1
|
Perzyna M, Grzędzicka J, Milczek‐Haduch D, Dąbrowska I, Trela M, Pawliński B, Witkowska‐Piłaszewicz O. Immunological Responses to Tetanus and Influenza Vaccination in Donkeys. J Vet Intern Med 2025; 39:e70137. [PMID: 40413721 PMCID: PMC12103835 DOI: 10.1111/jvim.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Donkeys are routinely vaccinated with protocols developed for horses, yet species-specific data on their immune responses are limited. HYPOTHESIS/OBJECTIVES We hypothesized that donkeys exhibit robust T-cell-mediated immunity and regulatory adaptation after vaccination, comparable to horses. ANIMALS Thirty-six healthy, seronegative donkeys (34 mares, 2 stallions), aged 0.5-23 years (median 8 years), from two farms with similar housing and management conditions. METHODS Prospective study. Animals were selected based on clinical health assessment and confirmed seronegativity for tetanus and equine influenza. All received a multivalent vaccine containing tetanus toxoid and equine influenza antigens. Blood samples were collected at baseline, 1 month, and 2 months after vaccination. Flow cytometry assessed CD4+, CD8+, and CD4 + FoxP3+ T cells (primary outcomes), and monocyte subsets and B lymphocytes (PanB/CD21+) with intracellular IL-10, IL-17, and Ki67 (secondary outcomes). ANOVA with Bonferroni correction (p < 0.05) was used for statistical analysis. RESULTS CD4+ T cells increased from 25.1% ± 1.4% to 37.3% ± 0.7% at month 1, CD8+ from 20.6% ± 1.5% to 32.2% ± 0.9% at month 2 (p < 0.001). CD4 + FoxP3+ peaked at 11.7% ± 0.6% at month 1 (baseline 6.8% ± 0.8%), then returned to baseline. CD14 + MHCII+ and CD14 + MHCII- monocytes declined; CD14 - MHCII+ increased (p < 0.01). PanB/CD21+ cells decreased from 41.5% ± 1.8% to 29.0% ± 1.0%, with significant reductions in IL-10+, IL-17+, and Ki67+ subsets (p < 0.001). CONCLUSIONS AND CLINICAL IMPORTANCE Donkeys exhibit strong T-cell and regulatory immune responses after vaccination, supporting the clinical relevance of applying equine vaccination protocols to donkeys.
Collapse
Affiliation(s)
- Maciej Perzyna
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Jowita Grzędzicka
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Dominika Milczek‐Haduch
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Izabela Dąbrowska
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Michał Trela
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Bartosz Pawliński
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Olga Witkowska‐Piłaszewicz
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| |
Collapse
|
2
|
Kakh M, Doroudchi M, Talepoor A. Induction of Regulatory T Cells After Virus Infection and Vaccination. Immunology 2025. [PMID: 40329764 DOI: 10.1111/imm.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Vaccines have been proven to be one of the safest and most effective ways to prevent and combat diseases. However, the main focus has been on the evaluation of the potency of effector mechanisms and the lack of adverse effects of vaccine candidates. Recently, the importance of induced regulatory mechanisms of the immune system after vaccination has come to light. With the increase in our knowledge about these regulatory mechanisms including the regulatory T cells (Tregs), we have come to understand the significance of this arm of the immune system in controlling immunopathology and/or diminishing the effectiveness of vaccines, especially viral vaccines. Tregs play a dual role during infectious diseases by limiting immune-mediated pathology and also contributing to chronic pathogen persistence by decreasing effector immunity and clearance of infection. Tregs may also affect immune responses after vaccination primarily by inhibiting antigen presenting cell function such as cytokine secretion and co-stimulatory molecule expression as well as effector T (Teff) and B cell function. In this article, we review the current knowledge on the induction of Tregs after several life-threatening virus infections and their available vaccines to bring them to the spotlight and emphasise that studying viral-induced antigen-specific Tregs will help us improve the effectiveness and decrease the immunopathology or side effects of viral vaccines. Trial Registration: ClinicalTrials.gov identifier: NCT04357444.
Collapse
Affiliation(s)
- MansourehKarimi Kakh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - AtefeGhamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Faustini SE, Backhouse C, Duggal NA, Toellner KM, Harvey R, Drayson MT, Lord JM, Richter AG. Time of day of vaccination does not influence antibody responses to pneumococcal and annual influenza vaccination in a cohort of healthy older adults. Vaccine 2025; 49:126770. [PMID: 39923601 DOI: 10.1016/j.vaccine.2025.126770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Vaccines are less immunogenic in older adults, partly due to immunosenescence. Having previously shown that morning influenza vaccination may be more immunogenic in older adults (mean age 71), we assessed if this could be replicated in a younger cohort (mean age 57) and with a T-cell independent vaccine. This study examined whether diurnal timing of a single dose of Pneumovax® (PPV-23) and seasonal influenza vaccine influenced antibody responses in 140 healthy adults over the age of 50. Pneumococcal serotype-specific (PnPS) antibodies and Haemagglutination Inhibition Assays (HAI) were used to characterize antibody responses at Baseline, 1, 4, and 52 weeks post-vaccination. Protective thresholds were set at 0.35 μg/mL for two-thirds of PnPS tested (WHO≥8/12PnPS) and a titre of ≥40 HAI for H1N1, H3N2, and B/Victoria strains. Both AM and PM cohorts showed increased Pn-specific antibodies to one PPV-23 dose at weeks 1, 4, and 52; however, time of day did not significantly influence antibody responses. Baseline immunity for pneumococcus was high (57.1 % AM, 50.0 % PM had WHO≥8/12PnPS), and immunity was maintained with at least 7/12 serotypes elevated at 52 weeks. Time of day did not alter short- or long-term influenza antibody responses. H1N1 had the highest baseline immunity (67.6 % AM, 48.6 % PM had ≥40 HAI) and the most increased responses at week 4 post-vaccination (92.8 % AM, 94.1 % PM) that were maintained at 52 weeks post-vaccination (91.7 % AM, 89.3 % PM). The poorest serotype immunity was for the B/Victoria strain at all time points. Although time of day did not influence vaccine immunogenicity in AM and PM cohorts, sustained cohort-wide antibody responses were demonstrated in an older population. Identifying 18 % of the total cohort exhibited suboptimal responses to pneumococcal or influenza vaccines underscores the imperative for enhancing vaccine efficacy within this age group to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Siân E Faustini
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK; Clinical Immunology Service, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK.
