1
|
Shapiro JA. A very brief note on why bacterial evolution has physiology. J Physiol 2024; 602:2395-2399. [PMID: 37641409 DOI: 10.1113/jp284409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
The majority of bacteria live and evolve in surface biofilms. Both growth in biofilms and horizontal transfer of DNA are regulated by quorum-sensing pheromone signals. The common regulation of bacterial surface growth and DNA transfers illustrates how physiology contributes to bacterial evolution.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Kurushima J, Tomita H. Advances of genetic engineering in Streptococci and Enterococci. Microbiol Immunol 2022; 66:411-417. [PMID: 35703039 DOI: 10.1111/1348-0421.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
In the post-genome era, reverse genetic engineering is an indispensable methodology for experimental molecular biology to provide a deeper understanding of the principal relationship between genomic features and biological phenotypes. Technically, genetic engineering is carried out through allele replacement of a target genomic locus with a designed nucleotide sequence, so called site-directed mutagenesis. To artificially manipulate allele replacement through homologous recombination, researchers have improved various methodologies that are optimized to the bacterial species of interest. Here, we review widely used genetic engineering technologies, particularly for streptococci and enterococci, and recent advances that enable more effective and flexible manipulation. The development of genetic engineering has been promoted by synthetic biology approaches based on basic biology knowledge of horizontal gene transfer systems, such as natural conjugative transfer, natural transformation, and the CRISPR/Cas system. Therefore, this review also describes basic insights into molecular biology that underlie improvements in genetic engineering technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan.,Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| |
Collapse
|
3
|
Conwell M, Dooley J, Naughton PJ. Enterococcal biofilm - a nidus for antibiotic resistance transfer? J Appl Microbiol 2022; 132:3444-3460. [PMID: 34990042 PMCID: PMC9306868 DOI: 10.1111/jam.15441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Enterococci, important agents of hospital acquired infection, are listed on the WHO list of multi-drug resistant pathogens commonly encountered in hospital acquired infections are now of increasing importance, due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilm such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilm and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.
Collapse
Affiliation(s)
- M Conwell
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - Jsg Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| |
Collapse
|
4
|
Miguel-Arribas A, Val-Calvo J, Gago-Córdoba C, Izquierdo JM, Abia D, Wu LJ, Errington J, Meijer WJJ. A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Res 2021; 49:5553-5567. [PMID: 33999173 PMCID: PMC8191782 DOI: 10.1093/nar/gkab360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation allows adaptive and coordinated gene expression, and is essential for life. Processive antitermination systems alter the transcription elongation complex to allow the RNA polymerase to read through multiple terminators in an operon. Here, we describe the discovery of a novel bipartite antitermination system that is widespread among conjugative elements from Gram-positive bacteria, which we named conAn. This system is composed of a large RNA element that exerts antitermination, and a protein that functions as a processivity factor. Besides allowing coordinated expression of very long operons, we show that these systems allow differential expression of genes within an operon, and probably contribute to strict regulation of the conjugation genes by minimizing the effects of spurious transcription. Mechanistic features of the conAn system are likely to decisively influence its host range, with important implications for the spread of antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Córdoba
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Meijer WJJ, Boer DR, Ares S, Alfonso C, Rojo F, Luque-Ortega JR, Wu LJ. Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Front Mol Biosci 2021; 8:648468. [PMID: 33816561 PMCID: PMC8014075 DOI: 10.3389/fmolb.2021.648468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial conjugation is the main horizontal gene transfer route responsible for the spread of antibiotic resistance, virulence and toxin genes. During conjugation, DNA is transferred from a donor to a recipient cell via a sophisticated channel connecting the two cells. Conjugation not only affects many different aspects of the plasmid and the host, ranging from the properties of the membrane and the cell surface of the donor, to other developmental processes such as competence, it probably also poses a burden on the donor cell due to the expression of the large number of genes involved in the conjugation process. Therefore, expression of the conjugation genes must be strictly controlled. Over the past decade, the regulation of the conjugation genes present on the conjugative Bacillus subtilis plasmid pLS20 has been studied using a variety of methods including genetic, biochemical, biophysical and structural approaches. This review focuses on the interplay between RcopLS20, RappLS20 and Phr*pLS20, the proteins that control the activity of the main conjugation promoter Pc located upstream of the conjugation operon. Proper expression of the conjugation genes requires the following two fundamental elements. First, conjugation is repressed by default and an intercellular quorum-signaling system is used to sense conditions favorable for conjugation. Second, different layers of regulation act together to repress the Pc promoter in a strict manner but allowing rapid activation. During conjugation, ssDNA is exported from the cell by a membrane-embedded DNA translocation machine. Another membrane-embedded DNA translocation machine imports ssDNA in competent cells. Evidences are reviewed indicating that conjugation and competence are probably mutually exclusive processes. Some of the questions that remain unanswered are discussed.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Laboratory 402, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Saúl Ares
- Laboratory 35, C. Grupo Interdisciplinar de Sistemas Complejos and Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Laboratory B08, Systems Biochemistry of Bacterial Division Lab, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Laboratory 216, Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Juan R Luque-Ortega
- Laboratory S07, Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
6
|
Pessione E. The Less Expensive Choice: Bacterial Strategies to Achieve Successful and Sustainable Reciprocal Interactions. Front Microbiol 2021; 11:571417. [PMID: 33584557 PMCID: PMC7873842 DOI: 10.3389/fmicb.2020.571417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria, the first organisms that appeared on Earth, continue to play a central role in ensuring life on the planet, both as biogeochemical agents and as higher organisms' symbionts. In the last decades, they have been employed both as bioremediation agents for cleaning polluted sites and as bioconversion effectors for obtaining a variety of products from wastes (including eco-friendly plastics and green energies). However, some recent reports suggest that bacterial biodiversity can be negatively affected by the present environmental crisis (global warming, soil desertification, and ocean acidification). This review analyzes the behaviors positively selected by evolution that render bacteria good models of sustainable practices (urgent in these times of climate change and scarcity of resources). Actually, bacteria display a tendency to optimize rather than maximize, to economize energy and building blocks (by using the same molecule for performing multiple functions), and to recycle and share metabolites, and these are winning strategies when dealing with sustainability. Furthermore, their ability to establish successful reciprocal relationships by means of anticipation, collective actions, and cooperation can also constitute an example highlighting how evolutionary selection favors behaviors that can be strategic to contain the present environmental crisis.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
7
|
Single-Cell Analysis Reveals that the Enterococcal Sex Pheromone Response Results in Expression of Full-Length Conjugation Operon Transcripts in All Induced Cells. J Bacteriol 2020; 202:JB.00685-19. [PMID: 32041799 DOI: 10.1128/jb.00685-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
For high-frequency transfer of pCF10 between E. faecalis cells, induced expression of the pCF10 genes encoding conjugative machinery from the prgQ operon is required. This process is initiated by the cCF10 (C) inducer peptide produced by potential recipient cells. The expression timing of prgB, an "early" gene just downstream of the inducible promoter, has been studied extensively in single cells. However, several previous studies suggest that only 1 to 10% of donors induced for early prgQ gene expression actually transfer plasmids to recipients, even at a very high recipient population density. One possible explanation for this is that only a minority of pheromone-induced donors actually transcribe the entire prgQ operon. Such cells would not be able to functionally conjugate but might play another role in the group behavior of donors. Here, we sought to (i) simultaneously assess the presence of RNAs produced from the proximal (early induced transcripts [early Q]) and distal (late Q) portions of the prgQ operon in individual cells, (ii) investigate the prevalence of heterogeneity in induced transcript length, and (iii) evaluate the temporality of induced transcript expression. Using fluorescent in situ hybridization chain reaction (HCR) transcript labeling and single-cell microscopic analysis, we observed that most cells expressing early transcripts (QL, prgB, and prgA) also expressed late transcripts (prgJ, pcfC, and pcfG). These data support the conclusion that, after induction is initiated, transcription likely extends through the end of the conjugation machinery operon for most, if not all, induced cells.IMPORTANCE In Enterococcus faecalis, conjugative plasmids like pCF10 often carry antibiotic resistance genes. With antibiotic treatment, bacteria benefit from plasmid carriage; however, without antibiotic treatment, plasmid gene expression may have a fitness cost. Transfer of pCF10 is mediated by cell-to-cell signaling, which activates the expression of conjugation genes and leads to efficient plasmid transfer. Yet, not all donor cells in induced populations transfer the plasmid. We examined whether induced cells might not be able to functionally conjugate due to premature induced transcript termination. Single-cell analysis showed that most induced cells do, in fact, express all of the genes required for conjugation, suggesting that premature transcription termination within the prgQ operon does not account for failure of induced donor cell gene transfer.
Collapse
|
8
|
Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: A meta-analysis. Plasmid 2020; 108:102489. [DOI: 10.1016/j.plasmid.2020.102489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022]
|
9
|
Gour S, Kumar V, Rana M, Yadav JK. Pheromone peptide cOB1 from native Enterococcus faecalis forms amyloid-like structures: A new paradigm for peptide pheromones. J Pept Sci 2019; 25:e3178. [PMID: 31317612 DOI: 10.1002/psc.3178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022]
Abstract
Pheromone peptides are an important component of bacterial quorum-sensing system. The pheromone peptide cOB1 (VAVLVLGA) of native commensal Enterococcus faecalis has also been identified as an antimicrobial peptide (AMP) and reported to kill the prototype clinical isolate strain of E. faecalis V583. In this study, the pheromone peptide cOB1 has shown to form amyloid-like structures, a characteristic which is never reported for a pheromone peptide so far. With in silico analysis, the peptide was predicted to be highly amyloidogenic. Further, under experimental conditions, cOB1 formed aggregates displaying characteristics of amyloid structures such as bathochromic shift in Congo red absorbance, enhancement in thioflavin T fluorescence, and fibrillar morphology under transmission electron microscopy. This novel property of pheromone peptide cOB1 may have some direct effects on the binding of the pheromone to the receptor cells and subsequent conjugative transfer, making this observation more important for the therapeutics, dealing with the generation of virulent and multidrug-resistant pathogenic strains.
Collapse
Affiliation(s)
- Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Monika Rana
- Department of Chemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| |
Collapse
|
10
|
Neveling DP, Ahire JJ, Laubscher W, Rautenbach M, Dicks LMT. Genetic and Phenotypic Characteristics of a Multi-strain Probiotic for Broilers. Curr Microbiol 2019; 77:369-387. [PMID: 31832841 DOI: 10.1007/s00284-019-01797-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Bacteria isolated from different segments of the gastro-intestinal tract (GIT) of healthy free-range broilers were screened for probiotic properties. Six strains were selected and identified as Lactobacillus gallinarum, Lactobacillus johnsonii, Lactobacillus salivarius, Lactobacillus crispatus, Enterococcus faecalis and Bacillus amyloliquefaciens based on 16S rRNA, gyrB and recA gene sequence analyses. All six strains produced exopolysaccharides (EPS) and formed biofilms under conditions simulating the broiler GIT. Lactobacillus johnsonii DPN184 and L. salivarius DPN181 produced hydrogen peroxide, and L. crispatus DPN167 and E. faecalis DPN94 produced bile salt hydrolase (BSH) and phytase. Bacillus amyloliquefaciens DPN123 produced phytase, amylase, surfactin and iturin A1. No abnormalities were observed when broilers were fed the multi-strain combination, suggesting that it could be used as a probiotic.
Collapse
Affiliation(s)
- Deon P Neveling
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - Jayesh J Ahire
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - Wikus Laubscher
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
11
|
Stingl K, Koraimann G. Prokaryotic Information Games: How and When to Take up and Secrete DNA. Curr Top Microbiol Immunol 2019. [PMID: 29536355 DOI: 10.1007/978-3-319-75241-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria "decide" that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.
Collapse
Affiliation(s)
- Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
12
|
Abbott ZD, Flynn KJ, Byrne BG, Mukherjee S, Kearns DB, Swanson MS. csrT Represents a New Class of csrA-Like Regulatory Genes Associated with Integrative Conjugative Elements of Legionella pneumophila. J Bacteriol 2016; 198:553-64. [PMID: 26598366 PMCID: PMC4719454 DOI: 10.1128/jb.00732-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Bacterial evolution is accelerated by mobile genetic elements. To spread horizontally and to benefit the recipient bacteria, genes encoded on these elements must be properly regulated. Among the legionellae are multiple integrative conjugative elements (ICEs) that each encode a paralog of the broadly conserved regulator csrA. