1
|
Kim DS, Kim SE, Byeon JS, Lee HJ, Kim JW, Kim H, Chae BH, Ko DH, Lee SG, Yoon SR, Lee J, Kim JS, Kim YS. Engineering IgG antibodies for intracellular targeting and drug delivery. J Control Release 2025; 382:113727. [PMID: 40222416 DOI: 10.1016/j.jconrel.2025.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Enabling immunoglobulin G (IgG)-format antibodies to autonomously internalize and localize in the cytosol of targeted cells-referred to as cytosol-penetrating antibodies (cytotransmab, CT)-is challenging yet highly promising. A primary barrier to cytosolic access for CT is limited endosomal escape. Herein, we developed a second-generation (2G) CT, named in2CT4.1, featuring an endosomal acidic pH-responsive endosomal escape motif (R-W/E motif) with Arg-Trp pairs and a Glu patch in the CH3 and CL domains of IgG1/κ antibody. This motif selectively destabilizes endosomal membranes at endosomal acidic pH to facilitate cytosolic access while remaining inactive at neutral pH. The 2G CT, in2CT4.1, achieves efficient cytosolic localization at nanomolar concentrations, demonstrating approximately 3-fold higher endosomal escape efficiency compared to the first-generation CT. The potential of 2G CT is validated by engineering a cytosolic α-tubulin-targeting CT via an α-tubulin-specific variable domain in in2CT4.1. Additionally, the 2G CT effectively delivers the catalytic domain of diphtheria toxin to the cytosol of epidermal growth factor receptor-overexpressing tumor cells, resulting in near-complete suppression of tumor growth in a xenograft mouse model. These results establish 2G CT as a versatile platform for targeting cytosolic proteins and delivering therapeutic payloads, with broad potential in targeted cancer therapy and other applications.
Collapse
Affiliation(s)
- Dae-Seong Kim
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Seung-Eun Kim
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Jeong-Seon Byeon
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jin Lee
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Ji-Won Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Haelyn Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong-Ho Chae
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Deok-Han Ko
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Seul-Gi Lee
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Sang-Rok Yoon
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Juyong Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon 16499, Republic of Korea; Advanced college of Bio-Convergence Engineering, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
2
|
Dombrowsky CS, Geyer FK, Zakharchuk D, Kolmar H. Tumor-specific cytosol-penetrating antibodies for antigen- and TME-dependent intracellular cargo delivery. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200931. [PMID: 39895690 PMCID: PMC11786873 DOI: 10.1016/j.omton.2024.200931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
Although a considerable number of disease-related biomolecular interactions occur in the cytosol, therapeutic and diagnostic application of target-specific binding proteins is largely confined to surface-exposed or extracellular targets. Therefore, protein-cargo delivery approaches, including cell-penetrating peptides and cytosol-penetrating antibodies, are being explored to overcome this limitation. In this context, we have developed a modular approach for cytosolic penetration of tumor cells based on bispecific antibodies containing a masked cytosol-penetrating Fab on one arm and a tumor-targeting scFv linked via an endosomal cleavable linker on the other arm. The relevance of the antigen-specific binding, internalization, and cytosolic cargo delivery was demonstrated in several in vitro assays using different cell lines with anti-B7-H3 scFv, the well-characterized trastuzumab (HER2), and inotuzumab (CD22) as examples. In addition, presence of the masking moiety to prevent non-specific surface binding, as well as the activation of cytosol-penetrating capabilities in the tumor microenvironment upon release by tumor-specific proteases was confirmed using the catalytic domain of Pseudomonas exotoxin as model cargo for cytosol delivery. Tumor microenvironment-dependent as well as tumor-associated antigen-specific cytosol-penetrating antibodies of the type developed here have the potential to serve as a modular platform to deliver macromolecular cargoes for addressing intracellular targets in tumor cells.
Collapse
Affiliation(s)
- Carolin Sophie Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Felix Klaus Geyer
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Diana Zakharchuk
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Polderdijk SGI, Limzerwala JF, Spiess C. Plasma membrane damage limits cytoplasmic delivery by conventional cell penetrating peptides. PLoS One 2024; 19:e0305848. [PMID: 39226290 PMCID: PMC11371239 DOI: 10.1371/journal.pone.0305848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 09/05/2024] Open
Abstract
Intracellular delivery of large molecule cargo via cell penetrating peptides (CPPs) is an inefficient process and despite intense efforts in past decades, improvements in efficiency have been marginal. Utilizing a standardized and comparative analysis of the delivery efficiency of previously described cationic, anionic, and amphiphilic CPPs, we demonstrate that the delivery ceiling is accompanied by irreparable plasma membrane damage that is part of the uptake mechanism. As a consequence, intracellular delivery correlates with cell toxicity and is more efficient for smaller peptides than for large molecule cargo. The delivery of pharmaceutically relevant cargo quantities with acceptable toxicity thus seems hard to achieve with the CPPs tested in our study. Our results suggest that any engineered intracellular delivery system based on conventional cationic or amphiphilic CPPs, or the design principles underlying them, needs to accept low delivery yields due to toxicity limiting efficient cytoplasmic uptake. Novel peptide designs based on detailed study of uptake mechanisms are required to overcome these limitations.
Collapse
Affiliation(s)
| | - Jazeel F. Limzerwala
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| |
Collapse
|
4
|
Dombrowsky CS, Happel D, Habermann J, Hofmann S, Otmi S, Cohen B, Kolmar H. A Conditionally Activated Cytosol-Penetrating Antibody for TME-Dependent Intracellular Cargo Delivery. Antibodies (Basel) 2024; 13:37. [PMID: 38804305 PMCID: PMC11130931 DOI: 10.3390/antib13020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells.
Collapse
Affiliation(s)
- Carolin Sophie Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sasi Otmi
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Benny Cohen
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
5
|
Jeong J, Usman M, Li Y, Zhou XZ, Lu KP. Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation. Cells 2024; 13:731. [PMID: 38727267 PMCID: PMC11083468 DOI: 10.3390/cells13090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.
Collapse
Affiliation(s)
- Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Muhammad Usman
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Department of Pathology and Laboratory Medicine, and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
Motta RV, Culver EL. IgG4 autoantibodies and autoantigens in the context of IgG4-autoimmune disease and IgG4-related disease. Front Immunol 2024; 15:1272084. [PMID: 38433835 PMCID: PMC10904653 DOI: 10.3389/fimmu.2024.1272084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Immunoglobulins are an essential part of the humoral immune response. IgG4 antibodies are the least prevalent subclass and have unique structural and functional properties. In this review, we discuss IgG4 class switch and B cell production. We review the importance of IgG4 antibodies in the context of allergic responses, helminth infections and malignancy. We discuss their anti-inflammatory and tolerogenic effects in allergen-specific immunotherapy, and ability to evade the immune system in parasitic infection and tumour cells. We then focus on the role of IgG4 autoantibodies and autoantigens in IgG4-autoimmune diseases and IgG4-related disease, highlighting important parallels and differences between them. In IgG4-autoimmune diseases, pathogenesis is based on a direct role of IgG4 antibodies binding to self-antigens and disturbing homeostasis. In IgG4-related disease, where affected organs are infiltrated with IgG4-expressing plasma cells, IgG4 antibodies may also directly target a number of self-antigens or be overexpressed as an epiphenomenon of the disease. These antigen-driven processes require critical T and B cell interaction. Lastly, we explore the current gaps in our knowledge and how these may be addressed.
