1
|
Cheng H, Chen L, Huang C. Advances of signal transducer and activator of transcription 3 inhibitors in acute myeloid leukemia (Review). Oncol Lett 2025; 29:134. [PMID: 39822941 PMCID: PMC11737296 DOI: 10.3892/ol.2025.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a crucial transcription factor, exerts a notable influence by hyperactivating or acquiring functional mutations in the occurrence and progression of cancers. Hyperactive STAT3 is also implicated in a range of hematopoietic malignancies, especially acute myeloid leukemia (AML). The function of STAT3 is associated with the phosphorylated parallel dimer structure, enabling them to stimulate the transcription of specific genes. AML is a highly heterogeneous hematological malignancy, which is challenging in terms of therapy. The current efficacy of chemotherapy and targeted therapy remains suboptimal. Targeted inhibition of STAT3 has the potential to enhance the efficacy of AML treatment, thereby possibly improving the prognosis of individuals suffering from AML. The present review summarizes the development of inhibitors against STAT3 and discusses their applicability as AML therapeutics, which could inspire new possibilities for enhancing AML treatment strategies.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Hematology, First Affiliated Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Li Chen
- Department of Hematology, First Affiliated Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
2
|
Gorecki L, Reznickova E, Krystof V, Rezacova M, Ceckova M, Korabecny J. Strategies for the treatment of acute myeloid leukemia with FLT3 mutations: a patent review. Expert Opin Ther Pat 2025; 35:137-164. [PMID: 39718422 DOI: 10.1080/13543776.2024.2446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Approximately one-third of all AML patients have a mutation in the Fms-like tyrosine kinase 3 (FLT3) gene, which is associated with a poor prognosis in these individuals. The 2017 approval of midostaurin, the first FLT3 inhibitor, spurred extensive development of more potent and selective inhibitors with an improved safety profile. AREAS COVERED This review analyzes patent inventions for the treatment of AML using FLT3 inhibitors, covering developments from the earliest to the most recent, disclosed in 2024. Our search using the global Espacenet database identified numerous compounds with low nanomolar inhibitory concentrations against FLT3-ITD and FLT3-TKD mutants. These compounds have shown promise in preclinical studies. Co-inhibition strategies and combinatorial therapies to overcome resistance and enhance anti-leukemic efficacy are also discussed. EXPERT OPINION Recent patents highlight advances in the field of FLT3 inhibitors with a focus on overcoming resistance, improving selectivity and potency. Future strategies may include third-generation inhibitors such as type III allosteric inhibitors, irreversible inhibitors, or PROTACs. Personalized medicine approaches utilizing genetic profiling to tailor therapies are emphasized. Exploration of novel combination regimens with emerging therapies like CAR T-cell therapy, immune checkpoint inhibitors, and small molecules targeting critical AML pathways is ongoing to further enhance anti-leukemic efficacy.
Collapse
Affiliation(s)
- Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Reznickova
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Jiang L, Ma Z, Song L, Zhu C, Li J, Su Z, Liu H. Expression of interleukin-17 in oral tongue squamous cell carcinoma and its effect on biological behavior. Sci Rep 2025; 15:3195. [PMID: 39863794 PMCID: PMC11762731 DOI: 10.1038/s41598-025-87637-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage. The expression of IL-17 in Cal-27 cells was greater than that in HOEC. With increasing IL-17 concentration, cell proliferation, migration, and invasion increased, and the apoptosis rate decreased. After adding the IL-17 inhibitor, the cell proliferation, invasion, and migration abilities decreased, the apoptosis rate increased, and the expression of JAK1and p-STAT3 decreased.IL-17 is highly expressed in oral tongue squamous cell carcinoma and is involved in the occurrence and development of TSCC, possibly through the JAK‒Stat signaling pathway. This study provides a new target and theoretical basis for treating tongue squamous cell carcinoma.
Collapse
Affiliation(s)
- Lina Jiang
- School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China.
| | - Zhenghao Ma
- School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China
| | - Luwen Song
- School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China
| | - Chenchen Zhu
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jiancheng Li
- The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhenxing Su
- School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Hongsheng Liu
- School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China
| |
Collapse
|
4
|
Wang D, Kaniowski D, Jacek K, Su YL, Yu C, Hall J, Li H, Feng M, Hui S, Kaminska B, DeFranciscis V, Esposito CL, DiRuscio A, Zhang B, Marcucci G, Kuo YH, Kortylewski M. Bi-functional CpG-STAT3 decoy oligonucleotide triggers multilineage differentiation of acute myeloid leukemia in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102268. [PMID: 39171140 PMCID: PMC11338104 DOI: 10.1016/j.omtn.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Acute myeloid leukemia (AML) cells resist differentiation stimuli despite high expression of innate immune receptors, such as Toll-like receptor 9 (TLR9). We previously demonstrated that targeting Signal Transducer and Activator of Transcription 3 (STAT3) using TLR9-targeted decoy oligodeoxynucleotide (CpG-STAT3d) increases immunogenicity of human and mouse AML cells. Here, we elucidated molecular mechanisms of inv(16) AML reprogramming driven by STAT3-inhibition/TLR9-activation in vivo. At the transcriptional levels, AML cells isolated from mice after intravenous administration of CpG-STAT3d or leukemia-targeted Stat3 silencing and TLR9 co-stimulation, displayed similar upregulation of myeloid cell differentiation (Irf8, Cebpa, Itgam) and antigen-presentation (Ciita, Il12a, B2m)-related genes with concomitant reduction of leukemia-promoting Runx1. Single-cell transcriptomics revealed that CpG-STAT3d induced multilineage differentiation of AML cells into monocytes/macrophages, erythroblastic and B cell subsets. As shown by an inducible Irf8 silencing in vivo, IRF8 upregulation was critical for monocyte-macrophage differentiation of leukemic cells. TLR9-driven AML cell reprogramming was likely enabled by downregulation of STAT3-controlled methylation regulators, such as DNMT1 and DNMT3. In fact, the combination of DNA methyl transferase (DNMT) inhibition using azacitidine with CpG oligonucleotides alone mimicked CpG-STAT3d effects, resulting in AML cell differentiation, T cell activation, and systemic leukemia regression. These findings highlight immunotherapeutic potential of bi-functional oligonucleotides to unleash TLR9-driven differentiation of leukemic cells by concurrent STAT3 and/or DNMT inhibition.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Damian Kaniowski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Karol Jacek
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chunsong Yu
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jeremy Hall
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Haiqing Li
- Integrative Genomics Core, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bożena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Carla Lucia Esposito
- Institute for Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, 80100 Naples, Italy
| | - Annalisa DiRuscio
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
5
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Li Y, Jiang F, Zhu S, Jia H, Li C. STAT3 drives the malignant progression of low-grade gliomas through modulating the expression of STAT1, FOXO1, and MYC. Front Mol Biosci 2024; 11:1419072. [PMID: 38948079 PMCID: PMC11211654 DOI: 10.3389/fmolb.2024.1419072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 07/02/2024] Open
Abstract
Low-grade glioma (LGG) is a prevalent and lethal primary brain malignancy, with most patients succumbing to recurrence and progression. The signal transducer and activator of transcription (STAT) family has long been implicated in tumor initiation and progression. However, a comprehensive evaluation of the expression status and overall function of STAT genes in LGG remains largely unreported. In this study, we investigated the association between the expression of STAT family genes and the progression of LGG. Through a comprehensive analysis that combined bioinformatics screening and validation assays, we determined that STAT1, STAT3, and STAT5A were upregulated and contributed to the malignant progression of LGG. Notably, our findings suggest that STAT3 is a critical prognostic marker that regulates the progression of LGG. STAT3 emerged as the most significant prognostic indicator governing the advancement of LGG. Additionally, our inquiry into the STAT3-binding proteins and differentially expressed-correlated genes (DEGs) revealed that STAT3 played a pivotal role in the progression of LGG by stimulating the expression of STAT1, FOXO1, and MYC. In summary, our recent study conducted a thorough analysis of the STAT family genes and revealed that directing therapeutic interventions towards STAT3 holds potential as a viable strategy for treating patients with LGG.