| | - Claire Backhouse
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK; Clinical Immunology Service, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK; The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK; Clinical Immunology Service, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK
| | - Alex G Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK; Clinical Immunology Service, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, England, UK
| |
Collapse
|
4
|
John FA, Criollo V, Gaghan C, Armwood A, Holmes J, Thachil AJ, Crespo R, Kulkarni RR. Immunization of turkeys with Clostridium septicum alpha toxin-based recombinant subunit proteins can confer protection against experimental Clostridial dermatitis. PLoS One 2024; 19:e0302555. [PMID: 38683795 PMCID: PMC11057757 DOI: 10.1371/journal.pone.0302555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Clostridial dermatitis (CD), caused by Clostridium septicum, is an emerging disease of increasing economic importance in turkeys. Currently, there are no effective vaccines for CD control. Here, two non-toxic domains of C. septicum alpha toxin, namely ntATX-D1 and ntATX-D2, were identified, cloned, and expressed in Escherichia coli as recombinant subunit proteins to investigate their use as potential vaccine candidates. Experimental groups consisted of a Negative control (NCx) that did not receive C. septicum challenge, while the adjuvant-only Positive control (PCx), ntATX-D1 immunization (D1) and ntATX-D2 immunization (D2) groups received C. septicum challenge. Turkeys were immunized subcutaneously with 100 μg of protein at 7, 8 and 9 weeks of age along with an oil-in-water nano-emulsion adjuvant, followed by C. septicum challenge at 11 weeks of age. Results showed that while 46.2% of birds in the PCx group died post-challenge, the rate of mortality in D1- or D2-immunization groups was 13.3%. The gross and histopathological lesions in the skin, muscle and spleen showed that the disease severity was highest in PCx group, while the D2-immunized birds had significantly lower lesion scores when compared to PCx. Gene expression analysis revealed that PCx birds had significantly higher expression of pro-inflammatory cytokine genes in the skin, muscle and spleen than the NCx group, while the D2 group had significantly lower expression of these genes compared to PCx. Peripheral blood cellular analysis showed increased frequencies of activated CD4+ and/or CD8+ cells in the D1 and D2-immunized groups. Additionally, the immunized turkeys developed antigen-specific serum IgY antibodies. Collectively, these findings indicate that ntATX proteins, specifically the ntATX-D2 can be a promising vaccine candidate for protecting turkeys against CD and that the protection mechanisms may include downregulation of C. septicum-induced inflammation and increased CD4+ and CD8+ cellular activation.
Collapse
Affiliation(s)
- Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Valeria Criollo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Abigail Armwood
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jennifer Holmes
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Anil J. Thachil
- Bacteriology & Mycology Division, Rollins Animal Disease Diagnostic Laboratory, Raleigh, North Carolina, United States of America
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
5
|
Tang W, Xie H, Ye Z, Eick-Cost AA, Scheckelhoff M, Gustin CE, Bream JH, Plant EP. Post-vaccination serum cytokines levels correlate with breakthrough influenza infections. Sci Rep 2023; 13:1174. [PMID: 36670200 PMCID: PMC9857916 DOI: 10.1038/s41598-023-28295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Post-vaccination cytokine levels from 256 young adults who subsequently suffered breakthrough influenza infections were compared with matched controls. Modulation within the immune system is important for eliciting a protective response, and the optimal response differs according to vaccine formulation and delivery. For both inactivated influenza vaccine (IIV) and live attenuated influenza vaccines (LAIV) lower levels of IL-8 were observed in post-vaccination sera. Post-vaccination antibody levels were higher and IFN-γ levels were lower in IIV sera compared to LAIV sera. Subjects who suffered breakthrough infections after IIV vaccination had higher levels of sCD25 compared to the control group. There were differences in LAIV post-vaccination interleukin levels for subjects who subsequently suffered breakthrough infections, but these differences were masked in subjects who received concomitant vaccines. Wide variances, sex-based differences and confounders such as concomitant vaccines thwart the establishment of specific cytokine responses as a correlate of protection, but our results provide real world evidence that the status of the immune system following vaccination is important for successful vaccination and subsequent protection against disease.
Collapse
Affiliation(s)
- Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA
| | - Zhiping Ye
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA
| | - Angelia A Eick-Cost
- Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD, USA
| | - Mark Scheckelhoff
- Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD, USA
| | - Courtney E Gustin
- Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD, USA
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ewan P Plant
- Laboratory of Pediatric and Respiratory Viral Disease, Office of Vaccine Research and Review, CBER, FDA, Silver Spring, MD, USA.
| |
Collapse
|
6
|
Distinct immunological and molecular signatures underpinning influenza vaccine responsiveness in the elderly. Nat Commun 2022; 13:6894. [PMID: 36371426 PMCID: PMC9653450 DOI: 10.1038/s41467-022-34487-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Seasonal influenza outbreaks, especially in high-risk groups such as the elderly, represent an important public health problem. Prevailing inadequate efficacy of seasonal vaccines is a crucial bottleneck. Understanding the immunological and molecular mechanisms underpinning differential influenza vaccine responsiveness is essential to improve vaccination strategies. Here we show comprehensive characterization of the immune response of randomly selected elderly participants (≥ 65 years), immunized with the adjuvanted influenza vaccine Fluad. In-depth analyses by serology, multi-parametric flow cytometry, multiplex and transcriptome analysis, coupled to bioinformatics and mathematical modelling, reveal distinguishing immunological and molecular features between responders and non-responders defined by vaccine-induced seroconversion. Non-responders are specifically characterized by multiple suppressive immune mechanisms. The generated comprehensive high dimensional dataset enables the identification of putative mechanisms and nodes responsible for vaccine non-responsiveness independently of confounding age-related effects, with the potential to facilitate development of tailored vaccination strategies for the elderly.
