1
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Huan T, Guan B, Li H, Tu X, Zhang C, Tang B. Principles and current clinical landscape of NK cell engaging bispecific antibody against cancer. Hum Vaccin Immunother 2023; 19:2256904. [PMID: 37772505 PMCID: PMC10543353 DOI: 10.1080/21645515.2023.2256904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Monoclonal antibody-based targeted therapies have greatly improved treatment options for patients by binding to the innate immune system. However, the long-term efficacy of such antibodies is limited by mechanisms of drug resistance. Over the last 50 years, with advances in protein engineering technology, more and more bispecific antibody (bsAb) platforms have been engineered to meet diverse clinical needs. Bispecific NK cell engagers (BiKEs) or tri-specific NK cell engagers (TriKEs) allow for direct targeting of immune cells to tumors, and therefore resistance and serious adverse effects are greatly reduced. Many preclinical and clinical trials are currently underway, depicting the promise of antibody-based natural killer cell engager therapeutics. In this review, we compile worldwide efforts to explore the involvement of NK cells in bispecific antibodies. With a particular emphasis on lessons learned, we focus on preclinical and clinical studies in malignancies and discuss the reasons for the limited success of NK-cell engagers against solid tumors, offering plausible new ideas for curing some advanced cancers shortly.
Collapse
Affiliation(s)
- Tian Huan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bugao Guan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Hongbo Li
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Xiu Tu
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Chi Zhang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- Department of Central Laboratory, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
3
|
Rybchenko VS, Aliev TK, Panina AA, Kirpichnikov MP, Dolgikh DA. Targeted Cytokine Delivery for Cancer Treatment: Engineering and Biological Effects. Pharmaceutics 2023; 15:pharmaceutics15020336. [PMID: 36839658 PMCID: PMC9960319 DOI: 10.3390/pharmaceutics15020336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Anti-tumor properties of several cytokines have already been investigated in multiple experiments and clinical trials. However, those studies evidenced substantial toxicities, even at low cytokine doses, and the lack of tumor specificity. These factors significantly limit clinical applications. Due to their high specificity and affinity, tumor-specific monoclonal antibodies or their antigen-binding fragments are capable of delivering fused cytokines to tumors and, therefore, of decreasing the number and severity of side effects, as well as of enhancing the therapeutic index. The present review surveys the actual antibody-cytokine fusion protein (immunocytokine) formats, their targets, mechanisms of action, and anti-tumor and other biological effects. Special attention is paid to the formats designed to prevent the off-target cytokine-receptor interactions, potentially inducing side effects. Here, we describe preclinical and clinical data and the efficacy of the antibody-mediated cytokine delivery approach, either as a single therapy or in combination with other agents.
Collapse
Affiliation(s)
- Vladislav S Rybchenko
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Teimur K Aliev
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna A Panina
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A Dolgikh
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Casadesús AV, Cruz BM, Díaz W, González MÁ, Gómez T, Fernández B, González A, Ledón N, Sosa K, Castro K, López A, Plasencia C, Ramírez Y, Teillaud JL, Hernández C, León K, Hernández T. Potent immunomodulatory and antitumor effect of anti-CD20-IL2no-alpha tri-functional immunocytokine for cancer therapy. Front Immunol 2022; 13:1021828. [PMID: 36569901 PMCID: PMC9780377 DOI: 10.3389/fimmu.2022.1021828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The anti-CD20 antibody rituximab (RTX) has substantially improved outcomes of patients with B-cell lymphomas, although more efficient therapies are needed for refractory or relapsing lymphomas. An approach to increase the clinical effectiveness of anti-tumor therapy is the use of antibody-cytokine fusion proteins (immunocytokines (ICKs)) to deliver at the tumor site the antibody effector functions and cytokines that trigger anti-tumor activities. In particular, IL-2-based ICKs have shown significant results in preclinical studies but not in clinical trials due to the toxicity profile associated to high doses IL-2 and the undesired expansion of Tregs. Methods To improve the efficacy of RTX therapy, we fused a murine (mIgG2a) or a human (hIgG1) version of RTX to a mutated IL-2 (no-alpha mutein), which has a disrupted affinity for the high affinity IL-2 receptor (IL-2R) to prevent the stimulation of Tregs and reduce the binding to endothelial cells expressing CD25, the α chain of high affinity IL-2R. Characterization of anti-CD20-IL2no-alpha ICKs was performed by SDS-PAGE, Western-blotting and SEC-HPLC and also by several functional in vitro techniques like T-cell proliferation assays, apoptosis, CDC and ADCC assays. The in vivo activity was assessed by using murine tumor cells expressing huCD20 in C57/Bl6 mice. Results Both ICKs exhibited similar in vitro specific activity of their IL2no-alpha mutein moieties and kept CD20-binding capacity. Anti-CD20-IL2no-alpha (hIgG1) retained antibody effector functions as complement-dependent cytotoxicity and enhanced direct apoptosis, NK cell activation and antibody-dependent cellular cytotoxicity relative to RTX. In addition, both ICKs demonstrated a higher antitumor efficacy than parental molecules or their combination in an EL4-huCD20 tumor model in immunocompetent mice. Anti-CD20-IL2no-alpha (hIgG1) strongly expanded NK and CD8+ T cells but not Tregs in tumor-bearing mice. Discussion These findings suggest that anti-CD20-IL2no-alpha could represent an alternative treatment for B cell lymphoma patients, mainly those refractory to RTX therapy.