Collapse
Affiliation(s)
| | | | | | - Hongwei Jia
- Department of Pharmacy, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People’s Hospital, Xuzhou, China
| | - Changwei Li
- Department of Pharmacy, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People’s Hospital, Xuzhou, China
| |
Collapse
|
7
|
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res 2024; 38:2406-2447. [PMID: 38433568 DOI: 10.1002/ptr.8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that maintains normal tissues and cell signaling pathways. EGFR is overactivated and overexpressed in many malignancies, including breast, lung, pancreatic, and kidney. Further, the EGFR gene mutations and protein overexpression activate downstream signaling pathways in cancerous cells, stimulating the growth, survival, resistance to apoptosis, and progression of tumors. Anti-EGFR therapy is the potential approach for treating malignancies and has demonstrated clinical success in treating specific cancers. The recent report suggests most of the clinically used EGFR tyrosine kinase inhibitors developed resistance to the cancer cells. This perspective provides a brief overview of EGFR and its implications in cancer. We have summarized natural products-derived anticancer compounds with the mechanistic basis of tumor inhibition via the EGFR pathway. We propose that developing natural lead molecules into new anticancer agents has a bright future after clinical investigation.
Collapse
Affiliation(s)
- Rutuja Damare
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Gasparoli L, Virely C, Tsakaneli A, Che N, Edwards D, Bartram J, Hubank M, Pal D, Heidenreich O, Martens JHA, De Boer J, Williams O. Susceptibility of pediatric acute lymphoblastic leukemia to STAT3 inhibition depends on p53 induction. Haematologica 2024; 109:1069-1081. [PMID: 37794795 PMCID: PMC10985450 DOI: 10.3324/haematol.2023.283613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.
Collapse
Affiliation(s)
- Luca Gasparoli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Clemence Virely
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Noelia Che
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Darren Edwards
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Jack Bartram
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Michael Hubank
- Centre for Molecular Pathology, The Royal Marsden, Sutton
| | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | | | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen
| | - Jasper De Boer
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London.
| |
Collapse
|
9
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
10
|
Salcin H, Goker Bagca B, Alcitepe I, Biray Avci C, Aslan R, Annette Akgur S, Tezcanli Kaymaz B. Investigating the Effects of a Synthetic Cannabinoid on the Pathogenesis of Leukemia and Leukemic Stem Cells: A New Therapeutic Approach. Cannabis Cannabinoid Res 2024; 9:212-222. [PMID: 35834597 DOI: 10.1089/can.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The popularity and usage of synthetic cannabinoids (SCs) are increasing due to their easy accessibility and psychoactive effects worldwide. Studies on cannabinoids on leukemic stem cells (LSC) and hematopoietic stem cells (HSCs), which are the precursors of leukemia cells, generally depend on the natural cannabinoid delta-9-THC. As there is only a limited number of studies focusing on the results of SC applications, the reflections upon LSCs have to be clarified. In this study, biological responses and antileukemic effects of JWH-018-one of the first produced and widely used SCs-were evaluated upon leukemia cells. Whether JWH-018 exhibited a preventive effect on both leukemic and HSCs was evaluated by presenting a therapeutic approach for the first time in the literature. Cells were analyzed in case of cell proliferation, apoptosis, and transcriptional expression profiling of some significant JAK/STAT and AKT/mTOR pathways, apoptotic, cell cycle regulation, and epigenetic chromatin remodeling-related genes following JWH-018 treatment. In conclusion, however, further studies are still needed upon both HSCs and LSCs to illuminate the effects of SCs on leukemogenesis on chronic myeloid leukemia (CML) more clearly; we consider that the JWH-018 can provide a therapeutic effect on the pathogenesis of leukemia and particularly upon LSCs and SCs might have therapeutic potential in addition to current therapy.
Collapse
Affiliation(s)
- Hilal Salcin
- Basic Oncology Department, Ege University Health Science Institute, Izmir, Turkey
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Bakiye Goker Bagca
- Medical Biology Department, Aydin Adnan Menderes University Medical School, Aydin, Turkey
| | - Ilayda Alcitepe
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Cigir Biray Avci
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Rukiye Aslan
- Addiction Toxicology Department, Ege University Institute of Substance Abuse, Toxicology and Pharmaceutical Sciences, Izmir, Turkey
| | - Serap Annette Akgur
- Addiction Toxicology Department, Ege University Institute of Substance Abuse, Toxicology and Pharmaceutical Sciences, Izmir, Turkey
| | | |
Collapse
|
11
|
Gayatri MB, Kancha RK, Behera A, Patchva D, Velugonda N, Gundeti S, Reddy ABM. AMPK-induced novel phosphorylation of RUNX1 inhibits STAT3 activation and overcome imatinib resistance in chronic myelogenous leukemia (CML) subjects. Cell Death Discov 2023; 9:401. [PMID: 37903788 PMCID: PMC10616083 DOI: 10.1038/s41420-023-01700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Imatinib resistance remains an unresolved problem in CML disease. Activation of JAK2/STAT3 pathway and increased expression of RUNX1 have become one reason for development of imatinib resistance in CML subjects. Metformin has gained attention as an antileukemic drug in recent times. However, the molecular mechanism remains elusive. The present study shows that RUNX1 is a novel substrate of AMP-activated kinase (AMPK), where AMPK phosphorylates RUNX1 at Ser 94 position. Activation of AMPK by metformin could lead to increased cytoplasmic retention of RUNX1 due to Ser 94 phosphorylation. RUNX1 Ser 94 phosphorylation resulted in increased interaction with STAT3, which was reflected in reduced transcriptional activity of both RUNX1 and STAT3 due to their cytoplasmic retention. The reduced transcriptional activity of STAT3 and RUNX1 resulted in the down-regulation of their signaling targets involved in proliferation and anti-apoptosis. Our cell proliferation assays using in vitro resistant cell line models and PBMCs isolated from CML clinical patients and normal subjects demonstrate that metformin treatment resulted in reduced growth and improved imatinib sensitivity of resistant subjects.
Collapse
Affiliation(s)
- Meher Bolisetti Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dorababu Patchva
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Jubilee Hills, Hyderabad, 500033, India
| | - Nagaraj Velugonda
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | - Sadasivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | | |
Collapse
|
12
|
Ezelarab HAA, Ali TFS, Abbas SH, Hassan HA, Beshr EAM. Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. BMC Chem 2023; 17:73. [PMID: 37438819 DOI: 10.1186/s13065-023-00981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutation mechanisms are among the most common genetic abnormalities detected in about 30% of acute myeloid leukemia (AML) patients. These mutations are accompanied by poor clinical response, although all these progressions in identifying and interpreting biological AML bio-targets. Several small structured FLT3 inhibitors have been ameliorated to struggle against AML. Despite all these developments regarding these inhibitors, the Overall survival rate is about five years or more in less than one-third of diagnosed AML patients. Midostaurin was the first FDA-approved FLT3 inhibitor in 2017 in the United States and Europe for AML remedy. Next, Gilteritinib was an FDA-approved FLT3 inhibitor in 2018 and in the next year, Quizartinib was approved an as FLT3 inhibitor in Japan. Interestingly, indole-based motifs had risen as advantaged scaffolds with unusual multiple kinase inhibitory activity. This review summarises indole-based FLT3 inhibitors and related scaffolds, including FDA-approved drugs, clinical candidates, and other bioactive compounds. Furthermore, their chemotypes, mechanism of action, and interaction mode over both wild and mutated FLT3 target proteins had been judgmentally discussed. Therefore, this review could offer inspiring future perspectives into the finding of new FLT3-related AML therapies.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
13
|
Chen EC, Gandler H, Tošić I, Fell GG, Fiore A, Pozdnyakova O, DeAngelo DJ, Galinsky I, Luskin MR, Wadleigh MS, Winer ES, Leonard R, O’Day K, de Jonge A, Neuberg D, Look AT, Stone RM, Frank DA, Garcia JS. Targeting MET and FGFR in Relapsed or Refractory Acute Myeloid Leukemia: Preclinical and Clinical Findings, and Signal Transduction Correlates. Clin Cancer Res 2023; 29:878-887. [PMID: 36534523 PMCID: PMC9992000 DOI: 10.1158/1078-0432.ccr-22-2540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) have poor outcomes and require new therapies. In AML, autocrine production of hepatocyte growth factor (HGF) drives MET signaling that promotes myeloblast growth and survival, making MET an attractive therapeutic target. MET inhibition exhibits activity in AML preclinical studies, but HGF upregulation by the FGFR pathway is a common mechanism of resistance. PATIENTS AND METHODS We performed preclinical studies followed by a Phase I trial to investigate the safety and biological activity of the MET inhibitor merestinib in combination with the FGFR inhibitor LY2874455 for patients with R/R AML. Study Cohort 1 underwent a safety lead-in to determine a tolerable dose of single-agent merestinib. In Cohort 2, dose-escalation of merestinib and LY2874455 was performed following a 3+3 design. Correlative studies were conducted. RESULTS The primary dose-limiting toxicity (DLT) observed for merestinib alone or with LY2874455 was reversible grade 3 transaminase elevation, occurring in 2 of 16 patients. Eight patients had stable disease and one achieved complete remission (CR) without measurable residual disease. Although the MTD of combination therapy could not be determined due to drug supply discontinuation, single-agent merestinib administered at 80 mg daily was safe and biologically active. Correlative studies showed therapeutic plasma levels of merestinib, on-target attenuation of MET signaling in leukemic blood, and increased HGF expression in bone marrow aspirate samples of refractory disease. CONCLUSIONS We provide prospective, preliminary evidence that MET and FGFR are biologically active and safely targetable pathways in AML.
Collapse
Affiliation(s)
- Evan C. Chen
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Helen Gandler
- College of Medicine, University of Vermont, Burlington, VT, USA
| | - Isidora Tošić
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoffrey G. Fell
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marlise R. Luskin
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha S. Wadleigh
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eric S. Winer
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebecca Leonard
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard M. Stone
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A. Frank
- Division of Hematology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
14
|
Potts KS, Cameron RC, Metidji A, Ghazale N, Wallace L, Leal-Cervantes AI, Palumbo R, Barajas JM, Gupta V, Aluri S, Pradhan K, Myers JA, McKinstry M, Bai X, Choudhary GS, Shastri A, Verma A, Obeng EA, Bowman TV. Splicing factor deficits render hematopoietic stem and progenitor cells sensitive to STAT3 inhibition. Cell Rep 2022; 41:111825. [PMID: 36516770 PMCID: PMC9994853 DOI: 10.1016/j.celrep.2022.111825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/01/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rosannah C Cameron
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amina Metidji
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Noura Ghazale
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - LaShanale Wallace
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Ana I Leal-Cervantes
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Reid Palumbo
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Juan Martin Barajas
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Srinivas Aluri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jacquelyn A Myers
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Mia McKinstry
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoying Bai
- Department of Obstetrics and Gynecology, University of Texas, Dallas, TX, USA
| | - Gaurav S Choudhary
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Aditi Shastri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA.
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Li D, Jiao Y, Gao W, Hu S, Li D, Zhao W, Chen P, Jin L, Zhao Y, Ma Z, Wu X, Yan Y, Sun W, Du X, Dong G. Comprehensive analysis of the prognostic and immunotherapeutic implications of STAT family members in human colorectal cancer. Front Genet 2022; 13:951252. [PMID: 36061181 PMCID: PMC9437353 DOI: 10.3389/fgene.2022.951252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the third most prevalent cancer worldwide and the second leading cause of cancer mortality. Signal transducer and activator of transcription (STAT) proteins are a group of transcription factors implicated in cell signal transduction and gene transcription in several cancer types. However, the level of expression, genetic alterations, and biological function of different STATs, as well as their prognostic and immunotherapeutic value in CRC remain unclear.Methods: The mRNA and protein expression levels, genetic alterations, prognostic value, gene–gene and protein–protein interaction networks, and biological function of STATs in CRC were studied using the GEPIA, HPA, cBioPortal, PrognoScan, Kaplan–Meier plotter, GeneMANIA, STRING, and Metascape databases. The expression of STATs in CRC was confirmed using immunohistochemistry (IHC). Finally, the relationship between STAT expression and immune infiltration as well as immunotherapy-associated indicators was also investigated.Results: The expression levels of STAT2/5A/5B are downregulated in CRC, and the STAT1/3/4/5B expressions were significantly associated with the tumor stage of patients with CRC. The abnormal expression of STAT2/4/5B in patients with CRC is related to the prognosis of patients with CRC. The STATs and their neighboring proteins are primarily associated with lymphocyte activation, cytokine-mediated signaling pathways, positive regulation of immune response, regulation of cytokine production, and growth hormone receptor signaling pathways in cancer. The expression of STATs was significantly associated with immune infiltration and immunotherapy response-associated indicators.Conclusion: This study may help further understand the molecular mechanism of CRC and provide new prognostic biomarkers and immunotherapy targets in patients with CRC.
Collapse
Affiliation(s)
- Dingchang Li
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yanan Jiao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shidong Hu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dingling Li
- Medical College of Qinghai University, Xining, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lujia Jin
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofu Ma
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiansheng Wu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Yan
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wen Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaohui Du, ; Guanglong Dong,
| | - Guanglong Dong
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaohui Du, ; Guanglong Dong,
| |
Collapse
|
16
|
Bochicchio MT, Di Battista V, Poggio P, Carrà G, Morotti A, Brancaccio M, Lucchesi A. Understanding Aberrant Signaling to Elude Therapy Escape Mechanisms in Myeloproliferative Neoplasms. Cancers (Basel) 2022; 14:cancers14040972. [PMID: 35205715 PMCID: PMC8870427 DOI: 10.3390/cancers14040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Aberrant signaling in myeloproliferative neoplasms may arise from alterations in genes coding for signal transduction proteins or epigenetic regulators. Both mutated and normal cells cooperate, altering fragile balances in bone marrow niches and fueling persistent inflammation through paracrine or systemic signals. Despite the hopes placed in targeted therapies, myeloid proliferative neoplasms remain incurable diseases in patients not eligible for stem cell transplantation. Due to the emergence of drug resistance, patient management is often very difficult in the long term. Unexpected connections among signal transduction pathways highlighted in neoplastic cells suggest new strategies to overcome neoplastic cell adaptation.
