Richard L Hellmich
- USDA, Corn Insects and Crop Genetics Research Unit, Ames, IA, United States.,Department of Entomology, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM, Lepping MD, Sa V, Moscardini VF, Rule DM, Fernandes OA. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS One 2018; 13:e0191567. [PMID: 29394266 PMCID: PMC5796694 DOI: 10.1371/journal.pone.0191567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.
Collapse
Affiliation(s)
- Luiz H. Marques
- Dow AgroSciences Industrial Ltda, São Paulo, São Paulo, Brazil
| | | | - Boris A. Castro
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | | | | | - Miles D. Lepping
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | - Verissimo Sa
- Dow AgroSciences Industrial Ltda, São Paulo, São Paulo, Brazil
| | | | - Dwain M. Rule
- Dow AgroSciences LLC, Indianapolis, Indiana, United States of America
| | - Odair A. Fernandes
- Universidade Estadual Paulista (FCAV/UNESP), Faculdade de Ciências Agrárias e Veterinárias, FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
6
|
Bachman PM, Ahmad A, Ahrens JE, Akbar W, Baum JA, Brown S, Clark TL, Fridley JM, Gowda A, Greenplate JT, Jensen PD, Mueller GM, Odegaard ML, Tan J, Uffman JP, Levine SL. Characterization of the Activity Spectrum of MON 88702 and the Plant-Incorporated Protectant Cry51Aa2.834_16. PLoS One 2017; 12:e0169409. [PMID: 28072875 PMCID: PMC5224830 DOI: 10.1371/journal.pone.0169409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
The spectrum of insecticidal activity of Cry51Aa2.834_16 protein targeting hemipteran and thysanopteran insect pests in cotton was characterized by selecting and screening multiple pest and non-pest species, based on representation of ecological functional groups, taxonomic relatedness (e.g. relationship to species where activity was observed), and availability for effective testing. Seven invertebrate orders, comprising 12 families and 17 representative species were screened for susceptibility to Cry51Aa2.834_16 protein and/or the ability of the protein to protect against feeding damage in laboratory, controlled environments (e.g. greenhouse/growth chamber), and/or field studies when present in cotton plants. The screening results presented for Cry51Aa2.834_16 demonstrate selective and limited activity within three insect orders. Other than Orius insidiosus, no activity was observed for Cry51Aa2.834_16 against several groups of arthropods that perform key ecological roles in some agricultural ecosystems (e.g. pollinators, decomposers, and natural enemies).
Collapse
Affiliation(s)
- Pamela M. Bachman
- Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail: (PMB); (AA)
| | - Aqeel Ahmad
- Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail: (PMB); (AA)
| | | | - Waseem Akbar
- Monsanto Company, Chesterfield, Missouri, United States of America
| | - James A. Baum
- Monsanto Company, Chesterfield, Missouri, United States of America
| | - Scott Brown
- Monsanto Company, Chesterfield, Missouri, United States of America
| | - Thomas L. Clark
- Monsanto Company, Chesterfield, Missouri, United States of America
| | | | - Anilkumar Gowda
- Monsanto Company, Chesterfield, Missouri, United States of America
| | | | - Peter D. Jensen
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | - Jianguo Tan
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | |
Collapse
|
7
|
Lazebnik J, Arpaia S, Baldacchino F, Banzato P, Moliterni S, Vossen JH, van de Zande EM, van Loon JJA. Effects of a genetically modified potato on a non-target aphid are outweighed by cultivar differences. JOURNAL OF PEST SCIENCE 2017; 90:855-864. [PMID: 28572750 PMCID: PMC5429349 DOI: 10.1007/s10340-017-0831-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 05/19/2023]
Abstract
Insect-plant interactions may be unintentionally affected when introducing genetically modified (GM) crops into an agro-ecosystem. Our aim was to test the non-target effects of a late blight-resistant GM potato on Myzus persicae in greenhouse and climate room experiments and understand how position and number of R gene insertions can affect non-targets in GM events. We also aimed to compare results to baseline differences among three conventional potato varieties varying in resistance to late blight. Aphid development and survival were affected by some GM events in the first generation, though effects disappeared in the second generation. Effects were not dependent on the presence of a marker gene or the insertion of a second resistance gene. Positional effects of gene insertion influenced aphid performance on certain GM events. However, aphid fitness varied considerably more between conventional potato varieties than between Désirée and the GM events. Comparing different GM events to the non-transformed variety is relevant, since unintended effects of insertion can occur. Our protocols can be recommended for in planta risk assessments with aphids. Ecological perspective is gained by selecting several measured endpoints and by comparing the results with a baseline of conventional cultivars.