Collapse
Affiliation(s)
- Ana Victoria Casadesús
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Beatriz María Cruz
- Quality Control Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Wilden Díaz
- Quality Control Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Miguel Ángel González
- Department of Animal Facilities, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Tania Gómez
- Quality Control Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Briandy Fernández
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Addys González
- Department of Animal Facilities, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Nuris Ledón
- Department of Innovation´s Management, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Katya Sosa
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Kathleen Castro
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Armando López
- Department of Animal Facilities, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Claudia Plasencia
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Yaima Ramírez
- Development Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Jean-Luc Teillaud
- Laboratory of Immune Microenvironment and Immunotherapy, Centre d’immunologie et des maladies infectieuses (CIMI-Paris), Inserm UMRS1135, Sorbonne University, Paris, France
| | | | - Kalet León
- Research Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Tays Hernández
- Department of Chimeric Proteins, Immunobiology Division, Center of Molecular Immunology (CIM), Havana, Cuba,*Correspondence: Tays Hernández,
| |
Collapse
|
5
|
Chen J, Shen Z, Jiang X, Huang Z, Wu C, Jiang D, Yin L. Preclinical evaluation of IAP0971, a novel immunocytokine that binds specifically to PD1 and fuses IL15/IL15R α complex. Antib Ther 2022; 6:38-48. [PMID: 36683766 PMCID: PMC9847340 DOI: 10.1093/abt/tbac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background Currently, cytokine therapy for cancer has demonstrated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor microenvironment to expand the therapeutic window of cytokine therapy. Therefore, we have developed a novel immunocytokine that binds specifically to programmed death 1 (PD1) and fuses IL15/IL15Rα complex (referred to as IAP0971) for cancer immunotherapy. Methods We report here the making of IAP0971, a novel immunocytokine that binds specifically to PD1 and fuses IL15/IL15Rα complex, and preclinical characterization including pharmacology, pharmacodynamics, pharmacokinetics and toxicology, and discuss its potential as a novel agent for treating patients with advanced malignant tumors. Results IAP0971 bound to human IL2/15Rβ proteins specifically and blocked PD1/PDL1 signaling transduction pathway. IAP0971 promoted the proliferation of CD8 + T cells and natural killer T (NKT) cells, and further activated NK cells to kill tumor cells validated by in vitro assays. In an hPD1 knock-in mouse model, IAP0971 showed potent anti-tumor activity. Preclinical studies in non-human primates following single or repeated dosing of IAP0971 showed favorable pharmacokinetics and well-tolerated toxicology profile. Conclusion IAP0971 has demonstrated a favorable safety profile and potent anti-tumor activities in vivo. A Phase I/IIa clinical trial to evaluate the safety, tolerability and preliminary efficacy of IAP0971 in patients with advanced malignant tumors is on-going (NCT05396391).
Collapse
Affiliation(s)
| | | | - Xiaoling Jiang
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Zhenzhen Huang
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Chongbing Wu
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Dongcheng Jiang
- SunHo (China) BioPharmaceutical Co., Ltd, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China
| | - Liusong Yin
- To whom correspondence should be addressed. Liusong Yin, No.5 Xingjian Road, Economic and Technological Development Zone, Nanjing 210008, Jiangsu Province, China. Tel: (+86) 18651612904; Fax: +86-25-85666030;
| |
Collapse
|
6
|
Antosova Z, Podzimkova N, Tomala J, Augustynkova K, Sajnerova K, Nedvedova E, Sirova M, de Martynoff G, Bechard D, Moebius U, Kovar M, Spisek R, Adkins I. SOT101 induces NK cell cytotoxicity and potentiates antibody-dependent cell cytotoxicity and anti-tumor activity. Front Immunol 2022; 13:989895. [PMID: 36300122 PMCID: PMC9590108 DOI: 10.3389/fimmu.2022.989895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
SOT101 is a superagonist fusion protein of interleukin (IL)-15 and the IL-15 receptor α (IL-15Rα) sushi+ domain, representing a promising clinical candidate for the treatment of cancer. SOT101 among other immune cells specifically stimulates natural killer (NK) cells and memory CD8+ T cells with no significant expansion or activation of the regulatory T cell compartment. In this study, we showed that SOT101 induced expression of cytotoxic receptors NKp30, DNAM-1 and NKG2D on human NK cells. SOT101 stimulated dose-dependent proliferation and the relative expansion of both major subsets of human NK cells, CD56brightCD16- and CD56dimCD16+, and these displayed an enhanced cytotoxicity in vitro. Using human PBMCs and isolated NK cells, we showed that SOT101 added concomitantly or used for immune cell pre-stimulation potentiated clinically approved monoclonal antibodies Cetuximab, Daratumumab and Obinutuzumab in killing of tumor cells in vitro. The anti-tumor efficacy of SOT101 in combination with Daratumumab was assessed in a solid multiple myeloma xenograft in CB17 SCID mouse model testing several combination schedules of administration in the early and late therapeutic setting of established tumors in vivo. SOT101 and Daratumumab monotherapies decreased with various efficacy tumor growth in vivo in dependence on the advancement of the tumor development. The combination of both drugs showed the strongest anti-tumor efficacy. Specifically, the sequencing of both drugs did not matter in the early therapeutic setting where a complete tumor regression was observed in all animals. In the late therapeutic treatment of established tumors Daratumumab followed by SOT101 administration or a concomitant administration of both drugs showed a significant anti-tumor efficacy over the respective monotherapies. These results suggest that SOT101 might significantly augment the anti-tumor activity of therapeutic antibodies by increasing NK cell-mediated activity in patients. These results support the evaluation of SOT101 in combination with Daratumumab in clinical studies and present a rationale for an optimal clinical dosing schedule selection.