Collapse
Affiliation(s)
- Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Valeria Di Battista
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| |
Collapse
|
17
|
Chen Y, Bai G, Li Y, Ning Y, Cao S, Zhou J, Ding J, Zhang H, Xie H, Duan W. Discovery and structure - activity relationship exploration of pyrazolo[1,5-a]pyrimidine derivatives as potent FLT3-ITD inhibitors. Bioorg Med Chem 2021; 48:116422. [PMID: 34583130 DOI: 10.1016/j.bmc.2021.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Internal tandem duplications of FLT3 (FLT3-ITD) occur in approximately 25% of all acute myeloid leukemia (AML) cases and confer a poor prognosis. Optimization of the screening hit 1 from our in-house compound library led to the discovery of a series of pyrazolo[1,5-a]pyrimidine derivatives as potent and selective FLT3-ITD inhibitors. Compounds 17 and 19 displayed potent FLT3-ITD activities both with IC50 values of 0.4 nM and excellent antiproliferative activities against AML cell lines. Especially, compounds 17 and 19 inhibited the quizartinib resistance- conferring mutations, FLT3D835Y, both with IC50 values of 0.3 nM. Moreover, western blot analysis indicated that compounds 17 and 19 potently inhibited the phosphorylation of FLT3 and attenuated downstream signaling in AML cells. These results indicated that pyrazolo[1,5-a]pyrimidine derivatives could be promising FLT3-ITD inhibitors for the treatment AML.
Collapse
Affiliation(s)
- Yun Chen
- Division of Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Gang Bai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Yan Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Yi Ning
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Sufen Cao
- Division of Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, PR China.
| | - Wenhu Duan
- Division of Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| |
Collapse
|
18
|
Hosseini A, Hamblin MR, Mirzaei H, Mirzaei HR. Role of the bone marrow microenvironment in drug resistance of hematological malignances. Curr Med Chem 2021; 29:2290-2305. [PMID: 34514979 DOI: 10.2174/0929867328666210910124319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
The unique features of the tumor microenvironment (TME) govern the biological properties of many cancers, including hematological malignancies. TME factors can trigger invasion, and protect against drug cytotoxicity by inhibiting apoptosis and activating specific signaling pathways (e.g. NF-ΚB). TME remodeling is facilitated due to the high self-renewal ability of the bone marrow. Progressing tumor cells can alter some extracellular matrix (ECM) components which act as a barrier to drug penetration in the TME. The initial progression of the cell cycle is controlled by the MAPK pathway (Raf/MEK/ERK) and Hippo pathway, while the final phase is regulated by the PI3K/Akt /mTOR and WNT pathways. In this review we summarize the main signaling pathways involved in drug resistance (DR) and some mechanisms by which DR can occur in the bone marrow. The relationship between autophagy, endoplasmic reticulum stress, and cellular signaling pathways in DR and apoptosis are covered in relation to the TME.
Collapse
Affiliation(s)
- Alireza Hosseini
- Laboratory Hematology and Blood Banking, Tehran University of Medical Sciences, Tehran. Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028. South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan. Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
19
|
Geletu M, Adan H, Niit M, Arulanandam R, Carefoot E, Hoskin V, Sina D, Elliott B, Gunning P, Raptis L. Modulation of Akt vs Stat3 activity by the focal adhesion kinase in non-neoplastic mouse fibroblasts. Exp Cell Res 2021; 411:112731. [PMID: 34270980 DOI: 10.1016/j.yexcr.2021.112731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins, and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Hanad Adan
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Maximillian Niit
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Esther Carefoot
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Victoria Hoskin
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Diana Sina
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Bruce Elliott
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Patrick Gunning
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
20
|
Diallo M, Herrera F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J 2021; 289:6235-6255. [PMID: 34235865 DOI: 10.1111/febs.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.
Collapse
Affiliation(s)
- Mickael Diallo
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Federico Herrera
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
21
|
Geletu M, Adan H, Niit M, Arulanandam R, Carefoot E, Hoskin V, Sina D, Elliott B, Gunning P, Raptis L. Modulation of Akt vs Stat3 activity by the focal adhesion kinase in non-neoplastic mouse fibroblasts. Exp Cell Res 2021; 404:112601. [PMID: 33957118 DOI: 10.1016/j.yexcr.2021.112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada.
| | - Hanad Adan
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Maximillian Niit
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Esther Carefoot
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Victoria Hoskin
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Diana Sina
- Department of Chemical and Physical Sciences (CPS), University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - Bruce Elliott
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Patrick Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
22
|
Zhong Y, Qiu RZ, Sun SL, Zhao C, Fan TY, Chen M, Li NG, Shi ZH. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J Med Chem 2020; 63:12403-12428. [PMID: 32659083 DOI: 10.1021/acs.jmedchem.0c00696] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is an important member of the class III receptor tyrosine kinase (RTK) family, which is involved in the proliferation of hematopoietic cells and lymphocytes. In recent years, increasing evidence have demonstrated that the activation and mutation of FLT3 is closely implicated in the occurrence and development of acute myeloid leukemia (AML). The exploration of small-molecule inhibitors targeting FLT3 has aroused wide interest of pharmaceutical chemists and is expected to bring new hope for AML therapy. In this review, we specifically highlighted FLT3 mediated JAK/STAT, RAS/MAPK, and PI3K/AKT/mTOR signaling. The structural properties and biological activities of representative FLT3 inhibitors reported from 2014 to the present were also summarized. In addition, the major challenges in the current advance of novel FLT3 inhibitors were further analyzed, with the aim to guide future drug discovery.
Collapse
Affiliation(s)
- Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Run-Ze Qiu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
23
|
Zhang X, Lu T, Ma Y, Li R, Pang Y, Mao H, Liu P. Novel Nanocomplexes Targeting STAT3 Demonstrate Promising Anti-Ovarian Cancer Effects in vivo. Onco Targets Ther 2020; 13:5069-5082. [PMID: 32606729 PMCID: PMC7292488 DOI: 10.2147/ott.s247398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cationic solid lipid nanoparticles (SLN) have attracted intensive interest as an effective gene delivery system for its high biocompatibility, stability and low cytotoxicity. In our previous study, we successfully prepared SLN-STAT3 decoy ODN complexes and made a primary study on its antitumor behavior in ovarian cancer cells in vitro. However, there is little information available so far about the effect of SLN-STAT3 decoy ODN complexes on ovarian cancer in vivo, either little information about the pharmacological toxicology in vivo. Material and Methods We applied nanotechnology to improve the gene delivery system and synthesize SLN-STAT3 decoy ODN complexes. Xenograft mouse models were established to assess the antitumor effects of SLN-STAT3 decoy ODN on the tumor growth of ovarian cancer in vivo. To analyze the mechanisms of SLN-STAT3 decoy ODN, we investigated apoptosis, autophagy, epithelial–mesenchymal transition (EMT) in tumor tissues of nude mice and investigated the effects and toxicology of SLN-STAT3 decoy ODN complexes on the vital organs of nude mice. Results The results showed that SLN-STAT3 decoy ODN complexes markedly inhibited tumor growth in vivo. SLN-STAT3 decoy ODN complexes could induce cell apoptosis through downregulating Bcl-2, survivin and pro caspase 3, but upregulating Bax and cleaved caspase 3. These complexes could also regulate autophagy through upregulating LC3A-II, LC3B-II and beclin-1, but downregulating p-Akt and p-mTOR. Moreover, these complexes could inhibit cancer cell invasion through reversing EMT. Besides, SLN-STAT3 decoy ODN complexes showed no obvious toxicity on vital organs and hematological parameters of nude mice. Conclusion The molecular mechanisms that SLN-STAT3 decoy ODN complexes inhibit tumor growth involved activating the apoptotic cascade, regulating autophagy, and reversing EMT program; and these complexes showed no obvious toxicity on nude mice. Our study indicated that the nanocomplexes SLN-STAT3 decoy ODN might be a promising therapeutic approach for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Tao Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
24
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
25
|
Lia G, Di Vito C, Cerrano M, Brunello L, Calcaterra F, Tapparo M, Giaccone L, Mavilio D, Bruno B. Extracellular Vesicles After Allogeneic Hematopoietic Cell Transplantation: Emerging Role in Post-Transplant Complications. Front Immunol 2020; 11:422. [PMID: 32265915 PMCID: PMC7100658 DOI: 10.3389/fimmu.2020.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the cellular crosstalk by transferring bioactive molecules through biological barriers from a cell to another, thus influencing recipient cell functions and phenotype. Therefore, EVs are increasingly being explored as biomarkers of disease progression or response to therapy and as potential therapeutic agents in different contexts including in hematological malignancies. Recently, an EV role has emerged in allogeneic hematopoietic cell transplantation (allo-HCT) as well. Allogeneic hematopoietic cell transplantation often represents the only curative option in several hematological disorders, but it is associated with potentially life-threatening complications that can have a significant impact on clinical outcomes. The most common complications have been well-established and include graft-versus-host disease and infections. Furthermore, relapse remains an important cause of treatment failure. The aim of this review is to summarize the current knowledge, the potential applications, and clinical relevance of EVs in allo-HCT. Herein, we will mainly focus on the immune-modulating properties of EVs, in particular those derived from mesenchymal stromal cells, as potential therapeutic strategy to improve allo-HCT outcome. Moreover, we will briefly describe the main findings on EVs as biomarkers to monitor graft-versus-host disease onset and tumor relapse.