Collapse
|
7
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
8
|
Toward a universal influenza virus vaccine: Some cytokines may fulfill the request. Cytokine 2021; 148:155703. [PMID: 34555604 DOI: 10.1016/j.cyto.2021.155703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
The influenza virus annually causes widespread damages to the health and economy of the global community. Vaccination is currently the most crucial strategy in reducing the number of patients. Genetic variations, the high diversity of pandemic viruses, and zoonoses make it challenging to select suitable strains for annual vaccine production. If new pandemic viruses emerge, it will take a long time to produce a vaccine according to the new strains. In the present study, intending to develop a universal influenza vaccine, new bicistronic DNA vaccines were developed that expressed NP or NPm antigen with one of modified IL-18/ IL-17A/ IL-22 cytokine adjuvants. NPm is a mutant form of the antigen that has the ability for cytoplasmic accumulation. In order to investigate and differentiate the role of each of the components of Th1, Th2, Th17, and Treg cellular immune systems in the performance of vaccines, Treg competent and Treg suppressed mouse groups were used. Mice were vaccinated with Foxp3-FC immunogen to produce Treg suppressed mouse groups. The potential of the vaccines to stimulate the immune system was assessed by IFN-γ/IL-17A Dual FluoroSpot. The vaccine's ability to induce humoral immune response was determined by measuring IgG1, IgG2a, and IgA-specific antibodies against the antigen. Kinetics of Th1, Th2, and Th17 cellular immune responses after vaccination, were assessed by evaluating the expression changes of IL-17A, IFN-γ, IL-18, IL-22, IL-4, and IL-2 cytokines by semi-quantitative real-time RT-PCR. To assess the vaccines' ability to induce heterosubtypic immunity, challenge tests with homologous and heterologous viruses were performed and then the virus titer was measured in the lungs of animals. Evaluation of the data obtained from this study showed that the DNA-vaccines coding NPm have more ability to induces a potent cross-cellular immune response and protective immunity than DNA-vaccines coding NP. Although the use of IL-18/ IL-17A/ IL-22 genetic adjuvants enhanced immune responses and protective immunity, Administration of NPm in combination with modified IL-18 (Igk-mIL18-IgFC) induced the most effective immunity in Treg competent mice group.
Collapse
|
9
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
10
|
Greer O, Shah NM, Sriskandan S, Johnson MR. Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. Int J Mol Sci 2019; 20:E5388. [PMID: 31671794 PMCID: PMC6861904 DOI: 10.3390/ijms20215388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Sepsis contributes significantly to global morbidity and mortality, particularly in vulnerable populations. Pregnant and recently pregnant women are particularly prone to rapid progression to sepsis and septic shock, with 11% of maternal deaths worldwide being attributed to sepsis. The impact on the neonate is considerable, with 1 million neonatal deaths annually attributed to maternal infection or sepsis. Pregnancy specific physiological and immunological adaptations are likely to contribute to a greater impact of infection, but current approaches to the management of sepsis are based on those developed for the non-pregnant population. Pregnancy-specific strategies are required to optimise recognition and management of these patients. We review current knowledge of the physiology and immunology of pregnancy and propose areas of research, which may advance the development of pregnancy-specific diagnostic and therapeutic approaches to optimise the care of pregnant women and their babies.
Collapse
Affiliation(s)
- Orene Greer
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Nishel Mohan Shah
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Shiranee Sriskandan
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | - Mark R Johnson
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
11
|
Shah NM, Imami N, Kelleher P, Barclay WS, Johnson MR. Pregnancy-related immune suppression leads to altered influenza vaccine recall responses. Clin Immunol 2019; 208:108254. [PMID: 31470087 DOI: 10.1016/j.clim.2019.108254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023]
Abstract
Pregnancy is a risk factor for severe influenza infection. Despite achieving seroprotective antibody titres post immunisation fewer pregnant women experience a reduction in influenza-like illness compared to non-pregnant cohorts. This may be due to the effects that immune-modulation in pregnancy has on vaccine efficacy leading to a less favourable immunologic response. To understand this, we investigated the antigen-specific cellular responses and leukocyte phenotype in pregnant and non-pregnant women who achieved seroprotection post immunisation. We show that pregnancy is associated with better antigen-specific inflammatory (IFN-γ) responses and an expansion of central memory T cells (Tcm) post immunisation, but low-level pregnancy-related immune regulation (HLA-G, PIBF) and associated reduced B-cell antibody maintenance (TGF-β) suggest poor immunologic responses compared to the non-pregnant. Thus far, studies of influenza vaccine immunogenicity have focused on the induction of antibodies but understanding additional vaccine-related cellular responses is needed to fully appreciate how pregnancy impacts on vaccine effectiveness.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| | - Nesrina Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Peter Kelleher
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Mark R Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| |
Collapse
|
12
|
Effect of homeostatic T-cell proliferation in the vaccine responsiveness against influenza in elderly people. IMMUNITY & AGEING 2019; 16:14. [PMID: 31312227 PMCID: PMC6612162 DOI: 10.1186/s12979-019-0154-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
Background Seasonal influenza virus infection is a significant cause of morbimortality in the elderly. However, there is poor vaccine efficacy in this population due to immunosenescence. We aimed to explore several homeostatic parameters in the elderly that could impact influenza vaccine responsiveness. Methods Subjects (> 60 years old) who were vaccinated against influenza virus were included, and the vaccine response was measured by a haemagglutination inhibition (HAI) test. At baseline, peripheral CD4 and CD8 T-cells were phenotypically characterized. Thymic function and the levels of different inflammation-related biomarkers, including Lipopolysaccharide Binding Protein (LBP) and anti-cytomegalovirus (CMV) IgG antibodies, were also measured. Results Influenza vaccine non-responders showed a tendency of higher frequency of regulatory T-cells (Tregs) before vaccination than responders (1.49 [1.08–1.85] vs. 1.12 [0.94–1.63], respectively, p = 0.061), as well as higher expression of the proliferation marker Ki67 in Tregs and different CD4 and CD8 T-cell maturational subsets. The levels of inflammation-related biomarkers correlated with the frequencies of different proliferating T-cell subsets and with thymic function (e.g., thymic function with D-dimers, r = − 0.442, p = 0.001). Conclusions Age-related homeostatic dysregulation involving the proliferation of CD4 and CD8 T-cell subsets, including Tregs, was related to a limited responsiveness to influenza vaccination and a higher inflammatory status in a cohort of elderly people. Electronic supplementary material The online version of this article (10.1186/s12979-019-0154-y) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Cabrera G, Marcipar I. Vaccines and the regulatory arm of the immune system. An overview from the Trypanosoma cruzi infection model. Vaccine 2019; 37:3628-3637. [PMID: 31155420 DOI: 10.1016/j.vaccine.2019.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 01/06/2023]
Abstract
The knowledge that the immune system is composed of a regulatory/suppressor arm added a new point of view to better understand the nature of several pathologies including cancer, transplants, infections and autoimmune diseases. The striking discoveries concerning molecules and cells involved in this kind of regulation were followed by the elucidation of equally notable mechanisms used by several pathogens to manipulate the host immune system. Vaccines against pathogens are an invaluable tool developed to help the immune system cope with a potential infection or prevent disease pathology. Nowadays, there is accumulated evidence indicating that the powerful stimulation capacity of vaccines influences not only the effector arm of the immune system but also cells with regulatory/suppressor capacity, such as myeloid derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs). Trypanosoma cruzi (T. cruzi) is a protozoan parasite with a complex life cycle that has evolved several strategies to influence the regulatory immune response. Although diverse vaccine formulations have been able to stimulate the effector response, achieving non-sterilizing protection against T. cruzi, the influence of the vaccine candidates on the regulatory machinery has scarcely been assessed. This fact may not only reveal important information concerning how vaccines may influence cells with regulatory/suppressor capacity but also open the possibility to analyze whether vaccines are able to disrupt the mechanisms used by some pathogens to manipulate the host regulatory circuits. The aim of this review is to summarize and discuss available data related to the role of cellular components, like MDSCs and Foxp3+ Tregs, during T. cruzi infection, and the potential utility of those populations as additional targets for the rational design of vaccines.