Collapse
Affiliation(s)
- Jenny Lazebnik
- Wageningen University and Research, Entomology, Wageningen, The Netherlands
| | | | | | - Paolo Banzato
- Wageningen University and Research, Entomology, Wageningen, The Netherlands
| | | | - Jack H. Vossen
- Wageningen University and Research, Plant Breeding, Wageningen, The Netherlands
| | | | | |
Collapse
|
8
|
Use of species sensitivity distributions to characterize hazard for insecticidal traits. J Invertebr Pathol 2017; 142:68-70. [DOI: 10.1016/j.jip.2016.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/29/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
|
9
|
Wach M, Hellmich RL, Layton R, Romeis J, Gadaleta PG. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms. Transgenic Res 2016; 25:499-505. [PMID: 26922585 PMCID: PMC4925689 DOI: 10.1007/s11248-016-9945-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/23/2016] [Indexed: 11/10/2022]
Abstract
Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered insect resistant (GEIR) crops. Species commonly used in GEIR crop testing include beneficial organisms such as honeybees, arthropod predators, and parasitoids. The choice of appropriate surrogates is influenced by scientific factors such as the knowledge of the mode of action and the spectrum of activity as well as societal factors such as protection goals that assign value to certain ecosystem services such as pollination or pest control. The primary reasons for using surrogates include the inability to test all possible organisms, the restrictions on using certain organisms in testing (e.g., rare, threatened, or endangered species), and the ability to achieve greater sensitivity and statistical power by using laboratory testing of certain species. The acceptance of surrogate species data can allow results from one region to be applied or "transported" for use in another region. On the basis of over a decade of using surrogate species to evaluate potential effects of GEIR crops, it appears that the current surrogates have worked well to predict effects of GEIR crops that have been developed (Carstens et al. GM Crops Food 5:1-5, 2014), and it is expected that they should work well to predict effects of future GEIR crops based on similar technologies.
Collapse
Affiliation(s)
- Michael Wach
- Center for Environmental Risk Assessment, ILSI Research Foundation, Washington, DC, USA.
| | - Richard L Hellmich
- USDA-ARS, Corn Insects and Crop Genetics Research Unit and Department of Entomology, Iowa State University, Ames, IA, USA
| | | | - Jörg Romeis
- Agroscope Reckenholz-Tänikon Research Station ART, Zurich, Switzerland
| | - Patricia G Gadaleta
- Biotechnology Directorate, Ministry of Agriculture, Livestock and Fisheries, Buenos Aires, Argentina
| |
Collapse
|
10
|
De Schrijver A, Devos Y, De Clercq P, Gathmann A, Romeis J. Quality of laboratory studies assessing effects of Bt-proteins on non-target organisms: minimal criteria for acceptability. Transgenic Res 2016; 25:395-411. [DOI: 10.1007/s11248-016-9950-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
|
11
|
Ahmad A, Negri I, Oliveira W, Brown C, Asiimwe P, Sammons B, Horak M, Jiang C, Carson D. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Res 2016; 25:1-17. [PMID: 26433587 PMCID: PMC4735227 DOI: 10.1007/s11248-015-9907-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA.
| | - Ignacio Negri
- Monsanto Company, Fontezuela Research Station Route 8, km214, CP2700, Pergamino, Buenos Aires, Argentina
| | - Wladecir Oliveira
- Monsanto Company, Dionisio Bortolotti Avenue, km 0.5, Caixa Postal 9, Santa Cruz das Palmeiras, São Paulo, Brazil
| | - Christopher Brown
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Peter Asiimwe
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Bernard Sammons
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Michael Horak
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Changjian Jiang
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - David Carson
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| |
Collapse
|
12
|
|
13
|
Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica. Sci Rep 2016; 6:20368. [PMID: 26829252 PMCID: PMC4734323 DOI: 10.1038/srep20368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/31/2015] [Indexed: 01/03/2023] Open
Abstract
Plant varieties expressing the Bt (Bacillus thuringiensis) insecticidal proteins Cry1Ah and Cry2Ab have potential commercialization prospects in China. However, their potential effects on non-target arthropods (NTAs) remain uncharacterized. The cotton aphid Aphis gossypii is a worldwide pest that damages various important crops. The ladybeetle Propylea japonica is a common and abundant natural enemy in many cropping systems in East Asia. In the present study, the effects of Cry1Ah and Cry2Ab proteins on A. gossypii and P. japonica were assessed from three aspects. First, neither of the Cry proteins affected the growth or developmental characteristics of the two test insects. Second, the expression levels of the detoxification-related genes of the two test insects did not change significantly in either Cry protein treatment. Third, neither of the Cry proteins had a favourable effect on the expression of genes associated with the amino acid metabolism of A. gossypii and the nutrition utilization of P. japonica. In conclusion, the Cry1Ah and Cry2Ab proteins do not appear to affect the cotton aphid A. gossypii or the ladybeetle P. japonica.