Collapse
Affiliation(s)
- Rodrigo V. Motta
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma L. Culver
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
7
|
Lteif M, Pallardy M, Turbica I. Antibodies internalization mechanisms by dendritic cells and their role in therapeutic antibody immunogenicity. Eur J Immunol 2024; 54:e2250340. [PMID: 37985174 DOI: 10.1002/eji.202250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Internalization and processing by antigen-presenting cells such as dendritic cells (DCs) are critical steps for initiating a T-cell response to therapeutic antibodies. Consequences are the production of neutralizing antidrug antibodies altering the clinical response, the presence of immune complexes, and, in some rare cases, hypersensitivity reactions. In recent years, significant progress has been made in the knowledge of cellular uptake mechanisms of antibodies in DCs. The uptake of antibodies could be directly related to their immunogenicity by regulating the quantity of materials entering the DCs in relation to antibody structure. Here, we summarize the latest insights into cellular uptake mechanisms and pathways in DCs. We highlight the approaches to study endocytosis, the impact of endocytosis routes on T-cell response, and discuss the link between how DCs internalize therapeutic antibodies and the potential mechanisms that could give rise to immunogenicity. Understanding these processes could help in developing assays to evaluate the immunogenicity potential of biotherapeutics.
Collapse
Affiliation(s)
- Maria Lteif
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Isabelle Turbica
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
8
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Soussan S, Pupier G, Cremer I, Joubert PE, Sautès-Fridman C, Fridman W, Sibéril S. Unraveling the complex interplay between anti-tumor immune response and autoimmunity mediated by B cells and autoantibodies in the era of anti-checkpoint monoclonal antibody therapies. Front Immunol 2024; 15:1343020. [PMID: 38318190 PMCID: PMC10838986 DOI: 10.3389/fimmu.2024.1343020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The intricate relationship between anti-tumor immunity and autoimmunity is a complex yet crucial aspect of cancer biology. Tumor microenvironment often exhibits autoimmune features, a phenomenon that involves natural autoimmunity and the induction of humoral responses against self-antigens during tumorigenesis. This induction is facilitated by the orchestration of anti-tumor immunity, particularly within organized structures like tertiary lymphoid structures (TLS). Paradoxically, a significant number of cancer patients do not manifest autoimmune features during the course of their illness, with rare instances of paraneoplastic syndromes. This discrepancy can be attributed to various immune-mediated locks, including regulatory or suppressive immune cells, anergic autoreactive lymphocytes, or induction of effector cells exhaustion due to chronic stimulation. Overcoming these locks holds the risk to induce autoimmune mechanisms during cancer progression, a phenomenon notably observed with anti-immune checkpoint therapies, in contrast to more conventional treatments like chemotherapy or radiotherapy. Therefore, the challenge arises in managing immune-related adverse events (irAEs) induced by immune checkpoint inhibitors treatment, as decoupling them from the anti-tumor activity poses a significant clinical dilemma. This review summarizes recent advances in understanding the link between B-cell driven anti-tumor responses and autoimmune reactions in cancer patients, and discusses the clinical implications of this relationship.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sophie Sibéril
- Centre de recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Chizenga EP, Abrahamse H. Design and assembly of a nanoparticle, antibody, phthalocyanine scaffold for intracellular delivery of photosensitizer to human papillomavirus-transformed cancer cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:205-216. [PMID: 37083545 DOI: 10.1080/21691401.2023.2199037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In photodynamic therapy (PDT), internalization and uptake of the photosensitizer (PS) by the cells is a passive process that relies on the enhanced permeability and retention (EPR) effect of tumour tissues due to their vasculature, increased LDL receptors, and decreased lymphatic drainage in vivo. But as worries about PDT resistance grow, using passive techniques to administer PSs is becoming less and less viable. According to reported resistance mechanisms, it is necessary to improve PS delivery by changing PS absorption and bioavailability in order to enhance the therapeutic outcome. Therefore, in this study, a multifunctional photosensitizing agent with specific monoclonal antibodies (mAbs) to E6 oncoproteins was developed for PDT of human papillomavirus (HPV)-transformed cancer cells. Using PEGylated Gold Nanoparticles (PEGy-AuNP) at the core, anti-E6 mAbs and phthalocyanines were bound together. This compound demonstrated enhanced internalization of PS, resulting in enhanced PDT effects. In spite of being demonstrated in vitro, the substance in this work is intended for in vivo application, and conclusions are drawn to suggest possible outcomes for in vivo models based on observed data. By making PSs more bioavailable, facilitating their entry into cells, and preventing efflux through intracellular binding, this strategy may reduce cellular resistance to PDT.
Collapse
Affiliation(s)
- Elvin Peter Chizenga
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
11
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Lam KK, Low YS, Lo M, Wong M, Leong Tang C, Tan E, Chok AY, Seow-En I, Wong SH, Cheah PY. KRAS-specific antibody binds to KRAS protein inside colorectal adenocarcinoma cells and inhibits its localization to the plasma membrane. Front Oncol 2023; 13:1036871. [PMID: 37051535 PMCID: PMC10084885 DOI: 10.3389/fonc.2023.1036871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third highest incidence cancer and a leading cause of cancer mortality worldwide. To date, chemotherapeutic treatment of advanced CRC that has metastasized has a dismayed success rate of less than 30%. Further, most (80%) sporadic CRCs are microsatellite-stable and are refractory to immune checkpoint blockade therapy. KRAS is a gatekeeper gene in colorectal tumorigenesis. Nevertheless, KRAS is ‘undruggable’ due to its structure. Thus, focus has been diverted to develop small molecule inhibitors for its downstream effector such as ERK/MAPK. Despite intense research efforts for the past few decades, no small molecule inhibitor has been in clinical use for CRC. Antibody targeting KRAS itself is an attractive alternative. We developed a transient ex vivo patient-derived matched mucosa-tumor primary culture to assess whether anti-KRAS antibody can be internalized to bind and inactivate KRAS. We showed that anti-KRAS antibody can enter live mucosa-tumor cells and specifically aggregate KRAS in the cytoplasm, thus hindering its translocation to the inner plasma membrane. The mis-localization of KRAS reduces KRAS dwelling time at the site where it tethers to activate downstream effectors. We previously showed that expression of SOX9 was KRAS-mutation-dependent and possibly a better effector than ERK in CRC. Herein, we showed that anti-KRAS antibody treated tumor cells have less intense SOX9 cytoplasmic and nuclear staining compared to untreated cells. Our results demonstrated that internalized anti-KRAS antibody inhibits KRAS function in tumor. With an efficient intracellular antibody delivery system, this can be further developed as combinatorial therapeutics for CRC and other KRAS-driven cancers.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Yee Syuen Low
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Michelle Lo
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Michelle Wong
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Aik Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | | | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- *Correspondence: Peh Yean Cheah,
| |
Collapse
|
13
|
Abstract
As a natural function, antibodies defend the host from infected cells and pathogens by recognizing their pathogenic determinants. Antibodies (Abs) gained wide acceptance with an enormous impact on human health and have predominantly captured the arena of bio-therapeutics and bio-diagnostics. The scope of Ab-based biologics is vast, and it is likely to solve many unmet clinical needs in future. The majority of attention is now devoted to developing innovative technologies for manufacturing and engineering Abs, better suited to satisfy human needs. The advent of Ab engineering technologies (AET) led to phenomenal developments leading to the generation of Abs-/Ab-derived molecules with desirable functional properties proportional to their expanding requirements. Evolution brought by AET, from the naturally occurring Ab forms to several advanced Ab formats and derivatives, was much needed as it is of great interest to the pharmaceutical industry. Thus, numerous advancements in AET have propelled success in therapeutic Ab development, along with the potential for ever-increasing improvements. Unique characteristics of Abs, such as its diversity, specificity, structural integrity and an array of possible applications, together inspire continuous innovation in the field. Overall, the AET could assist in conquer of several limitations of Abs in terms of their applicability in the field of therapeutics, diagnostics and research; AET has so far led to the production of next-generation Abs, which have revolutionized these arenas. Here in this review, we discuss the various distinguished engineering platforms for Ab development and the progress in modern therapeutics by the so-called "next-generation Abs."