Collapse
Affiliation(s)
- Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
14
|
Veerapandian R, Snyder JD, Samarasinghe AE. Influenza in Asthmatics: For Better or for Worse? Front Immunol 2018; 9:1843. [PMID: 30147697 PMCID: PMC6095982 DOI: 10.3389/fimmu.2018.01843] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Asthma and influenza are two pathologic conditions of the respiratory tract that affect millions worldwide. Influenza virus of the 2009 pandemic was highly transmissible and caused severe respiratory disease in young and middle-aged individuals. Asthma was discovered to be an underlying co-morbidity that led to hospitalizations during this influenza pandemic albeit with less severe outcomes. However, animal studies that investigated the relationship between allergic inflammation and pandemic (p)H1N1 infection, showed that while characteristics of allergic airways disease were exacerbated by this virus, governing immune responses that cause exacerbations may actually protect the host from severe outcomes associated with influenza. To better understand the relationship between asthma and severe influenza during the last pandemic, we conducted a systematic literature review of reports on hospitalized patients with asthma as a co-morbid condition during the pH1N1 season. Herein, we report that numerous other underlying conditions, such as cardiovascular, neurologic, and metabolic diseases may have been underplayed as major drivers of severe influenza during the 2009 pandemic. This review synopses, (1) asthma and influenza independently, (2) epidemiologic data surrounding asthma during the 2009 influenza pandemic, and (3) recent advances in our understanding of allergic host–pathogen interactions in the context of allergic airways disease and influenza in mouse models. Our goal is to showcase possible immunological benefits of allergic airways inflammation as countermeasures for influenza virus infections as a learning tool to discover novel pathways that can enhance our ability to hinder influenza virus replication and host pathology induced thereof.
Collapse
Affiliation(s)
- Raja Veerapandian
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States
| | - John D Snyder
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Merani S, Kuchel GA, Kleppinger A, McElhaney JE. Influenza vaccine-mediated protection in older adults: Impact of influenza infection, cytomegalovirus serostatus and vaccine dosage. Exp Gerontol 2017; 107:116-125. [PMID: 28958701 DOI: 10.1016/j.exger.2017.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/19/2022]
Abstract
Age-related changes in T-cell function are associated with a loss of influenza vaccine efficacy in older adults. Both antibody and cell-mediated immunity plays a prominent role in protecting older adults, particularly against the serious complications of influenza. High dose (HD) influenza vaccines induce higher antibody titers in older adults compared to standard dose (SD) vaccines, yet its impact on T-cell memory is not clear. The aim of this study was to compare the antibody and T-cell responses in older adults randomized to receive HD or SD influenza vaccine as well as determine whether cytomegalovirus (CMV) serostatus affects the response to vaccination, and identify differences in the response to vaccination in those older adults who subsequently have an influenza infection. Older adults (≥65years) were enrolled (n=106) and randomized to receive SD or HD influenza vaccine. Blood was collected pre-vaccination, followed by 4, 10 and 20weeks post-vaccination. Serum antibody titers, as well as levels of inducible granzyme B (iGrB) and cytokines were measured in PBMCs challenged ex vivo with live influenza virus. Surveillance conducted during the influenza season identified those with laboratory confirmed influenza illness or infection. HD influenza vaccination induced a high antibody titer and IL-10 response, and a short-lived increase in Th1 responses (IFN-γ and iGrB) compared to SD vaccination in PBMCs challenged ex vivo with live influenza virus. Of the older adults who became infected with influenza, a high IL-10 and iGrB response in virus-challenged cells was observed post-infection (week 10 to 20), as well as IFN-γ and TNF-α at week 20. Additionally, CMV seropositive older adults had an impaired iGrB response to influenza virus-challenge, regardless of vaccine dose. This study illustrates that HD influenza vaccines have little impact on the development of functional T-cell memory in older adults. Furthermore, poor outcomes of influenza infection in older adults may be due to a strong IL-10 response to influenza following vaccination, and persistent CMV infection.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, P3E 5J1, ON, Canada
| | - George A Kuchel
- University of Connecticut Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, 06030-5215, CT, USA
| | | | - Janet E McElhaney
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, P3E 5J1, ON, Canada.
| |
Collapse
|
16
|
Wu D, Dinh TL, Bausk BP, Walt DR. Long-Term Measurements of Human Inflammatory Cytokines Reveal Complex Baseline Variations between Individuals. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2620-2626. [PMID: 28919109 DOI: 10.1016/j.ajpath.2017.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022]
Abstract
Comprehensive characterization of the healthy human proteome baseline is essential for personalized medicine. Baseline data are necessary to understand the variation between individuals, as well as longitudinal variation within individuals. Many important protein biomarkers, such as cytokines, exist at extremely low or undetectable levels in the healthy state. This paper describes results from a 14-week study of healthy human subjects using ultrasensitive single-molecule array (Simoa) assays to measure both intra and intersubject variation of 15 cytokines. The results show a wide variation in the ranges of some cytokines between individuals and demonstrate that individual baseline values will be essential for predicting disease presence and progression. Although all of the studied cytokines demonstrated high temporal stability (or low intrasubject variation) over the entire study period, there were two distinct groups of cytokines that demonstrated either high (IL-8, IFN-γ, IL-2, IL-6, and IL-1β) or low (IL-15, TNF-α, IL-12 p70, IL-17A, GM-CSF, IL-12 p40, IL-10, IL-7, IL-1α, and IL-5) subject-to-subject variation. This work demonstrates that ultrasensitive assays are essential for characterizing human cytokines in healthy subjects. The results show that some cytokines vary by more than two orders of magnitude between individuals, making it an imperative to obtain individual baseline measurements if they are to play a role in health and disease diagnosis.