Collapse
Affiliation(s)
| | - Nada Podzimkova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Jakub Tomala
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Eva Nedvedova
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Milada Sirova
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Ulrich Moebius
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radek Spisek
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- Preclinical Department, SOTIO Biotech a.s, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
- *Correspondence: Irena Adkins,
| |
Collapse
|
7
|
Mao XC, Yang CC, Yang YF, Yan LJ, Ding ZN, Liu H, Yan YC, Dong ZR, Wang DX, Li T. Peripheral cytokine levels as novel predictors of survival in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:884592. [PMID: 36072577 PMCID: PMC9441870 DOI: 10.3389/fimmu.2022.884592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Early identification of patients who will benefit from immune checkpoint inhibitors (ICIs) has recently become a hot issue in cancer immunotherapy. Peripheral cytokines are key regulators in the immune system that can induce the expression of immune checkpoint molecules; however, the association between peripheral cytokines and the efficiency of ICIs remains unclear. Methods A systematic review was conducted in several public databases from inception through 3 February 2022 to identify studies investigating the association between peripheral cytokines (i.e., IL-1β, IL-2, IL-2RA, IL-2R, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-15, IL-17, TNF-α, IFN-γ, and TGF-β) and ICI treatment. Survival data, including overall survival (OS) and/or progression-free survival (PFS), were extracted, and meta-analyses were performed. Results Twenty-four studies were included in this analysis. The pooled results demonstrated that the pretreatment peripheral levels of IL-6 (univariate analysis: HR = 2.53, 95% CI = 2.21–2.89, p < 0.00001; multivariate analysis: HR = 2.21, 95% CI = 1.67–2.93, p < 0.00001) and IL-8 (univariate analysis: HR = 2.17, 95% CI = 1.98–2.38, p < 0.00001; multivariate analysis: HR = 1.88, 95% CI= 1.70–2.07, p < 0.00001) were significantly associated with worse OS of cancer patients receiving ICI treatment in both univariate and multivariate analysis. However, high heterogeneity was found for IL-6, which might be attributed to region, cancer type, treatment method, sample source, and detection method. Conclusion The peripheral level of IL-8 may be used as a prognostic marker to identify patients with inferior response to ICIs. More high-quality prospective studies are warranted to assess the predictive value of peripheral cytokines for ICI treatment.
Collapse
Affiliation(s)
- Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Tao Li,
| |
Collapse
|
8
|
Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol Sci 2021; 42:1064-1081. [PMID: 34706833 DOI: 10.1016/j.tips.2021.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Since the FDA approval of the first therapeutic antibody 35 years ago, antibody-based products have gained prominence in the pharmaceutical market. Building on the early successes of monoclonal antibodies, more recent efforts have capitalized on the exquisite specificity and/or favorable pharmacokinetic properties of antibodies by developing fusion proteins that enable targeted delivery of therapeutic payloads which are otherwise ineffective when administered systemically. This review focuses on recent engineering and translational advances for therapeutics that genetically fuse antibodies to disease-relevant payloads, including cytokines, toxins, enzymes, neuroprotective agents, and soluble factor traps. With numerous antibody fusion proteins in the clinic and other innovative molecules poised to follow suit, these potent, multifunctional drug candidates promise to be a major player in the therapeutic development landscape for years to come.