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Banaras Hindu University, Varanasi, India.,Amity University Rajasthan, Jaipur, India
| |
Collapse
|
14
|
Lam KK, Wong SH, Cheah PY. Targeting the 'Undruggable' Driver Protein, KRAS, in Epithelial Cancers: Current Perspective. Cells 2023; 12:cells12040631. [PMID: 36831298 PMCID: PMC9954350 DOI: 10.3390/cells12040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
This review summarizes recent development in synthetic drugs and biologics targeting intracellular driver genes in epithelial cancers, focusing on KRAS, and provides a current perspective and potential leads for the field. Compared to biologics, small molecule inhibitors (SMIs) readily penetrate cells, thus being able to target intracellular proteins. However, SMIs frequently suffer from pleiotropic effects, off-target cytotoxicity and invariably elicit resistance. In contrast, biologics are much larger molecules limited by cellular entry, but if this is surmounted, they may have more specific effects and less therapy-induced resistance. Exciting breakthroughs in the past two years include engineering of non-covalent KRAS G12D-specific inhibitor, probody bispecific antibodies, drug-peptide conjugate as MHC-restricted neoantigen to prompt immune response by T-cells, and success in the adoptive cell therapy front in both breast and pancreatic cancers.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
| | | | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
15
|
Karpinska A, Magiera G, Kwapiszewska K, Hołyst R. Cellular Uptake of Bevacizumab in Cervical and Breast Cancer Cells Revealed by Single-Molecule Spectroscopy. J Phys Chem Lett 2023; 14:1272-1278. [PMID: 36719904 PMCID: PMC9923738 DOI: 10.1021/acs.jpclett.2c03590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Bevacizumab is a biological drug that is now extensively studied in clinics against various types of cancer. Although bevacizumab's action is preferably extracellular, there are reports suggesting its internalization into cancer cells, consequently decreasing its therapeutic potential. Here we are solving this issue by applying fluorescence correlation spectroscopy in living cells. We tracked single molecules of fluorescent bevacizumab in MDA-MB-231 and HeLa cells and proved that mobility measurements bring significant added value to standard imaging techniques. We confirmed the presence of the drug in intracellular vesicles. Additionally, we explicitly excluded the presence of a free cytosolic fraction of bevacizumab in both studied cell types. Extracellular and intracellular concentrations of the drug were measured, giving a partition coefficient on the order of 10-5, comparable with the spontaneous uptake of biologically inert nanoparticles. Our work presents how techniques and models developed for physics can answer biological questions.
Collapse
Affiliation(s)
- Aneta Karpinska
- Department
of Soft Condensed Matter, Institute of Physical
Chemistry PAS, 01-224 Warsaw, Poland
| | - Gaweł Magiera
- Department
of Medicine, Poznan University of Medical
Sciences, 61-701 Poznan, Poland
| | - Karina Kwapiszewska
- Department
of Soft Condensed Matter, Institute of Physical
Chemistry PAS, 01-224 Warsaw, Poland
| | - Robert Hołyst
- Department
of Soft Condensed Matter, Institute of Physical
Chemistry PAS, 01-224 Warsaw, Poland
| |
Collapse
|
16
|
Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies (Basel) 2022; 11:antib11030049. [PMID: 35892709 PMCID: PMC9326752 DOI: 10.3390/antib11030049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. For targeting TAAs or neoantigens, adoptive T-cell therapies with activated autologous T cells from cancer patients transduced with novel recombinant TCRs or chimeric antigen receptors have been successfully applied. Many TAAs and most neoantigens are expressed in the cytoplasm or nucleus of tumor cells. As alternative to adoptive T-cell therapy, the mRNA of intracellular tumor antigens can be depleted by RNAi, the corresponding genes or proteins deleted by CRISPR-Cas or inactivated by kinase inhibitors or by intrabodies, respectively. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. For specifically delivering intrabodies into tumor cells, the usage of new capsid-modified adeno-associated viruses and lipid nanoparticles coupled with specific ligands to cell surface receptors can be used and might bring cancer intrabodies into the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
17
|
Jung K, Son MJ, Lee SY, Kim JA, Ko DH, Yoo S, Kim CH, Kim YS. Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8 + T cells for cancer immunotherapy. Mol Cancer 2022; 21:102. [PMID: 35459256 PMCID: PMC9027861 DOI: 10.1186/s12943-022-01574-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Redirecting pre-existing virus-specific cytotoxic CD8+ T lymphocytes (CTLs) to tumors by simulating a viral infection of the tumor cells has great potential for cancer immunotherapy. However, this strategy is limited by lack of amenable method for viral antigen delivery into the cytosol of target tumors. Here, we addressed the limit by developing a CD8+T cell epitope-delivering antibody, termed a TEDbody, which was engineered to deliver a viral MHC-I epitope peptide into the cytosol of target tumor cells by fusion with a tumor-specific cytosol-penetrating antibody. Methods To direct human cytomegalovirus (CMV)-specific CTLs against tumors, we designed a series of TEDbodies carrying various CMV pp65 antigen-derived peptides. CMV-specific CTLs from blood of CMV-seropositive healthy donors were expanded for use in in vitro and in vivo experiments. Comprehensive cellular assays were performed to determine the presentation mechanism of TEDbody-mediated CMV peptide-MHC-I complex (CMV-pMHCI) on the surface of target tumor cells and the recognition and lysis by CMV-specific CTLs. In vivo CMV-pMHCI presentation and antitumor efficacy of TEDbody were evaluated in immunodeficient mice bearing human tumors. Results TEDbody delivered the fused epitope peptides into target tumor cells to be intracellularly processed and surface displayed in the form of CMV-pMHCI, leading to disguise target tumor cells as virally infected cells for recognition and lysis by CMV-specific CTLs. When systemically injected into tumor-bearing immunodeficient mice, TEDbody efficiently marked tumor cells with CMV-pMHCI to augment the proliferation and cytotoxic property of tumor-infiltrated CMV-specific CTLs, resulting in significant inhibition of the in vivo tumor growth by redirecting adoptively transferred CMV-specific CTLs. Further, combination of TEDbody with anti-OX40 agonistic antibody substantially enhanced the in vivo antitumor activity. Conclusion Our study offers an effective technology for MHC-I antigen cytosolic delivery. TEDbody may thus have utility as a therapeutic cancer vaccine to redirect pre-existing anti-viral CTLs arising from previously exposed viral infections to attack tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01574-0.
Collapse
Affiliation(s)
- Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Min-Jeong Son
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Se-Young Lee
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Deok-Han Ko
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Sojung Yoo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Chul-Ho Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.,Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
18
|
Kamat V, Radtke JR, Hu Q, Wang W, Sweet IR, Hampe CS. Autoantibodies directed against glutamate decarboxylase interfere with glucose-stimulated insulin secretion in dispersed rat islets. Int J Exp Pathol 2022; 103:140-148. [PMID: 35246889 PMCID: PMC9264341 DOI: 10.1111/iep.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/17/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
Islet autoantibodies, including autoantibodies directed against the 65kDa isoform of glutamate decarboxylase (GAD65Ab), are present in the majority of patients with newly diagnosed type 1 diabetes (T1D). Whereas these autoantibodies are historically viewed as an epiphenomenon of the autoimmune response with no significant pathogenic function, we consider in this study the possibility that they impact the major islet function, namely glucose-stimulated insulin secretion. Two human monoclonal GAD65Ab (GAD65 mAb) (b78 and b96.11) were investigated for uptake by live rat beta cells, subcellular localization and their effect on glucose-stimulated insulin secretion. The GAD65 mAbs were internalized by live pancreatic beta cells, where they localized to subcellular structures in an epitope-specific manner. Importantly, GAD65 mAb b78 inhibited, while GAD65 mAb b96.11 enhanced, glucose-stimulated insulin secretion (GSIS). These opposite effects on GSIS rule out non-specific effects of the antibodies and suggest that internalization of the antibody leads to epitope-specific interaction with intracellular machinery regulating insulin granule release. The most likely explanation for the alteration of GSIS by GAD65 Abs is via changes in GABA release due to inhibition or change in GAD65 enzyme activity. This is the first report indicating an active role of GAD65Ab in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Varun Kamat
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jared R Radtke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Qingxun Hu
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Wang Wang
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
20
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
21
|
A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19. Int J Mol Sci 2021; 22:ijms222111953. [PMID: 34769383 PMCID: PMC8584575 DOI: 10.3390/ijms222111953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains spike proteins that assist the virus in entering host cells. In the absence of a specific intervention, efforts are afoot throughout the world to find an effective treatment for SARS-CoV-2. Through innovative techniques, monoclonal antibodies (MAbs) are being designed and developed to block a particular pathway of SARS-CoV-2 infection. More than 100 patent applications describing the development of MAbs and their application against SARS-CoV-2 have been registered. Most of them target the receptor binding protein so that the interaction between virus and host cell can be prevented. A few monoclonal antibodies are also being patented for the diagnosis of SARS-CoV-2. Some of them, like Regeneron® have already received emergency use authorization. These protein molecules are currently preferred for high-risk patients such as those over 65 years old with compromised immunity and those with metabolic disorders such as obesity. Being highly specific in action, monoclonal antibodies offer one of the most appropriate interventions for both the prevention and treatment of SARS-CoV-2. Technological advancement has helped in producing highly efficacious MAbs. However, these agents are known to induce immunogenic and non-immunogenic reactions. More research and testing are required to establish the suitability of administering MAbs to all patients at risk of developing a severe illness. This patent study is focused on MAbs as a therapeutic option for treating COVID-19, as well as their invention, patenting information, and key characteristics.
Collapse
|
22
|
Benn JA, Mukadam AS, McEwan WA. Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease. Semin Cell Dev Biol 2021; 126:138-149. [PMID: 34654628 DOI: 10.1016/j.semcdb.2021.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Antibodies mediate the majority of their effects in the extracellular domain, or in intracellular compartments isolated from the cytosol. Under a growing list of circumstances, however, antibodies are found to gain access to the cytoplasm. Cytosolic immune complexes are bound by the atypical antibody receptor TRIM21, which mediates the rapid degradation of the immune complexes at the proteasome. These discoveries have informed the development of TRIM-Away, a technique to selectively deplete proteins using delivery of antibodies into cells. A range of related approaches that elicit selective protein degradation using intracellular constructs linking antibody fragments to degradative effector functions have also been developed. These methods hold promise for inducing the degradation of proteins as both research tools and as a novel therapeutic approach. Protein aggregates are a pathophysiological feature of neurodegenerative diseases and are considered to have a causal role in pathology. Immunotherapy is emerging as a promising route towards their selective targeting, and a role of antibodies in the cytosol has been demonstrated in cell-based assays. This review will explore the mechanisms by which therapeutic antibodies engage and eliminate intracellularly aggregated proteins. We will discuss how future developments in intracellular antibody technology may enhance the therapeutic potential of such antibody-derived therapies.
Collapse
Affiliation(s)
- Jonathan A Benn
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - Aamir S Mukadam
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK.
| |
Collapse
|
23
|
Abstract
RAS proteins represent critical drivers of tumor development and thus are the focus of intense efforts to pharmacologically inhibit these proteins in human cancer. Although recent success has been attained in developing clinically efficacious inhibitors to KRASG12C, there remains a critical need for developing approaches to inhibit additional mutant RAS proteins. A number of anti-RAS biologics have been developed which reveal novel and potentially therapeutically targetable vulnerabilities in oncogenic RAS. This review will discuss the growing field of anti-RAS biologics and potential development of these reagents into new anti-RAS therapies.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
24
|
Engineering of an EpCAM-targeting cyclic peptide to improve the EpCAM-mediated cellular internalization and tumor accumulation of a peptide-fused antibody. Biochem Biophys Res Commun 2021; 573:35-41. [PMID: 34388452 DOI: 10.1016/j.bbrc.2021.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Fusion of a target-specific peptide to a full-length antibody (Ab) can result in a peptide-Ab fusion protein with additional specificity and enhanced activity. We recently developed an intracellular pan-RAS-targeting cytosol-penetrating antibody, RT22-ep59, in which a tumor-specific targeting ability was achieved via the fusion of an epithelial cell adhesion molecule (EpCAM) targeting cyclic peptide (ep133). Here, the aim was to enhance EpCAM-mediated endocytosis and tumor accumulation of the peptide-fused RAS-targeting Ab. Accordingly, we engineered a cyclic peptide (from ep133) that has stronger affinity for EpCAM by using yeast surface display technology and then rationally designed cyclic peptides in the Ab-fused form to enhance colloidal stability. The finally engineered EpCAM-targeting cyclic peptide (ep6)-fused Ab, ep6Ras37, has ∼10-fold stronger affinity (KD ≈ 1.9 nM) for EpCAM than that of RT22-ep59, without deterioration of biophysical properties. Compared with the parental antibody (RT22-ep59), ep6Ras37 more efficiently reached the cytosol of EpCAM-expressing cells and showed greater preferential tumor homing and accumulation in mice bearing EpCAM-expressing LoVo xenograft tumors. Thus, the high-affinity EpCAM-targeting peptide ensures efficient cellular internalization and better tumor accumulation of the peptide-fused Ab.
Collapse
|
25
|
Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13030422. [PMID: 33800976 PMCID: PMC8003994 DOI: 10.3390/pharmaceutics13030422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
With more than 90 approved drugs by 2020, therapeutic antibodies have played a central role in shifting the treatment landscape of many diseases, including autoimmune disorders and cancers. While showing many therapeutic advantages such as long half-life and highly selective actions, therapeutic antibodies still face many outstanding issues associated with their pharmacokinetics (PK) and pharmacodynamics (PD), including high variabilities, low tissue distributions, poorly-defined PK/PD characteristics for novel antibody formats, and high rates of treatment resistance. We have witnessed many successful cases applying PK/PD modeling to answer critical questions in therapeutic antibodies’ development and regulations. These models have yielded substantial insights into antibody PK/PD properties. This review summarized the progress, challenges, and future directions in modeling antibody PK/PD and highlighted the potential of applying mechanistic models addressing the development questions.
Collapse
|
26
|
Kim JE, Lee DH, Jung K, Kim EJ, Choi Y, Park HS, Kim YS. Engineering of Humanized Antibodies Against Human Interleukin 5 Receptor Alpha Subunit That Cause Potent Antibody-Dependent Cell-Mediated Cytotoxicity. Front Immunol 2021; 11:593748. [PMID: 33488590 PMCID: PMC7820887 DOI: 10.3389/fimmu.2020.593748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Patients with severe eosinophilic asthma (SEA; characterized by persistent eosinophilia in blood and airway tissues) experience frequent asthma exacerbations with poor clinical outcomes. Interleukin 5 (IL-5) and IL-5 receptor alpha subunit (IL-5α) play key roles in eosinophilia maintenance, and relevant therapeutic strategies include the development of antibodies (Abs) against IL-5 or IL-5α to control eosinophilia. Benralizumab, an anti–IL-5α Ab that depletes eosinophils mainly via Ab-dependent cell-mediated cytotoxicity and through blockage of IL-5 function on eosinophils, has been clinically approved for patients with SEA. Here, we report engineering of a new humanized anti–IL-5Rα Ab with potent biological activity. We first raised murine Abs against human IL-5Rα, humanized a leading murine Ab, and then further engineered the humanized Abs to enhance their affinity for IL-5Rα using the yeast surface display technology. The finally engineered version of the Ab, 5R65.7, with affinity (KD ≈ 4.64 nM) stronger than that of a clinically relevant benralizumab analogue (KD ≈ 26.8 nM) showed improved neutralizing activity toward IL-5–dependent cell proliferation in a reporter cell system. Domain level Ab epitope mapping revealed that 5R65.7 recognizes membrane-proximal domain 3 of IL-5Rα, distinct from domain I epitope of the benralizumab analogue. In ex vivo assays with peripheral eosinophils from patients with SEA and healthy donors, 5R65.7 manifested more potent biological activities than the benralizumab analogue did, including inhibition of IL-5–dependent proliferation of eosinophils and induction of eosinophil apoptosis through autologous natural-killer-cell–mediated Ab-dependent cell-mediated cytotoxicity. Our study provides a potent anti–IL-5Rα Ab, 5R65.7, which is worthy of further testing in preclinical and clinical trials against SEA as a potential alternative to the current therapeutic arsenal.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Eun-Ji Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| |
Collapse
|
27
|
Muralidharan-Chari V, Wurz Z, Doyle F, Henry M, Diendorfer A, Tenenbaum SA, Borth N, Eveleth E, Sharfstein ST. PTSelect™: A post-transcriptional technology that enables rapid establishment of stable CHO cell lines and surveillance of clonal variation. J Biotechnol 2020; 325:360-371. [PMID: 33115662 DOI: 10.1016/j.jbiotec.2020.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
Currently, stable Chinese hamster ovary cell lines producing therapeutic, recombinant proteins are established either by antibiotic and/or metabolic selection. Here, we report a novel technology, PTSelect™ that utilizes an siRNA cloned upstream of the gene of interest (GOI) that is processed to produce functional PTSelect™-siRNAs, which enable cell enrichment. Cells with stably integrated GOI are selected and separated from cells without GOI by transfecting CD4/siRNA mRNA regulated by PTSelect™-siRNAs and exploiting the variable expression of CD4 on the cell surface. This study describes the PTSelect™ principle and compares the productivity, doubling time and stability of clones developed by PTSelect™ with conventionally developed clones. PTSelect™ rapidly established a pool population with comparable stability and productivity to pools generated by traditional methods and can further be used to easily monitor productivity changes due to clonal drift, identifying individual cells with reduced productivity.
Collapse
Affiliation(s)
| | - Zachary Wurz
- HocusLocus, LLC, 253 Fuller Road, Albany NY 12203, USA
| | - Francis Doyle
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA
| | - Matthew Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Andreas Diendorfer
- Austrian Centre of Industrial Biotechnology, Graz, Austria, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Scott A Tenenbaum
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology, Graz, Austria, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA.
| |
Collapse
|
28
|
Lv W, Champion JA. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102315. [PMID: 33065253 DOI: 10.1016/j.nano.2020.102315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Intracellular antibody delivery into live cells has significant implications for research and therapeutic applications. However, many delivery systems lack potency due to low uptake and/or endosomal entrapment and understanding of intracellular delivery processes is lacking. Herein, we studied the cellular uptake, intracellular trafficking and targeting of antibodies using our previously developed Hex antibody nanocarrier. We demonstrated Hex-antibodies were internalized through multiple endocytic routes into lysosomes and provide evidence of endo/lysosomal disruption and Hex-antibody release to the cytosol. Cytosolic antibodies retained their bioactivity for at least 24 h. Functional effect of Hex delivered anti-STAT3 antibodies was evidenced by inhibition of nuclear translocation of cytosolic transcription factor STAT3. This study has generated understanding of key steps in the Hex intracellular antibody delivery system and will facilitate the development of effective cytosolic antibody delivery and applications in both the therapeutic and research domains.
Collapse
Affiliation(s)
- Wei Lv
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
29
|
Shimazaki Y, Inoue A, Ikeuchi H. Electrophoretic injection and reaction of dye-bound enzymes to protein and bacteria within gel. J Microbiol Methods 2020; 176:106028. [PMID: 32795638 DOI: 10.1016/j.mimet.2020.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
Three-dimensional (3D) cell cultures within gels are used to examine physiological reactions between cells, including bacteria and macromolecules such as enzymes. Using non-denaturing electrophoresis, an anionic Coomassie Brilliant Blue (CBB) dye successfully bound to enzymes such as trypsin and lysozyme, and reacted with a protein and a bacterium within a gel. Both CBB-bound trypsin and lysozyme retained their enzymatic activities and migrated toward the anode in non-denaturing electrophoresis. CBB-bound trypsin successfully digested the iron-binding protein, transferrin, within the gel. Furthermore, the activity of esterase extracted from the bacteria, Bacillus subtilis was analyzed by the non-denaturing electrophoresis containing both the bacteria and the CBB-bound lysozyme after the bacteriolysis of the bacteria by the addition of CBB-bound lysozyme. This method can be applied to deliver enzymes to organisms including bacteria within 3D cell cultures.
Collapse
Affiliation(s)
- Youji Shimazaki
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan; Faculty of Science, Ehime University, Matsuyama, Japan.
| | - Aoshi Inoue
- Faculty of Science, Ehime University, Matsuyama, Japan
| | | |
Collapse
|
30
|
Gordon RE, Nemeth JF, Singh S, Lingham RB, Grewal IS. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics. Trends Biotechnol 2020; 39:298-310. [PMID: 32807530 DOI: 10.1016/j.tibtech.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Intracellular delivery of therapeutic antibodies is highly desirable but remains a challenge for biomedical research and the pharmaceutical industry. Approximately two-thirds of disease-associated targets are found inside the cell. Difficulty blocking these targets with available drugs creates a need for technology to deliver highly specific therapeutic antibodies intracellularly. Historically, antibodies have not been believed to traverse the cell membrane and neutralize intracellular targets. Emerging evidence has revealed that anti-DNA autoantibodies found in systemic lupus erythematosus (SLE) patients can penetrate inside the cell. Harnessing this technology has the potential to accelerate the development of drugs against intracellular targets. Here, we dissect the mechanisms of the intracellular localization of SLE antibodies and discuss how to apply these insights to engineer successful cell-penetrating antibody drugs.