Collapse
Affiliation(s)
- Danlu Wu
- Department of Chemistry, School of Arts and Sciences, Tufts University, Medford, Massachusetts
| | - Trinh L Dinh
- Department of Chemistry, School of Arts and Sciences, Tufts University, Medford, Massachusetts
| | - Bruce P Bausk
- Department of Chemistry, School of Arts and Sciences, Tufts University, Medford, Massachusetts
| | - David R Walt
- Department of Chemistry, School of Arts and Sciences, Tufts University, Medford, Massachusetts.
| |
Collapse
|
17
|
|
18
|
Goldeck D, Theeten H, Hassouneh F, Oettinger L, Wistuba-Hamprecht K, Cools N, Tsitsilonis OE, Pawelec G. Frequencies of peripheral immune cells in older adults following seasonal influenza vaccination with an adjuvanted vaccine. Vaccine 2017; 35:4330-4338. [PMID: 28689651 DOI: 10.1016/j.vaccine.2017.06.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/23/2017] [Accepted: 06/25/2017] [Indexed: 01/12/2023]
Abstract
As age increases, immune responses and consequently protection following vaccination to seasonal influenza is commonly believed to decrease. Possible drivers of this immune dysfunction include immunosenescence, repeated exposure to the same seasonal influenza antigens, and prior infection with cytomegalovirus (CMV). Here, to determine immune parameters distinguishing vaccine humoral responders (R) from non-responders (NR) following vaccination, we surveyed broad peripheral blood "cellular immune correlates" of older adults vaccinated with Fluad® (an adjuvanted subunit influenza vaccine containing strains H1N1, H3N2 and B). Phenotyping included αβ-T-cells, γδ-T-cells, B-cells and myeloid cells. The frequencies of most of these lymphocyte phenotypes were found to be similar in R and NR, although perhaps counterintuitively, one of the few differences seen between the two groups was higher frequencies of regulatory T-cells in R. These differences were more prominent for responses to the vaccine strains H1N1 and H3N2 than to the B strain, and in CMV-seropositive than CMV-seronegative elderly. Further, frequencies of early-differentiated CD4+ T-cells tended to be higher and frequencies of memory CD4+ T-cells tended to be lower in R than NR. There were also differences in B-cells, with higher frequencies in R compared to NR. To the best of our knowledge, these results are the first to report such differences in elderly people responding or failing to respond to adjuvanted seasonal influenza vaccination.
Collapse
Affiliation(s)
- David Goldeck
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany.
| | - Heidi Theeten
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Fakhri Hassouneh
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany; Department of Immunology, Maimonides Institute for Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Lilly Oettinger
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany
| | - Nathalie Cools
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Ourania E Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany; Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
19
|
Cao W, Kim JH, Reber AJ, Hoelscher M, Belser JA, Lu X, Katz JM, Gangappa S, Plante M, Burt DS, Sambhara S. Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice. Vaccine 2017; 35:3318-3325. [PMID: 28499553 PMCID: PMC7115484 DOI: 10.1016/j.vaccine.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022]
Abstract
Protollin-adjuvanted H5N1 vaccine enhanced serum protective antibody responses and mucosal IgA responses. Protollin-adjuvanted H5N1 vaccine increased the early B cell response in the lymph nodes and spleen. Protollin-adjuvanted H5N1 vaccine increased the frequency of Ag-specific antibody secreting cells and T cells. Protollin-adjuvanted H5N1 vaccine conferred enhanced protection against viral challenge.
Sporadic, yet frequent human infections with avian H5N1 influenza A viruses continue to pose a potential pandemic threat. Poor immunogenicity of unadjuvanted H5N1 vaccines warrants developing novel adjuvants and formulations as well as alternate delivery systems to improve their immunogenicity and efficacy. Here, we show that Protollin, a nasal adjuvant composed of Neisseria meningitides outer membrane proteins non-covalently linked to Shigella flexneri 2a lipopolysaccharide, is a potent nasal adjuvant for an inactivated split virion H5N1 clade 1 A/Viet Nam1203/2004 (A/VN/1203/04) vaccine in a mouse model. Protollin-adjuvanted vaccines elicited enhanced serum protective hemagglutination inhibition titers, mucosal IgA responses, and H5N1-specific cell-mediated immunity that resulted in complete protection against a lethal challenge with a homologous virus as well as a heterologous clade 2 virus A/Indonesia/05/2005 (A/IN/05/05). Detailed analysis of adaptive immunity revealed that Protollin increased the frequency of lymphoid- as well as local tissue-resident antibody-secreting cells, local germinal center reaction of B cells, broad-spectrum of CD4 T cell response. Our findings suggest that nasal delivery of H5N1 vaccine with Protollin adjuvant can overcome the poor immunogenicity of H5N1 vaccines, induce both cellular and humoral immune responses, enhance protection against challenge with clade 1 and clade 2 H5N1 viruses and achieve significant antigen dose-sparing.