Collapse
|
14
|
Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG. The food and environmental safety of Bt crops. FRONTIERS IN PLANT SCIENCE 2015; 6:283. [PMID: 25972882 PMCID: PMC4413729 DOI: 10.3389/fpls.2015.00283] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 05/28/2023]
Abstract
Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.
Collapse
|
15
|
Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG. The food and environmental safety of Bt crops. FRONTIERS IN PLANT SCIENCE 2015; 6:283. [PMID: 25972882 DOI: 10.3389/fpls.2015.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 05/28/2023]
Abstract
Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.
Collapse
|
16
|
Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). Sci Rep 2015; 5:7679. [PMID: 25567127 PMCID: PMC4286735 DOI: 10.1038/srep07679] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
As a pollen feeder, Propylea japonica would be directly exposed to Cry proteins in Bacillus thuringiensis (Bt)-transgenic rice fields. The effect of Cry1C- or Cry2A-containing transgenic rice pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, larval developmental time of P. japonica was significantly longer when fed pollen from Bt rice lines rather than control pollen but other life table parameters were not significantly affected. In the second experiment, P. japonica was not affected when fed a rapeseed pollen-based diet containing purified Cry1C or Cry2A at concentrations that were >10-times higher than in pollen, but P. japonica was affected when the diet contained E-64 as a positive control. In both experiments, the stability and bioactivity of the Cry proteins in the food sources and the uptake of the proteins by P. japonica were confirmed. The results show that P. japonica is not sensitive to Cry1C or Cry2A proteins; the effect observed in the first experiment was likely attributable to unknown differences in the nutritional composition of Bt rice pollen. Overall, the data indicate that the growing of Cry1C- or Cry2A-transgenic rice should pose a negligible risk to P. japonica.
Collapse
|
17
|
Yu H, Romeis J, Li Y, Li X, Wu K. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields. PLoS One 2014; 9:e103973. [PMID: 25110881 PMCID: PMC4128818 DOI: 10.1371/journal.pone.0103973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.
Collapse
Affiliation(s)
- Huilin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jörg Romeis
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute for Sustainability Sciences ISS, Agroscope, Zurich, Switzerland
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Landes Highlights. Bioengineered 2014. [PMCID: PMC4140863 DOI: 10.4161/bioe.29602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Banks JE, Stark JD, Vargas RI, Ackleh AS. Deconstructing the surrogate species concept: a life history approach to the protection of ecosystem services. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2014; 24:770-778. [PMID: 24988775 DOI: 10.1890/13-0937.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of the surrogate species concept is widespread in environmental risk assessment and in efforts to protect species that provide ecosystem services, yet there are no standard protocols for the choice of surrogates. Surrogates are often chosen on the basis of convenience or vague resemblances in physiology or life history to species of concern. Furthermore, our ability to predict how species of concern will fare when subjected to disturbances such as environmental contaminants or toxicants is often based on woefully misleading comparisons of static toxicity tests. Here we present an alternative approach that features a simple mathematical model parameterized with life history data applied to an assemblage of species that provide an important ecosystem service: a suite of parasitoid wasps that provide biological control of agricultural pests. Our results indicate that these parasitoid wasp species have different population responses to toxic insult--that is, we cannot predict how all four species will react to pesticide exposure simply by extrapolating from the response of any one species. Furthermore, sensitivity analysis of survivorship and reproduction demonstrates that the life stage most sensitive to pesticide disturbance varies among species. Taken together, our results suggest that the ability to predict the fate of a suite of species using the response of just one species (the surrogate species concept) is widely variable and potentially misleading.
Collapse
|
20
|
Romeis J, Meissle M, Alvarez-Alfageme F, Bigler F, Bohan DA, Devos Y, Malone LA, Pons X, Rauschen S. Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Transgenic Res 2014; 23:995-1013. [PMID: 24633599 DOI: 10.1007/s11248-014-9791-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring.
Collapse
Affiliation(s)
- Jörg Romeis
- Agroscope, Institute for Sustainability Sciences (ISS), Reckenholzstrasse 191, 8046, Zurich, Switzerland,
| | | | | | | | | | | | | | | | | |
Collapse
|