Collapse
Affiliation(s)
- Giuseppe Lia
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marco Cerrano
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lucia Brunello
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marta Tapparo
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
27
|
Kieslinger M, Swoboda A, Kramer N, Pratscher B, Wolfesberger B, Burgener IA. Companion Animals as Models for Inhibition of STAT3 and STAT5. Cancers (Basel) 2019; 11:cancers11122035. [PMID: 31861073 PMCID: PMC6966487 DOI: 10.3390/cancers11122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
The use of transgenic mouse models has revolutionized the study of many human diseases. However, murine models are limited in their representation of spontaneously arising tumors and often lack key clinical signs and pathological changes. Thus, a closer representation of complex human diseases is of high therapeutic relevance. Given the high failure rate of drugs at the clinical trial phase (i.e., around 90%), there is a critical need for additional clinically relevant animal models. Companion animals like cats and dogs display chronic inflammatory or neoplastic diseases that closely resemble the human counterpart. Cat and dog patients can also be treated with clinically approved inhibitors or, if ethics and drug safety studies allow, pilot studies can be conducted using, e.g., inhibitors of the evolutionary conserved JAK-STAT pathway. The incidence by which different types of cancers occur in companion animals as well as mechanisms of disease are unique between humans and companion animals, where one can learn from each other. Taking advantage of this situation, existing inhibitors of known oncogenic STAT3/5 or JAK kinase signaling pathways can be studied in the context of rare human diseases, benefitting both, the development of drugs for human use and their application in veterinary medicine.
Collapse
|
28
|
Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, Chen J, Yang CY, Liu Z, Wang M, Liu L, Jiang H, Wen B, Kumar P, Meagher JL, Sun D, Stuckey JA, Wang S. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell 2019; 36:498-511.e17. [PMID: 31715132 PMCID: PMC6880868 DOI: 10.1016/j.ccell.2019.10.002] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/14/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Here we report the discovery of SD-36, a small-molecule degrader of STAT3. SD-36 potently induces the degradation of STAT3 protein in vitro and in vivo and demonstrates high selectivity over other STAT members. Induced degradation of STAT3 results in a strong suppression of its transcription network in leukemia and lymphoma cells. SD-36 inhibits the growth of a subset of acute myeloid leukemia and anaplastic large-cell lymphoma cell lines by inducing cell-cycle arrest and/or apoptosis. SD-36 achieves complete and long-lasting tumor regression in multiple xenograft mouse models at well-tolerated dose schedules. Degradation of STAT3 protein, therefore, is a promising cancer therapeutic strategy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mice
- Proteolysis/drug effects
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Longchuan Bai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haibin Zhou
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renqi Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujun Zhao
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Donna McEachern
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianyong Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chao-Yie Yang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhaomin Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liu Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Jiang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Praveen Kumar
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeanne A Stuckey
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Kiran Naqvi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Zhou F, Ge Z, Chen B. Quizartinib (AC220): a promising option for acute myeloid leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1117-1125. [PMID: 31114157 PMCID: PMC6497874 DOI: 10.2147/dddt.s198950] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
Abstract
Quizartinib is an effective therapy for patients with FLT3-ITD acute myeloid leukemia (AML) by continuing to inhibit the activity of FLT3 gene, leading to apoptosis of tumor cells. Multiple clinical trials have proved that it is effective in relapsed or refractory AML with an FLT3-ITD mutation. In this review, we focus on the characteristics of FLT3/ITD mutations, the mechanism and pharmacokinetics of quizartinib, and the mechanisms of resistance to quizartinib. We also summarize clinical experiences and adverse effects with quizartinib and recommend crucial approaches of quizartinib in the therapy of patients with newly diagnosed AML and patients with relapsed/refractory AML, particularly those with FLT3-ITD mutation. Quizartinib presents its advantages as a very promising agent in the treatment of AML, especially in patients with FLT3-ITD mutations. FLT3/ITD mutation can lead to constitutive autophosphorylation of FLT3 and activation of its downstream effectors including RAS/RAF/MEK, MAPK/ERK, PI3K/AKT/mTOR and JAK/STAT5 signal pathways, while Quizartinib can inhibit these downstream pathways through specific FLT3 inhibition. Quizartinib has received US Food and Drug Administration breakthrough therapy designation in patients with relapsed/refractory FLT3-ITD AML based on clinical trials. A larger sample of clinical trials are needed to verify its safety and efficacy, and the efficacy of quizartinib combined with chemotherapy or allogeneic hematopoietic cell transplantation should also be estimated in clinical trials. Meanwhile, for the side effects of quizartinib, further studies are needed to find a way to reduce its toxicity.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zheng Ge
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
31
|
Cioccio J, Claxton D. Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases. Expert Opin Investig Drugs 2019; 28:337-349. [DOI: 10.1080/13543784.2019.1584610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joseph Cioccio
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David Claxton
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
32
|
Wong EL, Nawrotzky E, Arkona C, Kim BG, Beligny S, Wang X, Wagner S, Lisurek M, Carstanjen D, Rademann J. The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation. Nat Commun 2019; 10:66. [PMID: 30622248 PMCID: PMC6325109 DOI: 10.1038/s41467-018-07923-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Protein-templated fragment ligations have been established as a powerful method for the assembly and detection of optimized protein ligands. Initially developed for reversible ligations, the method has been expanded to irreversible reactions enabling the formation of super-additive fragment combinations. Here, protein-induced Mannich ligations are discovered as a biocatalytic reaction furnishing inhibitors of the transcription factor STAT5. STAT5 protein catalyzes multicomponent reactions of a phosphate mimetic, formaldehyde, and 1H-tetrazoles yielding protein ligands with greatly increased binding affinity and ligand efficiency. Reactions are induced under physiological conditions selectively by native STAT5 but not by other proteins. Formation of ligation products and (auto-)inhibition of the reaction are quantified and the mechanism is investigated. Inhibitors assembled by STAT5 block specifically the phosphorylation of this protein in a cellular model of acute myeloid leukemia (AML), DNA-binding of STAT5 dimers, expression of downstream targets of the transcription factor, and the proliferation of cancer cells in mice. The oncogene STAT5 is involved in cancer cell proliferation. Here, the authors use STAT5 protein to assemble its own small molecule inhibitors via Mannich ligation (three-component-reactions) and show that the resultant ligands can inhibit the proliferation of cancer cells in a mouse model.
Collapse
Affiliation(s)
- Ee Lin Wong
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Eric Nawrotzky
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Arkona
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Boo Geun Kim
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Samuel Beligny
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Xinning Wang
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Stefan Wagner
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Michael Lisurek
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dirk Carstanjen
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany. .,Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
33
|
Mazumder A, Lee JY, Talhi O, Cerella C, Chateauvieux S, Gaigneaux A, Hong CR, Kang HJ, Lee Y, Kim KW, Kim DW, Shin HY, Dicato M, Bachari K, Silva AM, Orlikova-Boyer B, Diederich M. Hydroxycoumarin OT-55 kills CML cells alone or in synergy with imatinib or Synribo: Involvement of ER stress and DAMP release. Cancer Lett 2018; 438:197-218. [DOI: 10.1016/j.canlet.2018.07.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/08/2023]
|
34
|
Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR. Re-Expression of Bone Marrow Proteoglycan-2 by 5-Azacytidine is associated with STAT3 Inactivation and Sensitivity
Response to Imatinib in Resistant CML Cells. Asian Pac J Cancer Prev 2018; 19:1585-1590. [PMID: 29936783 PMCID: PMC6103584 DOI: 10.22034/apjcp.2018.19.6.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways. Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively. Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.
Collapse
Affiliation(s)
- Hamid Ali Nagi Al-Jamal
- Diagnostic and Biomedicine, Faculty of Health Science, Universiti Sultan Zainal Abidin, Gong Badak Compus, Kuala Nerus, Terengganu, Malaysia.
| | | | | | | | | |
Collapse
|
35
|
Abstract
The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Rachel A. O’Keefe
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
36
|
Targeting PFKFB3 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitor. Oncogene 2018; 37:2837-2849. [DOI: 10.1038/s41388-018-0157-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 01/20/2023]
|
37
|
Tolcher A, Flaherty K, Shapiro GI, Berlin J, Witzig T, Habermann T, Bullock A, Rock E, Elekes A, Lin C, Kostic D, Ohi N, Rasco D, Papadopoulos KP, Patnaik A, Smith L, Cote GM. A First-in-Human Phase I Study of OPB-111077, a Small-Molecule STAT3 and Oxidative Phosphorylation Inhibitor, in Patients with Advanced Cancers. Oncologist 2018; 23:658-e72. [PMID: 29511132 PMCID: PMC6067949 DOI: 10.1634/theoncologist.2017-0325] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022] Open
Abstract
Lessons Learned. OPB‐111077 is a novel inhibitor of STAT3 and mitochondrial oxidative phosphorylation that exhibited promising anticancer activity in preclinical models. In this first‐in‐human phase I study of OPB‐111077 in unselected advanced cancers, treatment‐emergent adverse events, most frequently nausea, fatigue, and vomiting, were generally mild to moderate in intensity and could be medically managed. Overall, only modest clinical activity was observed after OPB‐111077 given as monotherapy. Notable antitumor activity was seen in a subject with diffuse large B‐cell lymphoma.
Background. OPB‐111077 is a novel inhibitor of STAT3 and mitochondrial oxidative phosphorylation with promising anticancer activity in preclinical models. Methods. Open‐label, phase I trial of OPB‐111077 in advanced cancers with no available therapy of documented benefit. Initial dose escalation in unselected subjects was followed by dose expansion. Patients received oral OPB‐111077 daily in 28‐day cycles until loss of clinical benefit. Results. Eighteen subjects enrolled in dose escalation, and 127 in dose expansion. Dose‐limiting toxicities were observed at 300 mg and 400 mg QD; maximum tolerated dose was defined as 250 mg QD. Frequently reported treatment‐emergent adverse events (TEAEs) included nausea, fatigue, and vomiting. TEAEs were generally mild to moderate and could be medically managed. OPB‐111077 reached micromolar drug concentrations, had an elimination half‐life of approximately 1 day, and reached steady‐state by day 8. A durable partial response was observed in one subject with diffuse large B‐cell lymphoma. Seven subjects with diverse tumor types had stable disease or minor responses for at least eight treatment cycles (224 days). Conclusion. OPB‐111077 is generally well tolerated, and its pharmacokinetic profile is sufficient for further clinical development. Notable clinical activity was observed in a subject with diffuse large B‐cell lymphoma. Overall, modest efficacy was observed against unselected tumors.
Collapse
Affiliation(s)
- Anthony Tolcher
- South Texas Accelerated Research Therapeutics, San Antonio, Texas, USA
| | - Keith Flaherty
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Jordan Berlin
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | | | | | - Andrea Bullock
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Edwin Rock
- Otsuka Pharmaceutical Development and Commercialization, Princeton, New Jersey, USA
| | - Agnes Elekes
- Otsuka Pharmaceutical Development and Commercialization, Princeton, New Jersey, USA
| | - Chester Lin
- Otsuka Pharmaceutical Development and Commercialization, Princeton, New Jersey, USA
| | - Dusan Kostic
- Otsuka Pharmaceutical Development and Commercialization, Princeton, New Jersey, USA
| | - Naoto Ohi
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan
| | - Drew Rasco
- South Texas Accelerated Research Therapeutics, San Antonio, Texas, USA
| | | | - Amita Patnaik
- South Texas Accelerated Research Therapeutics, San Antonio, Texas, USA
| | - Lon Smith
- South Texas Accelerated Research Therapeutics, San Antonio, Texas, USA
| | - Gregory M Cote
- Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
McGill CM, Brown TJ, Cheng YY, Fisher LN, Shanmugavelandy SS, Gustafson SJ, Dunlap KL, Lila MA, Kester M, Toran PT, Claxton DF, Barth BM. Therapeutic Effect of Blueberry Extracts for Acute Myeloid Leukemia. INTERNATIONAL JOURNAL OF BIOPHARMACEUTICAL SCIENCES 2018; 1:102. [PMID: 29607443 PMCID: PMC5875929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with high incidence in the aging population. In addition, AML is one of the more common pediatric malignancies. Unfortunately, both of these patient groups are quite sensitive to chemotherapy toxicities. Investigation of blueberries specifically as an anti-AML agent has been limited, despite being a prominent natural product with no reported toxicity. In this study, blueberry extracts are reported for the first time to exert a dietary therapeutic effect in animal models of AML. Furthermore, in vitro studies revealed that blueberry extracts exerted anti-AML efficacy against myeloid leukemia cell lines as well as against primary AML, and specifically provoked Erk and Akt regulation within the leukemia stem cell subpopulation. This study provides evidence that blueberries may be unique sources for anti-AML biopharmaceutical compound discovery, further warranting fractionation of this natural product. More so, blueberries themselves may provide an intriguing dietary option to enhance the anti-AML efficacy of traditional therapy for subsets of patients that otherwise may not tolerate rigorous combinations of therapeutics.