Collapse
Affiliation(s)
- Renata E Gordon
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Jennifer F Nemeth
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Russell B Lingham
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
31
|
Niamsuphap S, Fercher C, Kumble S, Huda P, Mahler SM, Howard CB. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opin Drug Deliv 2020; 17:1189-1211. [DOI: 10.1080/17425247.2020.1781088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchada Niamsuphap
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Christian Fercher
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology, AIBN, University of Queensland, Brisbane, Australia
| | - Sumukh Kumble
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Pie Huda
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging (CAI), University of Queensland, Brisbane, Australia
| | - Stephen M Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Abstract
Bispecific therapeutics target two distinct antigens simultaneously and provide novel functionalities that are not attainable with single monospecific molecules or combinations of them. The unique potential of bispecific therapeutics is driving extensive efforts to discover synergistic dual targets, design molecular formats to integrate bispecific elements, and accelerate successful clinical translation. In particular, the past decade has witnessed a boom in the design and development of bispecific antibody formats with more than 100 collections to date. Despite the remarkable progress that has been made to expand the number of formats, qualitative fine-tuning of bispecific formats is needed to achieve optimal dual-target engagement based on understanding of the spatiotemporal interdependence of the two physically linked binding specificities and the complex target biology associated with bispecific approaches. This review provides insights into the design parameters - including affinity, valency, and geometry - that need to be considered at an early stage of development in order to take the best advantage of bispecific therapeutics.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, South Korea.
| |
Collapse
|
33
|
Shin SM, Kim JS, Park SW, Jun SY, Kweon HJ, Choi DK, Lee D, Cho YB, Kim YS. Direct targeting of oncogenic RAS mutants with a tumor-specific cytosol-penetrating antibody inhibits RAS mutant-driven tumor growth. SCIENCE ADVANCES 2020; 6:eaay2174. [PMID: 31998840 PMCID: PMC6962039 DOI: 10.1126/sciadv.aay2174] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/08/2019] [Indexed: 05/07/2023]
Abstract
Oncogenic RAS mutant (RASMUT) proteins have been considered undruggable via conventional antibody regimens owing to the intracellular location restricting conventional-antibody accessibility. Here, we report a pan-RAS-targeting IgG antibody, inRas37, which directly targets the intracellularly activated form of various RASMUT subtypes after tumor cell-specific internalization into the cytosol to block the interactions with effector proteins, thereby suppressing the downstream signaling. Systemic administration of inRas37 exerted a potent antitumor activity in a subset of RASMUT tumor xenografts in mice, but little efficacy in RASMUT tumors with concurrent downstream PI3K mutations, which were overcome by combination with a PI3K inhibitor. The YAP1 protein was up-regulated as an adaptive resistance-inducing response to inRas37 in RASMUT-dependent colorectal tumors; accordingly, a combination of inRas37 with a YAP1 inhibitor manifested synergistic antitumor effects in vitro and in vivo. Our study offers a promising pan-RAS-targeting antibody and the corresponding therapeutic strategy against RASMUT tumors.
Collapse
Affiliation(s)
- Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sei-Yong Jun
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hye-Jin Kweon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dong-Ki Choi
- Orum Therapeutics Inc., Daejeon 34050, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
34
|
Gaston J, Maestrali N, Lalle G, Gagnaire M, Masiero A, Dumas B, Dabdoubi T, Radošević K, Berne PF. Intracellular delivery of therapeutic antibodies into specific cells using antibody-peptide fusions. Sci Rep 2019; 9:18688. [PMID: 31822703 PMCID: PMC6904672 DOI: 10.1038/s41598-019-55091-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Because of their favorable properties as macromolecular drugs, antibodies are a very successful therapeutic modality for interfering with disease-relevant targets in the extracellular space or at the cell membrane. However, a large number of diseases involve cytosolic targets and designing antibodies able to efficiently reach intracellular compartments would expand the antibody-tractable conditions. Here, we genetically fused cell penetrating peptides (CPPs) at various positions to an antibody targeting cancer cells, evaluated the developability features of the resulting antibody-peptide fusions and the ability of selected constructs to reach the cytosol. We first determined positions in the IgG structure that were permissive to CPP incorporation without destabilizing the antibody. Fusing CPPs to the C-terminus of the light chain and either before or after the hinge had the least effect on antibody developability features. These constructs were further evaluated for cell penetration efficiency. Two out of five tested CPPs significantly enhanced antibody penetration into the cytosol, in particular when fused before or after the hinge. Finally, we demonstrate that specific antibody binding to the cell surface target is necessary for efficient cell penetration of the CPP-antibody fusions. This study provides a solid basis for further exploration of therapeutic antibodies for intracellular targets.
Collapse
Affiliation(s)
- Julie Gaston
- Yubsis, 4 rue Pierre Fontaine, 91000, Evry, France
| | - Nicolas Maestrali
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Guilhem Lalle
- Department of Immunology, Virology and Inflammation, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Labex DEVweCAN, 693743, Lyon, France
| | - Marie Gagnaire
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Alessandro Masiero
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Bruno Dumas
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Tarik Dabdoubi
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Katarina Radošević
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France.
| | | |
Collapse
|
35
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
36
|
Critical Issues in the Development of Immunotoxins for Anticancer Therapy. J Pharm Sci 2019; 109:104-115. [PMID: 31669121 DOI: 10.1016/j.xphs.2019.10.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Immunotoxins (ITs) are attractive anticancer modalities aimed at cancer-specific delivery of highly potent cytotoxic protein toxins. An IT consists of a targeting domain (an antibody, cytokine, or another cell-binding protein) chemically conjugated or recombinantly fused to a highly cytotoxic payload (a bacterial and plant toxin or human cytotoxic protein). The mode of action of ITs is killing designated cancer cells through the effector function of toxins in the cytosol after cellular internalization via the targeted cell-specific receptor-mediated endocytosis. Although numerous ITs of diverse structures have been tested in the past decades, only 3 ITs-denileukin diftitox, tagraxofusp, and moxetumomab pasudotox-have been clinically approved for treating hematological cancers. No ITs against solid tumors have been approved for clinical use. In this review, we discuss critical research and development issues associated with ITs that limit their clinical success as well as strategies to overcome these obstacles. The issues include off-target and on-target toxicities, immunogenicity, human cytotoxic proteins, antigen target selection, cytosolic delivery efficacy, solid-tumor targeting, and developability. To realize the therapeutic promise of ITs, novel strategies for safe and effective cytosolic delivery into designated tumors, including solid tumors, are urgently needed.