Collapse
|
9
|
Janakiram M, Arora N, Bachanova V, Miller JS. Novel Cell and Immune Engagers in Optimizing Tumor- Specific Immunity Post-Autologous Transplantation in Multiple Myeloma. Transplant Cell Ther 2021; 28:61-69. [PMID: 34634499 DOI: 10.1016/j.jtct.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/07/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022]
Abstract
Autologous stem cell transplantation (ASCT) is an important component of treatment of multiple myeloma (MM). The post-ASCT setting offers a unique opportunity to increase myeloma specific immunity through enhancement of T and NK cell responses. The vast array of therapeutics being developed for MM, including cell-based therapies, dendritic vaccines, bispecific antibodies, and IL-15 agonists, provide the opportunity to increase tumor-specific immunity. Maintenance therapies, including immunomodulatory drugs, proteasome inhibitors, and daratumumab, exhibit a significant anti-myeloma response by modulating the immune system. Lenalidomide promotes an antitumoral immune microenvironment, whereas daratumumab can potentially cause NK cell fratricide. Thus, understanding the effects of commonly used maintenance drugs on the immune system is important. In this review, we look at current and emerging therapeutics and their integration post-ASCT in the context of immune reconstitution to improve clinical responses in patients with MM. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Murali Janakiram
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Nivedita Arora
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Bachanova
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
10
|
Desbois M, Béal C, Charrier M, Besse B, Meurice G, Cagnard N, Jacques Y, Béchard D, Cassard L, Chaput N. IL-15 superagonist RLI has potent immunostimulatory properties on NK cells: implications for antimetastatic treatment. J Immunother Cancer 2021; 8:jitc-2020-000632. [PMID: 32532840 PMCID: PMC7295443 DOI: 10.1136/jitc-2020-000632] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background As the immune system is compromised in patients with cancer, therapeutic strategies to stimulate immunity appear promising, to avoid relapse and increase long-term overall survival. Interleukin-15 (IL-15) has similar properties to IL-2, but does not cause activation-induced cell death nor activation and proliferation of regulatory T cells (Treg), which makes it a serious candidate for anticancer immunotherapy. However, IL-15 has a short half-life and high doses are needed to achieve responses. Designed to enhance its activity, receptor-linker-IL-15 (RLI) (SO-C101) is a fusion molecule of human IL-15 covalently linked to the human IL-15Rα sushi+ domain currently assessed in a phase I/Ib clinical trial on patients with advanced/metastatic solid cancer. Methods We investigated the antimetastatic activity of RLI in a 4T1 mouse mammary carcinoma that spontaneously metastasizes and evaluated its immunomodulatory role in the metastatic lung microenvironment. We further characterized the proliferation, maturation and cytotoxic functions of natural killer (NK) cells in tumor-free mice treated with RLI. Finally, we explored the effect of RLI on human NK cells from healthy donors and patients with non-small cell lung cancer (NSCLC). Results RLI treatment displayed antimetastatic properties in the 4T1 mouse model. By characterizing the lung microenvironment, we observed that RLI restored the balance between NK cells and neutrophils (CD11b+ Ly6Ghigh Ly6Clow) that massively infiltrate lungs of 4T1-tumor bearing mice. In addition, the ratio between NK cells and Treg was strongly increased by RLI treatment. Further pharmacodynamic studies in tumor-free mice revealed superior proliferative and cytotoxic functions on NK cells after RLI treatment compared with IL-15 alone. Characterization of the maturation stage of NK cells demonstrated that RLI favored accumulation of CD11b+ CD27high KLRG1+ mature NK cells. Finally, RLI demonstrated potent immunostimulatory properties on human NK cells by inducing proliferation and activation of NK cells from healthy donors and enhancing cytotoxic responses to NKp30 crosslinking in NK cells from patients with NSCLC. Conclusions Collectively, our work demonstrates superior activity of RLI compared with rhIL-15 in modulating and activating NK cells and provides additional evidences for a therapeutic strategy using RLI as antimetastatic molecule.
Collapse
Affiliation(s)
- Mélanie Desbois
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France.,Cytune Pharma, Nantes, France.,Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France
| | - Coralie Béal
- Centre d'investigation Clinique Biothérapie 1428, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Mélinda Charrier
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France.,Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France.,Centre d'investigation Clinique Biothérapie 1428, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Benjamin Besse
- Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France.,Comité de Pathologie Thoracique, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Guillaume Meurice
- Plateforme de Bioinformatique, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Nicolas Cagnard
- Plateforme de Bioinformatique, Université Paris Descartes, Paris, Île-de-France, France
| | | | | | - Lydie Cassard
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France
| | - Nathalie Chaput
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France .,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
11
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
12
|
Yang Y, Lundqvist A. Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12123586. [PMID: 33266177 PMCID: PMC7761238 DOI: 10.3390/cancers12123586] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The type I cytokine family members interleukin-2 (IL-2) and IL-15 play important roles in the homeostasis of innate and adaptive immunity. Although IL-2 and IL-15 receptor complexes activate similar signal transduction cascades, triggering of these receptors results in different functional activities in lymphocytes. While IL-2 expands regulatory T cells and CD4+ helper T cells, IL-15 supports the development of central memory T cells and NK cells. Recent data have provided evidence that IL-2 and IL-15 differ in their ability to activate T and NK cells to resist various forms of immune suppression. The diverse roles of these two cytokines have on immune cells lead to critical therapeutic implications for cancer treatment. In this review, we discuss the distinct roles of IL-2 and IL-15 in activating various functions in T and NK cells with a particular focus on the signals that participate in the resistance of tumor-derived immune suppressive factors. Furthermore, we summarize current clinical applications of IL-2 and IL-15 in metastatic malignancies, either as monotherapy or in combination with other agents, and highlight the future trends for research on these cytokine-based immunotherapies.