Collapse
Affiliation(s)
- Colin M. McGill
- Department of Chemistry, University of Alaska-Anchorage, Anchorage, AK 99508 USA
| | - Timothy J. Brown
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Yuan-Yin Cheng
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lindsey N. Fisher
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | | | - Sally J. Gustafson
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775 USA
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Kriya L. Dunlap
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775 USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Mark Kester
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Paul T. Toran
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - David F. Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Brian M. Barth
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
39
|
Abram CL, Lowell CA. Shp1 function in myeloid cells. J Leukoc Biol 2017; 102:657-675. [PMID: 28606940 DOI: 10.1189/jlb.2mr0317-105r] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
The motheaten mouse was first described in 1975 as a model of systemic inflammation and autoimmunity, as a result of immune system dysregulation. The phenotype was later ascribed to mutations in the cytoplasmic tyrosine phosphatase Shp1. This phosphatase is expressed widely throughout the hematopoietic system and has been shown to impact a multitude of cell signaling pathways. The determination of which cell types contribute to the different aspects of the phenotype caused by global Shp1 loss or mutation and which pathways within these cell types are regulated by Shp1 is important to further our understanding of immune system regulation. In this review, we focus on the role of Shp1 in myeloid cells and how its dysregulation affects immune function, which can impact human disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| |
Collapse
|
40
|
Xiong Q, Wu S, Wang J, Zeng X, Chen J, Wei M, Guan H, Fan C, Chen L, Guo D, Sun G. Hepatitis B virus promotes cancer cell migration by downregulating miR-340-5p expression to induce STAT3 overexpression. Cell Biosci 2017; 7:16. [PMID: 28413603 PMCID: PMC5389182 DOI: 10.1186/s13578-017-0144-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 12/26/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and infection with hepatitis B virus (HBV) is a leading cause of HCC. Previous studies have demonstrated that expression of the tumor inhibitor miR-340 is significantly downregulated in HCC tissues compared with normal liver tissues. However, the precise biological role of miR-340-5p in HBV–HCC and its molecular mechanism of action remain unknown. Results Expression of miR-340-5p was downregulated in HBV-associated HCC liver tissue and HBV-infected cells, facilitating migration of liver cancer cells. Signal transducer and activator of transcription (STAT)3 was found to be a direct functional target of miR-340-5p. The regulation of STAT3 expression by miR-340-5p was assessed using qRT-PCR and western blotting, and the effects of exogenous miR-340-5p and STAT3 on the migration of HBV-infected cells were evaluated in vitro using Transwell® and wound-healing assays. The expression of E-cadherin and vimentin, associated with epithelial–mesenchymal transition, was also assessed using Western blotting after transfection of miR-340-5p mimics and/or STAT3 expression vectors. Overexpression of STAT3 resulted in rescue of HBV effects, decreased E-cadherin expression, increased vimentin expression, and ultimately, enhanced cell migration. Re-introduction of the STAT3 CDS led to marked reversal of the inhibition of cell migration in HBV-infected cells mediated by miR-340-5p. Conclusions Hepatitis B virus promotes the migration of liver cancer cells by downregulating miR-340-5p expression to induce STAT3 overexpression. Our results show that STAT3 plays a key role in regulating cell migration in HBV–HCC involving miR-340-5p.
Collapse
Affiliation(s)
- Qiushuang Xiong
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Shaoshuai Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Jingwen Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Xianhuang Zeng
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Jianwen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Mingcong Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Haotong Guan
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China
| |
Collapse
|
41
|
Wang Z, Medrzycki M, Bunting ST, Bunting KD. Stat5-deficient hematopoiesis is permissive for Myc-induced B-cell leukemogenesis. Oncotarget 2016; 6:28961-72. [PMID: 26338970 PMCID: PMC4745704 DOI: 10.18632/oncotarget.5009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022] Open
Abstract
Despite being an attractive molecular target for both lymphoid and myeloid leukemias characterized by activated tyrosine kinases, the molecular and physiological consequences of reduced signal transducer and activator of transcription-5 (Stat5) during leukemogenesis are not well known. Stat5 is a critical regulator of mouse hematopoietic stem cell (HSC) self-renewal and is essential for normal lymphocyte development. We report that pan-hematopoietic deletion in viable adult Vav1-Cre conditional knockout mice as well as Stat5abnull/null fetal liver transplant chimeras generated HSCs with reduced expression of quiescence regulating genes (Tie2, Mpl, Slamf1, Spi1, Cited2) and increased expression of B-cell development genes (Satb1, Dntt, Btla, Flk2). Using a classical murine B-cell acute lymphoblastic leukemia (B-ALL) model, we demonstrate that these HSCs were also poised to produce a burst of B-cell precursors upon expression of Bcl-2 combined with oncogenic Myc. This strong selective advantage for leukemic transformation in the background of Stat5 deficient hematopoiesis was permissive for faster initiation of Myc-induced transformation to B-ALL. However, once established, the B-ALL progression in secondary transplant recipients was Stat5-independent. Overall, these studies suggest that Stat5 can play multiple important roles that not only preserve the HSC compartment but can limit accumulation of potential pre-leukemic lymphoid populations.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Magdalena Medrzycki
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta GA, USA
| | - Kevin D Bunting
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| |
Collapse
|
42
|
Ebrahim HY, El Sayed KA. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds. Mar Drugs 2016; 14:md14030057. [PMID: 26978377 PMCID: PMC4820311 DOI: 10.3390/md14030057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/27/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly’s Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds.
Collapse
Affiliation(s)
- Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
43
|
Al-Jamal HAN, Mat Jusoh SA, Hassan R, Johan MF. Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia. BMC Cancer 2015; 15:869. [PMID: 26547689 PMCID: PMC4637135 DOI: 10.1186/s12885-015-1695-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 10/07/2015] [Indexed: 01/10/2023] Open
Abstract
Background Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells. Methods Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs activity was examined by western blotting and the methylation profile of SHP-1 was studied using MS-PCR and pyrosequencing analysis. Repeated-measures ANOVA and Kruskal–Wallis tests were used for statistical analysis. Results The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis compared with other cells (p < 0.001). Expression of SHP-1 was 7-fold higher in MV4-11R-cep + 5-Aza cells compared to parental and resistant cells (p = 0.011). STAT3 was activated in resistant cells. Methylation of SHP-1 was significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0.002). Conclusions The restoration of SHP-1 expression induces sensitivity towards CEP-701 and could serve as a target in the treatment of AML. Our findings support the hypothesis that, the tumor-suppressor effect of SHP-1 is lost due to epigenetic silencing and its re-expression might play an important role in re-inducing sensitivity to TKIs. Thus, SHP-1 is a plausible candidate for a role in the development of CEP-701 resistance in FLT3-ITD+ AML patients.
Collapse
Affiliation(s)
- Hamid Ali Nagi Al-Jamal
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Siti Asmaa Mat Jusoh
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
44
|
Khanna P, Chua PJ, Bay BH, Baeg GH. The JAK/STAT signaling cascade in gastric carcinoma (Review). Int J Oncol 2015; 47:1617-26. [PMID: 26398764 DOI: 10.3892/ijo.2015.3160] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric carcinoma remains one of the most prevalent forms of cancer worldwide, despite the decline in incidence rates, increased awareness of the disease and advancement in treatment strategies. Helicobacter pylori infection, dietary factors, lifestyle influences and various genetic aberrations have been shown to contribute to the development and progression of gastric cancer. Recent studies on the genomic landscape of gastric adenocarcinoma have identified several key signaling molecules, including epidermal growth factor receptor family (ErbB) members, vascular endothelial growth factor receptor family (VEGFR) members and PI3K/Akt/mTOR pathway components, that have been implicated in the molecular pathogenesis of gastric cancers. However, clinical trials with compounds that target these molecules have failed to show a significant improvement in overall survival rates when supplemented with conventional therapies. Therefore, it is essential to identify effective prognostic and/or diagnostic biomarkers and develop molecular targeted therapies. The JAK/STAT cascade is a principal signal transduction pathway in cytokine and growth factor signaling, regulating various cellular processes such as cell proliferation, differentiation, migration and survival. Numerous in vivo and in vitro studies have shown that dysregulated JAK/STAT signaling is a driving force in the pathogenesis of various solid cancers as well as hematopoietic malignancies. Hence, a large number of preclinical and clinical studies of drugs targeting this pathway are currently underway. Notably, aberrant JAK/STAT signaling has also been implicated in gastric cancers. In this review, we focus on the ongoing research on the JAK/STAT cascade in gastric carcinoma and discuss the therapeutic potential of targeting JAK/STAT signaling for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| | - Pei Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| |
Collapse
|
45
|
Wang H, Su X, Yang M, Chen T, Hou J, Li N, Cao X. Reciprocal control of miR-197 and IL-6/STAT3 pathway reveals miR-197 as potential therapeutic target for hepatocellular carcinoma. Oncoimmunology 2015; 4:e1031440. [PMID: 26451302 DOI: 10.1080/2162402x.2015.1031440] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the key players in liver cancer. Increased levels of phosphorylated STAT3 (p-STAT3) have been detected in many cancers including hepatocellular carcinoma (HCC), and are usually associated with a more aggressive phenotype and poor prognosis. In addition to aberrant activation of STAT3, upregulation of total STAT3 was also detected in HCC, for which the underlying mechanisms and significance remain to be fully elucidated. Here we report that a reciprocal regulation exists between miR-197 and the IL-6/STAT3 inflammatory signaling pathway in HCC. We found that IL-6 stimulation increased total STAT3 expression at protein level but not mRNA level in HCC cells, suggesting the existence of post-transcriptional regulation of STAT3. Our study showed that IL-6/STAT3 pathway decreases expression of miR-197 in HCC, which amplifies IL-6/STAT3 pathway and contributes to HCC progression. miR-197 can significantly inhibit HCC growth both in vitro and in vivo. In addition, IL-6/STAT3-induced downregulation of miR-197 in HCC may be via affecting Drosha binding to primary miR-197 (pri-miR-197) and thus reducing mature miR-197 generation. Our study suggests that miR-197 may serve as a potential therapeutic target for interfering with the IL-6/STAT3 inflammatory pathway in HCC.