Collapse
|
37
|
Rafique A, Satake K, Kishimoto S, Hasan Khan K, Kato DI, Ito Y. Efficient Screening and Design of Variable Domain of Heavy Chain Antibody Ligands Through High Throughput Sequencing for Affinity Chromatography to Purify Fab Fragments. Monoclon Antib Immunodiagn Immunother 2019; 38:190-200. [DOI: 10.1089/mab.2019.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Abdur Rafique
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Kiriko Satake
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Satoshi Kishimoto
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Kamrul Hasan Khan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Dai-ichiro Kato
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| |
Collapse
|
38
|
Kim JE, Jung K, Kim JA, Kim SH, Park HS, Kim YS. Engineering of anti-human interleukin-4 receptor alpha antibodies with potent antagonistic activity. Sci Rep 2019; 9:7772. [PMID: 31123339 PMCID: PMC6533264 DOI: 10.1038/s41598-019-44253-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Development of antagonistic antibody (Ab) against interleukin-4 receptor alpha (IL-4Rα) subunit of IL-4/IL-13 receptors is a promising therapeutic strategy for T helper 2 (TH2)-mediated allergic diseases such as asthma and atopic dermatitis. Here we isolated anti-human IL-4Rα antagonistic Abs from a large yeast surface-displayed human Ab library and further engineered their complementarity-determining regions to improve the affinity using yeast display technology, finally generating a candidate Ab, 4R34.1.19. When reformatted as human IgG1 form, 4R34.1.19 specifically bound to IL-4Rα with a high affinity (KD ≈ 178 pM) and effectively blocked IL-4- and IL-13-dependent signaling in a reporter cell system at a comparable level to that of the clinically approved anti-IL-4Rα dupilumab Ab analogue. Epitope mapping by alanine scanning mutagenesis revealed that 4R34.1.19 mainly bound to IL-4 binding sites on IL-4Rα with different epitopes from those of dupilumab analogue. Further, 4R34.1.19 efficiently inhibited IL-4-dependent proliferation of T cells among human peripheral blood mononuclear cells and suppressed the differentiation of naïve CD4+ T cells from healthy donors and asthmatic patients into TH2 cells, the activities of which were comparable to those of dupilumab analogue. Our work demonstrates that both affinity and epitope are critical factors for the efficacy of anti-IL-4Rα antagonistic Abs.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
39
|
Molina-Crespo Á, Cadete A, Sarrio D, Gámez-Chiachio M, Martinez L, Chao K, Olivera A, Gonella A, Díaz E, Palacios J, Dhal PK, Besev M, Rodríguez-Serrano M, García Bermejo ML, Triviño JC, Cano A, García-Fuentes M, Herzberg O, Torres D, Alonso MJ, Moreno-Bueno G. Intracellular Delivery of an Antibody Targeting Gasdermin-B Reduces HER2 Breast Cancer Aggressiveness. Clin Cancer Res 2019; 25:4846-4858. [PMID: 31064780 DOI: 10.1158/1078-0432.ccr-18-2381] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/21/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Gasdermin B (GSDMB) overexpression/amplification occurs in about 60% of HER2 breast cancers, where it promotes cell migration, resistance to anti-HER2 therapies, and poor clinical outcome. Thus, we tackle GSDMB cytoplasmic overexpression as a new therapeutic target in HER2 breast cancers. EXPERIMENTAL DESIGN We have developed a new targeted nanomedicine based on hyaluronic acid-biocompatible nanocapsules, which allow the intracellular delivery of a specific anti-GSDMB antibody into HER2 breast cancer cells both in vitro and in vivo. RESULTS Using different models of HER2 breast cancer cells, we show that anti-GSDMB antibody loaded to nanocapsules has significant and specific effects on GSDMB-overexpressing cancer cells' behavior in ways such as (i) lowering the in vitro cell migration induced by GSDMB; (ii) enhancing the sensitivity to trastuzumab; (iii) reducing tumor growth by increasing apoptotic rate in orthotopic breast cancer xenografts; and (iv) diminishing lung metastasis in MDA-MB-231-HER2 cells in vivo. Moreover, at a mechanistic level, we have shown that AbGB increases GSDMB binding to sulfatides and consequently decreases migratory cell behavior and may upregulate the potential intrinsic procell death activity of GSDMB. CONCLUSIONS Our findings portray the first evidence of the effectiveness and specificity of an antibody-based nanomedicine that targets an intracellular oncoprotein. We have proved that intracellular-delivered anti-GSDMB reduces diverse protumor GSDMB functions (migration, metastasis, and resistance to therapy) in an efficient and specific way, thus providing a new targeted therapeutic strategy in aggressive HER2 cancers with poor prognosis.
Collapse
Affiliation(s)
- Ángela Molina-Crespo
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Ana Cadete
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - David Sarrio
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Manuel Gámez-Chiachio
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
| | - Lidia Martinez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
| | - Kinlin Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | - Ana Olivera
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Andrea Gonella
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Eva Díaz
- Fundación MD Anderson Internacional, C/Gómez Hemans, Madrid, Spain
| | - José Palacios
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
- Departamento de Patología, Hospital Ramón y Cajal, IRYCIS, Ctra De Colmenar, Madrid, Spain
| | | | | | | | | | | | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
| | - Marcos García-Fuentes
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Dolores Torres
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Maria José Alonso
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain.
- Departamento de Farmacia y Tecnología Farmacéutica, Campus Vida, Universidad de Santiago de Compostela, Avenida de Barcelona s/n, Santiago de Compostela, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos, Madrid, Spain
- Fundación MD Anderson Internacional, C/Gómez Hemans, Madrid, Spain
| |
Collapse
|
40
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
41
|
Kang YW, Lee JE, Jung KH, Son MK, Shin SM, Kim SJ, Fang Z, Yan HH, Park JH, Han B, Cheon MJ, Woo MG, Lim JH, Kim YS, Hong SS. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett 2018; 438:174-186. [DOI: 10.1016/j.canlet.2018.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
|
42
|
Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front Pharmacol 2018; 9:1208. [PMID: 30405420 PMCID: PMC6207587 DOI: 10.3389/fphar.2018.01208] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A dominant area of antibody research is the extension of the use of this mighty experimental and therapeutic tool for the specific detection of molecules for diagnostics, visualization, and activity blocking. Despite the ability to raise antibodies against different proteins, numerous applications of antibodies in basic research fields, clinical practice, and biotechnology are restricted to permeabilized cells or extracellular antigens, such as membrane or secreted proteins. With the exception of small groups of autoantibodies, natural antibodies to intracellular targets cannot be used within living cells. This excludes the scope of a major class of intracellular targets, including some infamous cancer-associated molecules. Some of these targets are still not druggable via small molecules because of large flat contact areas and the absence of deep hydrophobic pockets in which small molecules can insert and perturb their activity. Thus, the development of technologies for the targeted intracellular delivery of antibodies, their fragments, or antibody-like molecules is extremely important. Various strategies for intracellular targeting of antibodies via protein-transduction domains or their mimics, liposomes, polymer vesicles, and viral envelopes, are reviewed in this article. The pitfalls, challenges, and perspectives of these technologies are discussed.
