1
|
Ding Y, Han Z. Effect of difference between EV-A71 virus epidemic strain and "vaccine strain" on neutralizing antibody titer. Hum Vaccin Immunother 2022; 18:2121565. [PMID: 36112355 DOI: 10.1080/21645515.2022.2121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hand, foot and mouth disease was mainly caused by EV-A71 virus. The main antigen structure of VP1 region of EV-A71 was easily varied. Here, we investigated the seroprevalence of EV-A71 based on a large group of healthy individuals in Beijing, China, in order to study the effectiveness of EV-A71 vaccine in a real-world setting. BrCr and the clinical strain isolated from the Chinese mainland in 2008 ("vaccine strain:"CMU4232/BJ/CHN/2008), EV-A71 C4 epidemic strains isolated in 2010, 2013, and 2016, were tested for neutralizing antibodies (NtAb) in every year. Phylogenetic tree analysis of the EV-A71 strains above, as well as amino acid composition homologous sequence analysis were applied. The "vaccine strain" has 83.0% homology with FY23, H07 and FY7VP5. It belongs to the same branch of C4a as 10 C4, 13 C4 and 16 C4, and differs from the amino acid sites 283 and 293 of 16 C4. Compared with "vaccine strains," there was a significant difference between the 50-59 years old age group when the NtAb titer of 16 C4 strain was 1:512-1:1024. Our results suggest that changes in the functional epitopes of NtAb caused by amino acid 283 and 293 loci in EV-A71 strains may affect the production of neutralizing antibodies.
Collapse
Affiliation(s)
- Yiwei Ding
- Department of Respiratory and Critical Care Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihai Han
- Department of Respiratory and Critical Care Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Becerril-García MÁ, Flores-Maldonado OE, González GM, García-González G, Hernández-Bello R, Palma-Nicolás JP. Safety profile of intravenous administration of live Pichia pastoris cells in mice. FEMS Yeast Res 2022; 22:6576328. [PMID: 35488874 DOI: 10.1093/femsyr/foac023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/14/2022] Open
Abstract
Pichia pastoris has been widely used to produce antigenic proteins aimed to integrate subunit vaccines. Moreover, increasing interest in large-scale vaccine production at the lowest cost is rapidly focusing in the development of yeast surface display (YSD) systems for delivery of antigens. In this scenario, the safety of live yeast administration must be warranted, however such information is very scarce. Here we assess the intravenous administration (i.v.) of live P. pastoris cells in order to trace dissemination in BALB/c mice and to evaluate the immune response raised against the yeast compared to the well-defined pathogen Candida albicans. Our results demonstrate dissemination of P. pastoris to the heart, kidney, and spleen, but it is quickly eliminated during the first 48 hours post-infection (hpi), with persistence in the liver along with mild mononuclear and polymorphonuclear (PMN) infiltrate, which was resolved at 144 hpi. In vivo delayed-type hyper-sensitivity test (DTH) or in vitro antigenic stimulation of mice splenocytes demonstrate that transient infection of P. pastoris did not induce a cell-mediated immune response nor increase the level of circulating IgG or IgM. These results demonstrate the innocuous profile of P. pastoris and support its use as a safe delivery system for vaccine development.
Collapse
Affiliation(s)
- Miguel Ángel Becerril-García
- Facultad de Medicina, Departamento de Microbiología. Universidad Autónoma de Nuevo León. Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro. C.P. 64460, Monterrey, Nuevo León, México
| | - Orlando Esau Flores-Maldonado
- Facultad de Medicina, Departamento de Microbiología. Universidad Autónoma de Nuevo León. Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro. C.P. 64460, Monterrey, Nuevo León, México
| | - Gloria M González
- Facultad de Medicina, Departamento de Microbiología. Universidad Autónoma de Nuevo León. Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro. C.P. 64460, Monterrey, Nuevo León, México
| | - Gerardo García-González
- Facultad de Medicina, Departamento de Microbiología. Universidad Autónoma de Nuevo León. Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro. C.P. 64460, Monterrey, Nuevo León, México
| | - Romel Hernández-Bello
- Facultad de Medicina, Departamento de Microbiología. Universidad Autónoma de Nuevo León. Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro. C.P. 64460, Monterrey, Nuevo León, México
| | - José Prisco Palma-Nicolás
- Facultad de Medicina, Departamento de Microbiología. Universidad Autónoma de Nuevo León. Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro. C.P. 64460, Monterrey, Nuevo León, México
| |
Collapse
|
3
|
Li ML, Shih SR, Tolbert BS, Brewer G. Enterovirus A71 Vaccines. Vaccines (Basel) 2021; 9:vaccines9030199. [PMID: 33673595 PMCID: PMC7997495 DOI: 10.3390/vaccines9030199] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a major causative agent of hand, foot, and mouth disease (HFMD) and herpangina. Moreover, EV-A71 infection can lead to neurological complications and death. Vaccination is the most efficient way to control virus infection. There are currently three inactivated, whole EV-A71 vaccines licensed by the China NMPA (National Medical Products Administration). Several other types of vaccines, such as virus-like particles and recombinant VP1 (capsid protein), are also under development. In this review, we discuss recent advances in the development of EV-A71 vaccines.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Correspondence:
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Issaro N, Wu F, Weng L, Zhou M, Fang Z, Huang S, Rajamanickam V, Liu M, Tian H, Li X, Jiang C. Induction of immune responses by a novel recombinant fusion protein of enterovirus A71 in BALB/c mice. Mol Immunol 2018; 105:1-8. [PMID: 30465931 DOI: 10.1016/j.molimm.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Fusion protein technology is used in biotechnology and medical developments. In this study, recombinant fusion proteins from enterovirus A71 (EV-A71) subgenotype B5, Thailand were designed based two surface proteins (VP1 and VP2) and an internal protein (VP4), and named "VP0" (consisting of VP4-VP2) and "EV71" (consisting of VP4-VP2-VP1), respectively. The recombinant fusion proteins VP0 and EV71 were expressed in insect cells and successfully produced and secreted into the media. Both recombinant fusion proteins were shown to have immunogenic properties in BALB/c mice when formulated with Freund's complete/incomplete adjuvant (FA). Interestingly, EV71 formulated with FA- induced a level of IgG antibodies level similar to that induced by the recombinant protein VP1 formulated with FA (the positive control). Our results showed that VP1 alone is better at eliciting a strong cell-mediated immune response. Nontheless, EV71 formulated with FA was capable of inducing lymphocyte proliferation and increasing the cytokine-related mRNA expression levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-10 in mice after immunization. Additionally, the number of CD4+ and CD8+ T lymphocyte cells after stimulation with purified EV71 in splenic cell culture showed highly specific CD4+ and CD8+ T-cell production. We suggest that EV71, which consists of VP4-VP2-VP1, could be used as the foundation for developing a novel recombinant fusion protein-based vaccine for EV-A71.
Collapse
Affiliation(s)
- Nipatha Issaro
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Fenfang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Lei Weng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Mi Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Zhaoxiang Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Sisi Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | | | - Min Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Haishan Tian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Xiaokun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China; Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, 325035, PR China.
| | - Chao Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China; Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
5
|
Wang M, Jiang S, Zhou L, Wang C, Mao R, Ponnusamy M. Efficient production of recombinant glycoprotein D of herpes simplex virus type 2 in Pichia pastoris and its protective efficacy against viral challenge in mice. Arch Virol 2017; 162:701-711. [PMID: 27868164 DOI: 10.1007/s00705-016-3154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) infection is the leading cause of genital ulcer disease and a significant public health concern. However, there are no approved vaccines available to prevent HSV-2 infection. The glycoprotein D (gD) of HSV-2 is the most important candidate antigen for vaccine development. In this study, a truncated form of gD (codons 1-340, gD1-340) was produced as a secretory protein in the methylotrophic yeast Pichia pastoris. The recombinant gD1-340 with a His6 tag was purified to homogeneity by one-step affinity chromatography. Mice immunized with the recombinant gD1-340 developed high levels of antigen-specific antibody responses with HSV-2 neutralizing activity. Immunization with the recombinant gD1-340 conferred significant protection against lethal HSV-2 infection in mice. Moreover, measurement of the secretion of gD1-340-specific cytokines demonstrated that the recombinant gD1-340 induced mixed Th1/Th2 cellular immune responses. These findings indicated that P. pastoris-derived gD1-340 represents a promising HSV-2 vaccine candidate with strong immunogenicity and prophylactic efficacy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan, 430071, China
| | - Chaoqun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Ruifeng Mao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| |
Collapse
|
6
|
Mao QY, Wang Y, Bian L, Xu M, Liang Z. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD). Expert Rev Vaccines 2016; 15:599-606. [PMID: 26732723 DOI: 10.1586/14760584.2016.1138862] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
On December 3rd 2015, the China Food and Drug Administration (CFDA) approved the first inactivated Enterovirus 71 (EV71) whole virus vaccine for preventing severe hand, foot and mouth disease (HFMD). As one of the few preventive vaccines for children's infectious diseases generated by the developing countries in recent years, EV71 vaccine is a blessing to children's health in China and worldwide. However, there are still a few challenges facing the worldwide use of EV71 vaccine, including the applicability against various EV71 pandemic strains in other countries, international requirements on vaccine production and quality control, standardization and harmonization on different pathogen monitoring and detecting methods, etc. In addition, the affordability of EV71 vaccine in other countries is a factor to be considered in HFMD prevention. Therefore, with EV71 vaccine commercially available, there is still a long way to go before reaching effective protection against severe HFMD after EV71 vaccines enter the market. In this paper, the bottlenecks and prospects for the wide use of EV71 vaccine after its approval are evaluated.
Collapse
Affiliation(s)
- Qun-ying Mao
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Yiping Wang
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Lianlian Bian
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Miao Xu
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Zhenglun Liang
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
7
|
Achievements, challenges and prospects for the development of broadly protective multivalent vaccines and therapeutic antibodies against hand, foot and mouth disease. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0847-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|