Collapse
Affiliation(s)
- Huamin Wang
- Institute of Immunology; Zhejiang University School of Medicine ; Hangzhou, China
| | - Xiaoping Su
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China
| | - Mingjin Yang
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China ; National Key Laboratory of Medical Molecular Biology & Department of Immunology; Chinese Academy of Medical Sciences; Institute of Basic Medical Sciences ; Beijing, China
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China
| | - Xuetao Cao
- Institute of Immunology; Zhejiang University School of Medicine ; Hangzhou, China ; National Key Laboratory of Medical Immunology & Institute of Immunology; Second Military Medical University ; Shanghai, China ; National Key Laboratory of Medical Molecular Biology & Department of Immunology; Chinese Academy of Medical Sciences; Institute of Basic Medical Sciences ; Beijing, China
| |
Collapse
|
46
|
Ren F, Geng Y, Minami T, Qiu Y, Feng Y, Liu C, Zhao J, Wang Y, Fan X, Wang Y, Li M, Li J, Chang Z. Nuclear termination of STAT3 signaling through SIPAR (STAT3-Interacting Protein As a Repressor)-dependent recruitment of T cell tyrosine phosphatase TC-PTP. FEBS Lett 2015; 589:1890-6. [PMID: 26026268 DOI: 10.1016/j.febslet.2015.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
STAT3 is associated with embryo development and survival as well as proliferation and metastasis of tumor cells. In a previous study, we demonstrated that STAT3-Interacting Protein As a Repressor (SIPAR) enhances the dephosphorylation of STAT3 and negatively regulates its activity. However, it remains unclear how SIPAR inhibits phosphorylation of STAT3. Here we demonstrate that SIPAR directly interacts with T cell protein tyrosine phosphatase TC45 and enhances its association with STAT3. This interaction triggers an accelerated dephosphorylation process for STAT3. Furthermore, SIPAR inhibits the transcriptional activity of STAT3 in wild-type MEF cells but not in TC45 null MEF cells. These results suggest that SIPAR terminates the activation of STAT3 through a dephosphorylation process that is dependent upon interaction with TC45 in the nucleus.
Collapse
Affiliation(s)
- Fangli Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongtao Geng
- Structure Biology, Memorial Sloan Kettering Cancer Centre, New York 10065, USA
| | - Takayuki Minami
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Qiu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yarui Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chunxiao Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuanzi Fan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangmeng Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengdi Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, China.
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc Natl Acad Sci U S A 2015; 112:3985-90. [PMID: 25767098 DOI: 10.1073/pnas.1503152112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several transcription factors, including p53, NF-κB, and STAT3, are modified by the same enzymes that also modify histones, with important functional consequences. We have identified a previously unrecognized dimethylation of K49 of STAT3 that is crucial for the expression of many IL-6-dependent genes, catalyzed by the histone-modifying enzyme enhancer of zeste homolog 2 (EZH2). Loss of EZH2 is protumorigenic in leukemias, but its overexpression is protumorigenic in solid cancers. Connecting EZH2 to a functionally important methylation of STAT3, which is constitutively activated in many tumors, may help reveal the basis of the opposing roles of EZH2 in liquid and solid tumors and also may identify novel therapeutic opportunities.
Collapse
|
48
|
Bruserud Ø, Nepstad I, Hauge M, Hatfield KJ, Reikvam H. STAT3 as a possible therapeutic target in human malignancies: lessons from acute myeloid leukemia. Expert Rev Hematol 2014; 8:29-41. [PMID: 25374305 DOI: 10.1586/17474086.2015.971005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
STAT3 is important for transcriptional regulation in human acute myeloid leukemia (AML). STAT3 has thousands of potential DNA binding sites but usually shows cell type specific binding preferences to a limited number of these. Furthermore, AML is a very heterogeneous disease, and studies of the prognostic impact of STAT3 in human AML have also given conflicting results. A more detailed characterization of STAT3 functions and the expression of various isoforms in human AML will therefore be required before it is possible to design clinical studies of STAT3 inhibitors in this disease, and it will be especially important to investigate whether the functions of STAT3 differ between patients. Several other malignancies also show extensive biological heterogeneity, and the present discussion and the suggested scientific approaches may thus be relevant for other cancer patients.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
49
|
McGill CM, Alba-Rodriguez EJ, Li S, Benson CJ, Ondrasik RM, Fisher LN, Claxton DF, Barth BM. Extracts of Devil's club (Oplopanax horridus) exert therapeutic efficacy in experimental models of acute myeloid leukemia. Phytother Res 2014; 28:1308-14. [PMID: 25340187 DOI: 10.1002/ptr.5129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia (AML) is a group of hematological malignancies defined by expanded clonal populations of immature progenitors (blasts) of myeloid phenotype in blood and bone marrow. Given a typical poor prognostic outlook, there is great need for novel agents with anti-AML activity. Devil’s club (Oplopanax horridus) is one of the most significant medicinal plants used among the indigenous people of Southeast Alaska and the coastal Pacific Northwest, with different linguistic groups utilizing various parts of the plant to treat many different conditions including cancer. Studies identifying medically relevant components in Devil’s club are limited. For this research study, samples were extracted in 70% ethanol before in vitro analysis, to assess effects on AML cell line viability as well as to study regulation of tyrosine phosphorylation and cysteine oxidation. The root extract displayed better in vitro anti-AML efficacy in addition to a noted anti-tyrosine kinase activity independent of an antioxidant effect. In vivo therapeutic studies using an immunocompetent murine model of AML further demonstrated that Devil’s club root extract improved the murine survival while decreasing immunosuppressive regulatory T cells and improving CD8+ T-cell functionality. This study defines for the first time an anti-AML efficacy for extracts of Devil’s club.
Collapse
|
50
|
de Jong PR, Mo JH, Harris AR, Lee J, Raz E. STAT3: An Anti-Invasive Factor in Colorectal Cancer? Cancers (Basel) 2014; 6:1394-407. [PMID: 24995503 PMCID: PMC4190547 DOI: 10.3390/cancers6031394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 02/07/2023] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT) and thus metastasis in a mouse model of colorectal cancer (CRC), while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC) suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1). Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.
Collapse
Affiliation(s)
- Petrus Rudolf de Jong
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093, USA.
| | - Ji-Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, 16-5 Anseo-dong, Cheonan, Chungcheongnam-do 330-715, Korea.
| | - Alexandra R Harris
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093, USA.
| | - Jongdae Lee
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093, USA.
| | - Eyal Raz
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093, USA.
| |
Collapse
|