Collapse
Affiliation(s)
- Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
43
|
Kim JS, Park JY, Shin SM, Park SW, Jun SY, Hong JS, Choi DK, Kim YS. Engineering of a tumor cell-specific, cytosol-penetrating antibody with high endosomal escape efficacy. Biochem Biophys Res Commun 2018; 503:2510-2516. [PMID: 30208519 DOI: 10.1016/j.bbrc.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/28/2023]
Abstract
The main obstacles for practical uses of cytosol-penetrating peptides and proteins include their lack of cell- or tissue-specific targeting and limited cytosolic access owing to the poor endosomal escape ability. We have previously reported a cytosol-penetrating, human IgG1 antibody TMab4-WYW, generally referred to as a cytotransmab (CT), which reaches the cytosol of living cells but nonspecifically because it is endocytosed via a ubiquitously expressed receptor called heparan sulfate proteoglycan (HSPG). Here, our aim was to construct a next-generation CT with tumor cell specificity and improved endosomal escape efficiency. We first substantially reduced the HSPG-binding activity of TMab4-WYW and then fused a cyclic peptide specifically recognizing tumor-associated epithelial cell adhesion molecule (EpCAM) to the N terminus of the light chain for EpCAM-mediated endocytosis, while maintaining the endosomal escape ability in the light chain variable domain (VL), thus generating epCT05. Then, we separately engineered another CT, dubbed epCT65-AAA, with an endosomal escape ability only in the heavy chain variable domain (VH) but not in VL, by functional grafting of the endosomal escape motif of epCT05 VL to the VH. We finally combined the heavy chain of epCT65-AAA and the light chain of epCT05 to create epCT65 with endosomal escape capacity in both the VH and VL. epCT65 effectively localized to the cytosol of only EpCAM-expressing tumor cells and showed approximately twofold improved endosomal escape efficiency, as compared with CTs with endosomal escape motifs in either VH or VL. The full-IgG format CT, epCT65, with a tumor cell-specific cytosol-penetrating activity, has a great potential for practical medical applications, e.g., as a carrier for cytosolic delivery of payloads.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae-Yeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sei-Yong Jun
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin-Sun Hong
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Dong-Ki Choi
- ORUM Therapeutics Inc., Daejeon, 34050, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea; Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, 16499, Republic of Korea.
| |
Collapse
|
44
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
45
|
Abstract
As of May 1, 2017, 74 antibody-based molecules have been approved by a regulatory authority in a major market. Additionally, there are 70 and 575 antibody-based molecules in phase III and phase I/II clinical trials, respectively. These total 719 antibody-based clinical stage molecules include 493 naked IgGs, 87 antibody-drug conjugates, 61 bispecific antibodies, 37 total Fc fusion proteins, 17 radioimmunoglobulins, 13 antibody fragments, and 11 immunocytokines. New uses for these antibodies are being discovered each year. For oncology, many of the exciting new approaches involve antibody modulation of T-cells. There are over 80 antibodies in clinical trials targeting T cell checkpoints, 26 T-cell-redirected bispecific antibodies, and 145 chimeric antigen receptor (CAR) cell-based candidates (all currently in phase I or II clinical trials), totaling more than 250 T cell interacting clinical stage antibody-based candidates. Finally, significant progress has been made recently on routes of delivery, including delivery of proteins across the blood-brain barrier, oral delivery to the gut, delivery to the cellular cytosol, and gene- and viral-based delivery of antibodies. Thus, there are currently at least 864 antibody-based clinical stage molecules or cells, with incredible diversity in how they are constructed and what activities they impart. These are followed by a next wave of novel molecules, approaches, and new methods and routes of delivery, demonstrating that the field of antibody-based biologics is very innovative and diverse in its approaches to fulfill their promise to treat unmet medical needs.
Collapse
|
46
|
Spencer-Smith R, O'Bryan JP. Direct inhibition of RAS: Quest for the Holy Grail? Semin Cancer Biol 2017; 54:138-148. [PMID: 29248537 DOI: 10.1016/j.semcancer.2017.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
Abstract
RAS GTPases (H-, K-, and N-RAS) are the most frequently mutated oncoprotein family in human cancer. However, the relatively smooth surface architecture of RAS and its picomolar affinity for nucleotide have given rise to the assumption that RAS is an "undruggable" target. Recent advancements in drug screening, molecular modeling, and a greater understanding of RAS function have led to a resurgence in efforts to pharmacologically target this challenging foe. This review focuses on the state of the art of RAS inhibition, the approaches taken to achieve this goal, and the challenges of translating these discoveries into viable therapeutics.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
47
|
Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov 2017; 17:197-223. [DOI: 10.1038/nrd.2017.227] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Mandik-Nayak L, DuHadaway JB, Mulgrew J, Pigott E, Manley K, Sedano S, Prendergast GC, Laury-Kleintop LD. RhoB blockade selectively inhibits autoantibody production in autoimmune models of rheumatoid arthritis and lupus. Dis Model Mech 2017; 10:1313-1322. [PMID: 28882929 PMCID: PMC5719251 DOI: 10.1242/dmm.029835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/30/2017] [Indexed: 01/27/2023] Open
Abstract
During the development of autoimmune disease, a switch occurs in the antibody repertoire of B cells so that the production of pathogenic rather than non-pathogenic autoantibodies is enabled. However, there is limited knowledge concerning how this pivotal step occurs. Here, we present genetic and pharmacological evidence of a positive modifier function for the vesicular small GTPase RhoB in specifically mediating the generation of pathogenic autoantibodies and disease progression in the K/BxN preclinical mouse model of inflammatory arthritis. Genetic deletion of RhoB abolished the production of pathogenic autoantibodies and ablated joint inflammation in the model. Similarly, administration of a novel RhoB-targeted monoclonal antibody was sufficient to ablate autoantibody production and joint inflammation. In the MRL/lpr mouse model of systemic lupus erythematosus (SLE), another established preclinical model of autoimmune disease associated with autoantibody production, administration of the anti-RhoB antibody also reduced serum levels of anti-dsDNA antibodies. Notably, the therapeutic effects of RhoB blockade reflected a selective deficiency in response to self-antigens, insofar as RhoB-deficient mice and mice treated with anti-RhoB immunoglobulin (Ig) both mounted comparable productive antibody responses after immunization with a model foreign antigen. Overall, our results highlight a newly identified function for RhoB in supporting the specific production of pathogenic autoantibodies, and offer a preclinical proof of concept for use of anti-RhoB Ig as a disease-selective therapy to treat autoimmune disorders driven by pathogenic autoantibodies.
Collapse
Affiliation(s)
| | | | - Jennifer Mulgrew
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Elizabeth Pigott
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Kaylend Manley
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Summer Sedano
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA.,Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
49
|
Rhodes DA, Isenberg DA. TRIM21 and the Function of Antibodies inside Cells. Trends Immunol 2017; 38:916-926. [PMID: 28807517 DOI: 10.1016/j.it.2017.07.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 11/26/2022]
Abstract
Therapeutic antibodies targeting disease-associated antigens are key tools in the treatment of cancer and autoimmunity. So far, therapeutic antibodies have targeted antigens that are, or are presumed to be, extracellular. A largely overlooked property of antibodies is their functional activity inside cells. The diverse literature dealing with intracellular antibodies emerged historically from studies of the properties of some autoantibodies. The identification of tripartite motif (TRIM) 21 as an intracellular Fc receptor linking cytosolic antibody recognition to the ubiquitin proteasome system brings this research into sharper focus. We review critically the research related to intracellular antibodies, link this to the TRIM21 effector mechanism, and highlight how this work is exposing the previously restricted intracellular space to the potential of therapeutic antibodies.
Collapse
Affiliation(s)
- David A Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge, UK.
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
50
|
Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. J Control Release 2017; 255:132-141. [DOI: 10.1016/j.jconrel.2017.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/29/2022]
|