Collapse
Affiliation(s)
- Weiping Cao
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jin Hyang Kim
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Adrian J Reber
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mary Hoelscher
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xiuhua Lu
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jacqueline M Katz
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Shivaprakash Gangappa
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
20
|
Stephen-Victor E, Bosschem I, Haesebrouck F, Bayry J. The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12746] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre de Recherche des Cordeliers; Equipe-Immunopathologie et Immunointervention Thérapeutique; Paris France
- Sorbonne Universités; Université Pierre et Marie Curie; Paris France
| | - Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre de Recherche des Cordeliers; Equipe-Immunopathologie et Immunointervention Thérapeutique; Paris France
- Sorbonne Universités; Université Pierre et Marie Curie; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| |
Collapse
|
21
|
Impact of ageing and a synbiotic on the immune response to seasonal influenza vaccination; a randomised controlled trial. Clin Nutr 2017; 37:443-451. [PMID: 28215759 PMCID: PMC5851674 DOI: 10.1016/j.clnu.2017.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/12/2017] [Accepted: 01/20/2017] [Indexed: 01/09/2023]
Abstract
Background & aims Ageing increases risk of respiratory infections and impairs the response to influenza vaccination. Pre- and pro-biotics offer an opportunity to modulate anti-viral defenses and the response to vaccination via alteration of the gut microbiota. This study investigated the effect of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486, combined with a prebiotic, gluco-oligosaccharide, on the B and T cell response to seasonal influenza vaccination in young and older subjects . Methods In a double-blind, randomized controlled trial, 58 young (18–35 y) and 54 older (60–85 y) subjects were supplemented with the synbiotic for 8 weeks. At 4 weeks they were administered with a seasonal influenza vaccine. B and T cell phenotype and responsiveness to in vitro re-stimulation with the vaccine were assessed at baseline, 4, 6 and 8 weeks. Results B and T cell profiles differed markedly between young and older subjects. Vaccination increased numbers of memory, IgA+ memory, IgG+ memory and total IgG+ B cells in young subjects, but failed to do so in older subjects and did not significantly alter T cell subsets. Seroconversion to the H1N1 subunit in the older subjects was associated with higher post-vaccination numbers of plasma B cells, but seroconversion was less consistently associated with T cell phenotype. B and T cell subsets from both young and older subjects demonstrated a strong antigen-specific recall challenge, and although not influenced by age, responsiveness to the recall challenge was associated with seroconversion. In older subjects, CMV seropositivity was associated with a significantly lower recall response to the vaccine, but the synbiotic did not affect the responsiveness of B or T cells to re-stimulation with influenza vaccine. Conclusions Antigen-specific B and T cell activation following an in vitro recall challenge with the influenza vaccine was influenced by CMV seropositivity, but not by a synbiotic. Registered under ClinicalTrials.gov Identifier no. NCT01066377.
Collapse
|
22
|
Cho SY, Kim J, Lee JH, Sim JH, Cho DH, Bae IH, Lee H, Seol MA, Shin HM, Kim TJ, Kim DY, Lee SH, Shin SS, lm SH, Kim HR. Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice. Sci Rep 2016; 6:39026. [PMID: 27976725 PMCID: PMC5157019 DOI: 10.1038/srep39026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3+ T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3+ regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging.
Collapse
Affiliation(s)
- Si-Young Cho
- R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea
| | - Juewon Kim
- R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea
| | - Ji Hae Lee
- R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea
| | - Ji Hyun Sim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong-Hyun Cho
- R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea
| | - Il-Hong Bae
- R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea
| | - Hyunbok Lee
- R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea
| | - Min A. Seol
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, and Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Mu Shin
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, and Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae-Joo Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, and Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dae-Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Hyung Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Song Seok Shin
- R&D Unit, AmorePacific Corporation, Gyeonggi-do 17074, Republic of Korea
| | - Sin-Hyeog lm
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, and Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
23
|
Freitas DND, Isaía HA, Henzel A, Simão E, Gassen RB, Rodrigues Junior LC. Comparative study of lymphocytes from individuals that were vaccinated and unvaccinated against the pandemic 2009-2011 H1N1 influenza virus in Southern Brazil. Rev Soc Bras Med Trop 2016; 48:514-23. [PMID: 26516959 DOI: 10.1590/0037-8682-0163-2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/21/2015] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION While no single factor is sufficient to guarantee the success of influenza vaccine programs, knowledge of the levels of immunity in local populations is critical. Here, we analyzed influenza immunity in a population from Southern Brazil, a region with weather conditions that are distinct from those in the rest of country, where influenza infections are endemic, and where greater than 50% of the population is vaccinated annually. METHODS Peripheral blood mononuclear cells were isolated from 40 individuals. Of these, 20 had received the H1N1 vaccine, while the remaining 20 were unvaccinated against the disease. Cells were stimulated in vitro with the trivalent post-pandemic influenza vaccine or with conserved major histocompatibility complex I (MHC I) peptides derived from hemagglutinin and neuraminidase. Cell viability was then analyzed by [3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide)]-based colorimetric assay (MTT), and culture supernatants were assayed for helper T type 1 (Th1) and Th2-specific cytokine levels. RESULTS Peripheral blood lymphocytes from vaccinated, but not unvaccinated, individuals exhibited significant proliferation in vitro in the presence of a cognate influenza antigen. After culturing with vaccine antigens, cells from vaccinated individuals produced similar levels of interleukin (IL)-10 and interferon (IFN)-γ, while those from unvaccinated individuals produced higher levels of IFN-γ than of IL-10. CONCLUSIONS Our data indicate that peripheral blood lymphocytes from vaccinated individuals are stimulated upon encountering a cognate antigen, but did not support the hypothesis that cross-reactive responses related to previous infections can ameliorate the immune response. Moreover, monitoring IL-10 production in vaccinated individuals could comprise a valuable tool for predicting disease evolution.