Collapse
Affiliation(s)
- Ying Yang
- Department of Respiratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 310009, China;
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
13
|
Hangasky JA, Waldmann TA, Santi DV. Interleukin 15 Pharmacokinetics and Consumption by a Dynamic Cytokine Sink. Front Immunol 2020; 11:1813. [PMID: 32903632 PMCID: PMC7438588 DOI: 10.3389/fimmu.2020.01813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin-15 (IL-15) is crucial for the proliferation and survival of NK and CD8+ T memory cells, and of significant interest in immuno-oncology. Immune cell expansion requires continuous IL-15 exposure above a threshold concentration for an extended period. However, the short t1/2 of IL-15 makes this impossible to achieve after a single injection without a high Cmax and toxicities. The most effective way to deliver IL-15 is continuous intra-venous infusion, but this administration mode is impractical. Efforts have been devoted to developing IL-15 agonists which after a single injection maintain the cytokine in a narrow therapeutic window for a long period. Enigmatically, although the half-life extension technologies used often extend the half-life of a protein to 1 or more weeks, the modified IL-15 agonists studied usually have systemic elimination half-lives of only a few hours and rarely much longer than 1 day. These short half-lives—common to all circulating IL-15 agonists thus far reported—can be explained by a dynamic increase in clearance of the agonists that accompanies target immune cell proliferation. What is needed is an IL-15 agonist that is as effective as continuous intravenous infusion, but with the convenience and acceptance of single injections at 1-week or longer intervals.
Collapse
Affiliation(s)
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| | | |
Collapse
|
14
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Waldmann TA, Dubois S, Miljkovic MD, Conlon KC. IL-15 in the Combination Immunotherapy of Cancer. Front Immunol 2020; 11:868. [PMID: 32508818 PMCID: PMC7248178 DOI: 10.3389/fimmu.2020.00868] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
We completed clinical trials of rhIL-15 by bolus, subcutaneous, and continuous intravenous infusions (CIV). IL-15 administered by CIV at 2 mcg/kg/day yielded a 38-fold increase in 10- day number of circulating NK cells, a 358-fold increase in CD56bright NK cells and a 5.8-fold increase in CD8 T cells. However, IL-15 preparations administered as monotherapy were ineffective, due to actions of immunological checkpoints and due to the lack of tumor specific targeting by NK cells. To circumvent checkpoints, trials of IL-15 in combination with other anticancer agents were initiated. Tumor-bearing mice receiving IL-15 with antibodies to CTLA-4 and PD-L1 manifested marked prolongation of survival compared to mice receiving IL-15 with either agent alone. In translation, a phase I trial was initiated involving IL-15 (rhIL-15), nivolumab and ipilimumab in patients with malignancy (NCT03388632). In rhesus macaques CIV IL-15 at 20 μg/kg/day for 10 days led to an 80-fold increase in number of circulating effector memory CD8 T cells. However, administration of γc cytokines such as IL-15 led to paralysis/depression of CD4 T-cells that was mediated through transient expression of SOCS3 that inhibited the STAT5 signaling pathway. This lost CD4 helper role could be restored alternatively by CD40 agonists. In the TRAMP-C2 prostate tumor model the combination of IL-15 with agonistic anti-CD40 produced additive effects in terms of numbers of TRAMP-C2 tumor specific Spas/SCNC/9H tetramer positive CD8 T cells expressed and tumor responses. A clinical trial is being initiated for patients with cancer using an intralesional anti-CD40 in combination with CIV rhIL-15. To translate IL-15-mediated increases in NK cells, we investigated combination therapy of IL-15 with anticancer monoclonal antibodies including rituximab in mouse models of EL-4 lymphoma transfected with human CD20 and with alemtuzumab (CAMPATH-1H) in a xenograft model of adult T cell leukemia (ATL). IL-15 enhanced the ADCC and therapeutic efficacy of both antibodies. These results provided the scientific basis for trials of IL-15 combined with alemtuzumab (anti-CD52) for patients with ATL (NCT02689453), with obinutuzumab (anti-CD20) for patients with CLL (NCT03759184), and with avelumab (anti-PD-L1) in patients with T-cell lymphoma (NCT03905135) and renal cancer (NCT04150562). In the first trial, there was elimination of circulating ATL and CLL leukemic cells in select patients.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Beha N, Harder M, Ring S, Kontermann RE, Müller D. IL15-Based Trifunctional Antibody-Fusion Proteins with Costimulatory TNF-Superfamily Ligands in the Single-Chain Format for Cancer Immunotherapy. Mol Cancer Ther 2019; 18:1278-1288. [PMID: 31040163 DOI: 10.1158/1535-7163.mct-18-1204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/08/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Rα-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_scGITRL in a lung tumor mouse model in vivo Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.
Collapse
Affiliation(s)
- Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Markus Harder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
17
|
Abstract
Cytokines that control the immune response were shown to have efficacy in preclinical murine cancer models. Interferon (IFN)-α is approved for treatment of hairy cell leukemia, and interleukin (IL)-2 for the treatment of advanced melanoma and metastatic renal cancer. In addition, IL-12, IL-15, IL-21, and granulocyte macrophage colony-stimulating factor (GM-CSF) have been evaluated in clinical trials. However, the cytokines as monotherapy have not fulfilled their early promise because cytokines administered parenterally do not achieve sufficient concentrations in the tumor, are often associated with severe toxicities, and induce humoral or cellular checkpoints. To circumvent these impediments, cytokines are being investigated clinically in combination therapy with checkpoint inhibitors, anticancer monoclonal antibodies to increase the antibody-dependent cellular cytotoxicity (ADCC) of these antibodies, antibody cytokine fusion proteins, and anti-CD40 to facilitate tumor-specific immune responses.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Clinical Center, Bethesda, Maryland 20892-1374
| |
Collapse
|
18
|
IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 2018; 115:E10915-E10924. [PMID: 30373815 DOI: 10.1073/pnas.1811615115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The goal of cancer immunotherapy is to stimulate the host immune system to attack malignant cells. Antibody-dependent cellular cytotoxicity (ADCC) is a pivotal mechanism of antitumor action of clinically employed antitumor antibodies. IL-15 administered to patients with metastatic malignancy by continuous i.v. infusion at 2 μg/kg/d for 10 days was associated with a 38-fold increase in the number and activation status of circulating natural killer (NK) cells and activation of macrophages which together are ADCC effectors. We investigated combination therapy of IL-15 with rituximab in a syngeneic mouse model of lymphoma transfected with human CD20 and with alemtuzumab (Campath-1H) in a xenograft model of human adult T cell leukemia (ATL). IL-15 greatly enhanced the therapeutic efficacy of both rituximab and alemtuzumab in tumor models. The additivity/synergy was shown to be associated with augmented ADCC. Both NK cells and macrophages were critical elements in the chain of interacting effectors involved in optimal therapeutic responses mediated by rituximab with IL-15. We provide evidence supporting the hypothesis that NK cells interact with macrophages to augment the NK-cell activation and expression of FcγRIV and the capacity of these cells to become effectors of ADCC. The present study supports clinical trials of IL-15 combined with tumor-directed monoclonal antibodies.
Collapse
|
19
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Abstract
Cytokines are major regulators of innate and adaptive immunity that enable cells of the immune system to communicate over short distances. Cytokine therapy to activate the immune system of cancer patients has been an important treatment modality and continues to be a key contributor to current clinical cancer research. Interferon alpha (IFNα) is approved for adjuvant treatment of completely resected high-risk melanoma patients and several refractory malignancies. High-dose interleukin-2 (HDIL-2) is approved for treatment of metastatic renal cell cancer and melanoma, but both agents are currently less commonly used with the development of newer agents. Granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN gamma (IFNγ), IL-7, IL-12, and IL-21 were evaluated in clinical trials and remain part of certain investigational trials. The initial single-agent clinical trials with the long-awaited IL-15 have been completed and combination trials with antitumor antibodies or checkpoint inhibitors (CPIs) have been initiated. However, cytokines in monotherapy have not fulfilled the promise of efficacy seen in preclinical experiments. They are often associated with severe dose-limiting toxicities that are manageable with appropriate dosing and are now better understood to induce immune-suppressive humoral factors, suppressive cells, and cellular checkpoints, without consistently inducing a tumor-specific response. To circumvent these impediments, cytokines are being investigated clinically with new engineered cytokine mutants (superkines), chimeric antibody-cytokine fusion proteins (immunokines), anticancer vaccines, CPIs, and cancer-directed monoclonal antibodies to increase their antibody-dependent cellular cytotoxicity or sustain cellular responses and anticancer efficacy. In this review, we summarize current knowledge and clinical application of cytokines either as monotherapy or in combination with other biological agents. We emphasize a discussion of future directions for research on these cytokines, to bring them to fruition as major contributors for the treatment of metastatic malignancy.
Collapse
Affiliation(s)
- Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
21
|
Marusic C, Pioli C, Stelter S, Novelli F, Lonoce C, Morrocchi E, Benvenuto E, Salzano AM, Scaloni A, Donini M. N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions. Biotechnol Bioeng 2018; 115:565-576. [PMID: 29178403 DOI: 10.1002/bit.26503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential.
Collapse
Affiliation(s)
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | - Szymon Stelter
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | | | - Elena Morrocchi
- Laboratory of Biomedical Technologies, ENEA Research Center Rome, Rome, Italy
| | | | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | | |
Collapse
|
22
|
Klein C, Bacac M, Umana P, Fingerle-Rowson G. Combination therapy with the type II anti-CD20 antibody obinutuzumab. Expert Opin Investig Drugs 2017; 26:1145-1162. [DOI: 10.1080/13543784.2017.1373087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umana
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | | |
Collapse
|
23
|
The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett 2017; 190:159-168. [PMID: 28823521 DOI: 10.1016/j.imlet.2017.08.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023]
Abstract
This review provides an in-depth description of the preclinical and clinical studies demonstrating the effectiveness and limitations of IL-15 and IL-15 analogs given as an exogenous immuno-oncology agent. IL-15 is a cytokine that primarily stimulates the proliferation and cytotoxic functions of CD8T cells and NK cells leading to enhanced anti-tumor responses. While initially showing promise as a cancer therapeutic, the efficacy of IL-15 was limited by its short in vivo half-life. More recently, various approaches have been developed to improve the in vivo half-life and efficacy of IL-15, largely by generating IL-15/IL-15Rα conjugates. These new IL-15 based agents renew the prospect of IL-15 as a cancer immunotherapeutic agent. While having some efficacy in inducing tumor regression as a monotherapy, IL-15 agents also show great potential in being used in combination with other immuno-oncological therapies. Indeed, IL-15 used in combination therapy yields even better anti-tumor responses and prolongs survival than IL-15 treatment alone in numerous murine cancer models. The promising results from these preclinical studies have led to the implementation of several clinical trials to test the safety and efficacy of IL-15-based agents as a stand-alone treatment or in conjunction with other therapies to treat both advanced solid tumors and hematological malignancies.
Collapse
|
24
|
Quéméner A, Maillasson M, Arzel L, Sicard B, Vomiandry R, Mortier E, Dubreuil D, Jacques Y, Lebreton J, Mathé-Allainmat M. Discovery of a Small-Molecule Inhibitor of Interleukin 15: Pharmacophore-Based Virtual Screening and Hit Optimization. J Med Chem 2017; 60:6249-6272. [DOI: 10.1021/acs.jmedchem.7b00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Agnès Quéméner
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Mike Maillasson
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Laurence Arzel
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Benoit Sicard
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Romy Vomiandry
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Erwan Mortier
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Didier Dubreuil
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Yannick Jacques
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Jacques Lebreton
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | | |
Collapse
|
25
|
Guleria M, Das T, Kumar C, Amirdhanayagam J, Sarma HD, Banerjee S. Preparation of clinical-scale 177
Lu-Rituximab: Optimization of protocols for conjugation, radiolabeling, and freeze-dried kit formulation. J Labelled Comp Radiopharm 2017; 60:234-241. [DOI: 10.1002/jlcr.3493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/24/2017] [Accepted: 02/04/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Mohini Guleria
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Tapas Das
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
- Homi Bhabha National Institute; Mumbai India
| | - Chandan Kumar
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | | | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division; Bhabha Atomic Research Centre; Mumbai India
| | - Sharmila Banerjee
- Homi Bhabha National Institute; Mumbai India
- Radiation Medicine Centre; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
26
|
Desbois M, Le Vu P, Coutzac C, Marcheteau E, Béal C, Terme M, Gey A, Morisseau S, Teppaz G, Boselli L, Jacques Y, Béchard D, Tartour E, Cassard L, Chaput N. IL-15 Trans-Signaling with the Superagonist RLI Promotes Effector/Memory CD8+ T Cell Responses and Enhances Antitumor Activity of PD-1 Antagonists. THE JOURNAL OF IMMUNOLOGY 2016; 197:168-78. [PMID: 27217584 DOI: 10.4049/jimmunol.1600019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/21/2016] [Indexed: 02/02/2023]
Abstract
Tumors with the help of the surrounding environment facilitate the immune suppression in patients, and immunotherapy can counteract this inhibition. Among immunotherapeutic strategies, the immunostimulatory cytokine IL-15 could represent a serious candidate for the reactivation of antitumor immunity. However, exogenous IL-15 may have a limited impact on patients with cancer due to its dependency on IL-15Rα frequently downregulated in cancer patients. In this work, we studied the antitumor activity of the IL-15 superagonist receptor-linker-IL-15 (RLI), designed to bypass the need of endogenous IL-15Rα. RLI consists of human IL-15 covalently linked to the human IL-15Rα sushi(+) domain. In a mouse model of colorectal carcinoma, RLI as a stand-alone treatment could limit tumor outgrowth only when initiated at an early time of tumor development. At a later time, RLI was not effective, coinciding with the strong accumulation of terminally exhausted programmed cell death-1 (PD-1)(high) T cell Ig mucin-3(+) CD8(+) T cells, suggesting that RLI was not able to reactivate terminally exhausted CD8(+) T cells. Combination with PD-1 blocking Ab showed synergistic activity with RLI, but not with IL-15. RLI could induce a greater accumulation of memory CD8(+) T cells and a stronger effector function in comparison with IL-15. Ex vivo stimulation of tumor-infiltrated lymphocytes from 16 patients with renal cell carcinoma demonstrated 56% of a strong tumor-infiltrated lymphocyte reactivation with the combination anti-PD-1/RLI compared with 43 and 6% with RLI or anti-PD-1, respectively. Altogether, this work provides evidence that the sushi-IL-15Rα/IL-15 fusion protein RLI enhances antitumor activity of anti-PD-1 treatment and is a promising approach to stimulate host immunity.
Collapse
Affiliation(s)
- Mélanie Desbois
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, Villejuif F-94805, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3655, Villejuif F-94805, France; INSERM, US23, Villejuif, F-94805, France; INSERM, Centre d'Investigation Clinique Biothérapie 1428, Villejuif F-94805, France; Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre F-94276, France; Cytune Pharma, Nantes F-44300, France
| | - Pauline Le Vu
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, Villejuif F-94805, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3655, Villejuif F-94805, France; INSERM, US23, Villejuif, F-94805, France
| | - Clélia Coutzac
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, Villejuif F-94805, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3655, Villejuif F-94805, France; INSERM, US23, Villejuif, F-94805, France; Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre F-94276, France
| | - Elie Marcheteau
- INSERM U970, Paris Centre de Recherche Cardiovasculaire, Université Paris-Descartes, Sorbonne Paris Cité, Paris F-75015, France
| | - Coralie Béal
- INSERM, Centre d'Investigation Clinique Biothérapie 1428, Villejuif F-94805, France
| | - Magali Terme
- INSERM U970, Paris Centre de Recherche Cardiovasculaire, Université Paris-Descartes, Sorbonne Paris Cité, Paris F-75015, France
| | - Alain Gey
- INSERM U970, Paris Centre de Recherche Cardiovasculaire, Université Paris-Descartes, Sorbonne Paris Cité, Paris F-75015, France
| | - Sébastien Morisseau
- Centre de Recherche en Cancérologie Nantes-Angers, INSERM, U892, Institut de Recherche en Santé - Université de Nantes, Nantes F-44093, France; and Centre Hospitalier Universitaire Hôtel Dieu, Nantes F-44093, France
| | - Géraldine Teppaz
- Centre de Recherche en Cancérologie Nantes-Angers, INSERM, U892, Institut de Recherche en Santé - Université de Nantes, Nantes F-44093, France; and
| | - Lisa Boselli
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, Villejuif F-94805, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3655, Villejuif F-94805, France; INSERM, US23, Villejuif, F-94805, France
| | - Yannick Jacques
- Centre de Recherche en Cancérologie Nantes-Angers, INSERM, U892, Institut de Recherche en Santé - Université de Nantes, Nantes F-44093, France; and
| | | | - Eric Tartour
- INSERM U970, Paris Centre de Recherche Cardiovasculaire, Université Paris-Descartes, Sorbonne Paris Cité, Paris F-75015, France
| | - Lydie Cassard
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, Villejuif F-94805, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3655, Villejuif F-94805, France; INSERM, US23, Villejuif, F-94805, France
| | - Nathalie Chaput
- Gustave Roussy, Laboratoire d'Immunomonitoring en Oncologie, Villejuif F-94805, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3655, Villejuif F-94805, France; INSERM, US23, Villejuif, F-94805, France; INSERM, Centre d'Investigation Clinique Biothérapie 1428, Villejuif F-94805, France;
| |
Collapse
|
27
|
Safdari Y, Ahmadzadeh V, Farajnia S. CD20-targeting in B-cell malignancies: novel prospects for antibodies and combination therapies. Invest New Drugs 2016; 34:497-512. [DOI: 10.1007/s10637-016-0349-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
28
|
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3:219-27. [PMID: 25736261 DOI: 10.1158/2326-6066.cir-15-0009] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL2 and IL15, members of the 4α-helix bundle family of cytokines, play pivotal roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells and activation-induced cell death is the elimination of self-reactive T cells to prevent autoimmunity. In contrast with IL2, IL15 is dedicated to the prolonged maintenance of memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune disorders, and in the prevention of allograft rejection. IL2 has been approved by the FDA for the treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, and studies assessing subcutaneous and continuous intravenous infusions are under way in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL15 with IL15Rα(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
29
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
30
|
Müller D. Antibody fusions with immunomodulatory proteins for cancer therapy. Pharmacol Ther 2015; 154:57-66. [PMID: 26145167 DOI: 10.1016/j.pharmthera.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
Abstract
The potential of immunomodulatory proteins, in particular cytokines, for cancer therapy is well recognized, but hampered by the toxicity associated with their systemic application. In order to address this problem, targeted delivery by antibody fusion proteins has been early proposed and their development intensively pursued over the last decade. Here, factors influencing the selection and modification of cytokines and antibody formats for this approach are being discussed, indicating current developments and translational advances in the field.
Collapse
Affiliation(s)
- Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
31
|
Abstract
IL-15 is a 14-15 kDa member of the four α-helix bundle of cytokines that acts through a heterotrimeric receptor involving IL-2/IL-15R β, γc and the IL-15 specific receptor subunit IL-15R α. IL-15 stimulates the proliferation of T, B and NK cells, and induces stem, central and effector memory CD8 T cells. In rhesus macaques, continuous infusion of recombinant human IL-15 at 20 μg/kg/day was associated with approximately a 10-fold increase in the numbers of circulating NK, γ/δ cells and monocytes, and an 80- to 100-fold increase in the numbers of effector memory CD8 T cells. IL-15 has shown efficacy in murine models of malignancy. Clinical trials involving recombinant human IL-15 given by bolus infusions have been completed and by subcutaneous and continuous intravenous infusions are underway in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL-15 with IL-15R α(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4N115, Bethesda, MD 20892-1374, USA
| |
Collapse
|