Collapse
Affiliation(s)
- Deise Nascimento de Freitas
- Laboratório de Biologia Molecular e Cultivo Celular, Centro Universitário Franciscano, Santa Maria, Rio Grande do Sul, Brazil
| | - Henrique Ataíde Isaía
- Laboratório de Biologia Molecular e Cultivo Celular, Centro Universitário Franciscano, Santa Maria, Rio Grande do Sul, Brazil
| | - Andréia Henzel
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Eder Simão
- Laboratório de Biologia Molecular e Cultivo Celular, Centro Universitário Franciscano, Santa Maria, Rio Grande do Sul, Brazil
| | - Rodrigo Benedetti Gassen
- Laboratório de Biologia Molecular e Cultivo Celular, Centro Universitário Franciscano, Santa Maria, Rio Grande do Sul, Brazil
| | - Luiz Carlos Rodrigues Junior
- Laboratório de Biologia Molecular e Cultivo Celular, Centro Universitário Franciscano, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Moise L, Beseme S, Tassone R, Liu R, Kibria F, Terry F, Martin W, De Groot AS. T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Rev Vaccines 2016; 15:607-17. [PMID: 26588466 DOI: 10.1586/14760584.2016.1123098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T cells are extensively trained on 'self' in the thymus and then move to the periphery, where they seek out and destroy infections and regulate immune response to self-antigens. T cell receptors (TCRs) on T cells' surface recognize T cell epitopes, short linear strings of amino acids presented by antigen-presenting cells. Some of these epitopes activate T effectors, while others activate regulatory T cells. It was recently discovered that T cell epitopes that are highly conserved on their TCR face with human genome sequences are often associated with T cells that regulate immune response. These TCR-cross-conserved or 'redundant epitopes' are more common in proteins found in pathogens that have co-evolved with humans than in other non-commensal pathogens. Epitope redundancy might be the link between pathogens and autoimmune disease. This article reviews recently published data and addresses epitope redundancy, the "elephant in the room" for vaccine developers and T cell immunologists.
Collapse
Affiliation(s)
- Leonard Moise
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | | | - Ryan Tassone
- b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | - Rui Liu
- b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | | | | | | | - Anne S De Groot
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| |
Collapse
|
25
|
Mascitelli L, Goldstein MR. How Regulatory T-Cell Induction by Statins May Impair Influenza Vaccine Immunogenicity and Effectiveness. J Infect Dis 2016; 213:1857. [PMID: 26908727 DOI: 10.1093/infdis/jiw055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/01/2016] [Indexed: 01/23/2023] Open
Affiliation(s)
- Luca Mascitelli
- Comando Brigata Alpina Julia/Multinational Land Force, Medical Service, Udine, Italy
| | | |
Collapse
|
26
|
Nakayama T, Kumagai T, Nishimura N, Ozaki T, Okafuji T, Suzuki E, Miyata A, Okada K, Ihara T. Seasonal split influenza vaccine induced IgE sensitization against influenza vaccine. Vaccine 2015; 33:6099-105. [PMID: 26188254 DOI: 10.1016/j.vaccine.2015.05.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/07/2015] [Accepted: 05/07/2015] [Indexed: 02/08/2023]
Abstract
Although anaphylaxis is an extremely rare vaccine-associated adverse event, it occurred in young children following administration of the 2011/12 seasonal split influenza vaccine, which contained 2-phenoxyethanol as the preservative. These children had high levels of IgE antibodies against influenza vaccine components. We herein investigated why these children were sensitized. One hundred and seventeen series of serum samples were obtained immediately before, and one month after the first and second immunizations with the HA split vaccine of 2011/12. Forty-two sequential serum samples were collected in the acute and convalescent phases (2 and 4 weeks) after natural infection with H1N1 Pdm in 2009. IgE antibodies developed following the vaccination of young children with seasonal split vaccines, whereas no significant IgE response was observed following natural infection with H1N1 Pdm 2009. The prevalence of IgE antibodies was not influenced by outbreaks of H1N1 Pdm. Repeated immunization with the HA split vaccine induced IgE sensitization against the influenza vaccine irrespective of the H1N1, H3N2, or B influenza subtypes. The reasons why anaphylaxis only occurred in recipients of the influenza vaccine containing 2-phenoxyethanol are still being investigated, and the size distribution of antigen particles may have shifted to a slightly larger size. Since the fundamental reason was IgE sensitization, current split formulation for the seasonal influenza vaccine needs to be reconsidered to prevent the induction of IgE sensitization.
Collapse
Affiliation(s)
- Tetsuo Nakayama
- Kitasato Institute for Life Sciences, Laboratory of Viral Infection, Tokyo, Japan.
| | | | - Naoko Nishimura
- Konan Kosei Hospital, Department of Pediatrics, Konan, Aichi Prefecture, Japan
| | - Takao Ozaki
- Konan Kosei Hospital, Department of Pediatrics, Konan, Aichi Prefecture, Japan
| | - Teruo Okafuji
- Okafuji Pediatric Clinic, Himeji, Hyogo Prefecture, Japan
| | - Eitaro Suzuki
- Suzuki Pediatric Clinic, Ube, Yamaguchi Prefecture, Japan
| | - Akiko Miyata
- Saiwai Pediatric Clinic, Tachikawa, Tokyo, Japan
| | - Kenji Okada
- Fukuoka Dental College, Division of Oral & Medical Management, Department of Medicine, Section of Pediatrics, Fukuoka, Fukuoka Prefecture, Japan
| | - Toshiaki Ihara
- National Mie Hospital, Department of Pediatrics, Tsu, Mie Prefecture, Japan
| |
Collapse
|
27
|
Liu R, Moise L, Tassone R, Gutierrez AH, Terry FE, Sangare K, Ardito MT, Martin WD, De Groot AS. H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Hum Vaccin Immunother 2015; 11:2241-52. [PMID: 26090577 PMCID: PMC4635734 DOI: 10.1080/21645515.2015.1052197] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Avian-origin H7N9 influenza is a novel influenza A virus (IAV) that emerged in humans in China in 2013. Using immunoinformatics tools, we identified several H7N9 T cell epitopes with T cell receptor (TCR)-facing residues identical to those of multiple epitopes from human proteins. We hypothesized that host tolerance to these peptides may impair T helper response and contribute to the low titer, weak hemagglutination inhibiting (HI) antibody responses and diminished seroconversion rates that have been observed in human H7N9 infections and vaccine trials. We found that the magnitude of human T effector responses to individual H7N9 peptides was inversely correlated with the peptide's resemblance to self. Furthermore, a promiscuous T cell epitope from the hemagglutinin (HA) protein suppressed responses to other H7N9 peptides when co-administered in vitro. Along with other highly ‘human-like’ peptides from H7N9, this peptide was also shown to expand FoxP3+ regulatory T cells (Tregs). Thus, H7N9 may be camouflaged from effective human immune response by T cell epitope sequences that avert or regulate effector T cell responses through host tolerance.
Collapse
Affiliation(s)
- Rui Liu
- a Institute for Immunology and Informatics; University of Rhode Island ; Providence , RI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vestrheim AC, Moen A, Egge-Jacobsen W, Reubsaet L, Halvorsen TG, Bratlie DB, Paulsen BS, Michaelsen TE. A pilot study showing differences in glycosylation patterns of IgG subclasses induced by pneumococcal, meningococcal, and two types of influenza vaccines. Immun Inflamm Dis 2014; 2:76-91. [PMID: 25400928 PMCID: PMC4217548 DOI: 10.1002/iid3.22] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/02/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
The presence of a carbohydrate moiety on asparagine 297 in the Fc part of an IgG molecule is essential for its effector functions and thus influences its vaccine protective effect. Detailed structural carbohydrate analysis of vaccine induced IgGs is therefore of interest as this knowledge can prove valuable in vaccine research and design and when optimizing vaccine schedules. In order to better understand and exploit the protective potential of IgG antibodies, we carried out a pilot study; collecting serum or plasma from volunteers receiving different vaccines and determining the IgG subclass glycosylation patterns against specific vaccine antigens at different time points using LC-ESI-MS analysis. The four vaccines included a pneumococcal capsule polysaccharide vaccine, a meningococcal outer membrane vesicle vaccine, a seasonal influenza vaccine, and a pandemic influenza vaccine. The number of volunteers was limited, but the results following immunization indicated that the IgG subclass which dominated the response showed increased galactose and the level of sialic acid increased with time for most vaccinees. Fucose levels increased for some vaccinees but in general stayed relatively unaltered. The total background IgG glycosylation analyzed in parallel varied little with time and hence the changes seen were likely to be caused by vaccination. The presence of an adjuvant in the pandemic influenza vaccine seemed to produce simpler and less varied glycoforms compared to the adjuvant-free seasonal influenza vaccine. This pilot study demonstrates that detailed IgG glycosylation pattern analysis might be a necessary step in addition to biological testing for optimizing vaccine development and strategies.
Collapse
Affiliation(s)
- Anne Cathrine Vestrheim
- Department of Bacteriology & Immunology, Norwegian Institute of Public HealthOslo, Norway
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of OsloOslo, Norway
| | - Anders Moen
- Department of Molecular Biosciences, University of OsloOslo, Norway
| | | | - Leon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of OsloOslo, Norway
| | | | - Diane Bryant Bratlie
- Department of Bacteriology & Immunology, Norwegian Institute of Public HealthOslo, Norway
| | - Berit Smestad Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of OsloOslo, Norway
| | - Terje Einar Michaelsen
- Department of Bacteriology & Immunology, Norwegian Institute of Public HealthOslo, Norway
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of OsloOslo, Norway
| |
Collapse
|
29
|
Immunophenotype expressions and cytokine profiles of influenza A H1N1 virus infection in pediatric patients in 2009. DISEASE MARKERS 2014; 2014:195453. [PMID: 24696530 PMCID: PMC3948652 DOI: 10.1155/2014/195453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/26/2013] [Accepted: 01/13/2014] [Indexed: 02/07/2023]
Abstract
Background. A novel swine-origin influenza A H1N1 virus (S-OIV) caused human infection and acute respiratory illness in 2009, resulting in an influenza pandemic. Objectives. This study characterized the immune responses of S-OIV infection in pediatric patients at risk of pulmonary complications. Methods. All enrolled pediatric patients were confirmed virologically for S-OIV infection in 2009-2010, prospectively. Changes in cellular immunophenotypes were analyzed using flow cytometry. Plasma cytokine levels associated with S-OIV infection by pulmonary and without pulmonary complications were measured using cytokine cytometric bead assay kits. Results. A total of 85 patients with a mean age of 10.3 years were recruited. The level of C-reactive protein (CRP) was high in patients exhibiting pulmonary complications. The percentage of cellular immunophenotypes did not change between patients with and without pulmonary complications. The absolute numbers of peripheral blood mononuclear cells (PBMC), CD3, CD8, and CD16CD56 decreased with acute S-OIV pulmonary complications. Acute influenza infection with pulmonary complications was associated with high plasma concentrations of IL-1β, IL-6, IL-12, and IFN-γ. Conclusion. Immunophenotype studies have reported variability in immune response to the severity of S-OIV infections. Acute phase cytokine profiles of the 2009 S-OIV infection might have contributed to the pathogenesis of the pulmonary complications.
Collapse
|
30
|
Bayry J. Regulatory T cells as adjuvant target for enhancing the viral disease vaccine efficacy. Virusdisease 2013; 25:18-25. [PMID: 24426307 PMCID: PMC3889236 DOI: 10.1007/s13337-013-0187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022] Open
Abstract
CD4+CD25+FoxP3+ regulatory T cells (Tregs) are critical for immune homeostasis and tolerance. However, because of their capacity to suppress antigen presenting cells (APC), T and B cells, Tregs could also inhibit protective immune responses to viruses and vaccines. Several viruses have been shown to exploit Tregs to evade immune response. By modulating APC and in particular by weakening the functions of dendritic cells such as their ability to secrete polarizing cytokines and expression of co-stimulatory molecules, viruses could support differentiation and expansion of Tregs. Of note, as a proof of concept, depletion of Tregs significantly enhanced the protective immune response to viruses and vaccines suggesting that Tregs are viable targets to enhance immunogenicity of vaccines. As Treg depletion or inhibition of their functions could lead to deleterious autoimmune and inflammatory disorders, any Treg-based approach for vaccination should not aim at depletion of Tregs and inhibition of their functions should be transient. Recent studies have targeted the interaction between CCR4 expressed on Tregs and its ligands CCL22 and CCL17 to inhibit transiently the recruitment of Tregs at the site of immunization. Importantly, use of CCR4 antagonists as ‘molecular adjuvants’ in vivo in experimental models, amplified cellular and humoral immune responses when injected in combination with various vaccine antigens. The significant adjuvant activity observed in diverse models without noticeable side effects provided strong evidence that CCR4 is a sustainable target for rational adjuvant design.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Unité 872, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris Descartes, 15 rue de l’Ecole de Médicine, 75006 Paris, France
| |
Collapse
|
31
|
Li J, Chen H, Wu N, Fan D, Liang G, Gao N, An J. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice. Vaccine 2013; 31:4136-42. [PMID: 23845821 DOI: 10.1016/j.vaccine.2013.06.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/20/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate.
Collapse
Affiliation(s)
- Jieqiong Li
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | |
Collapse
|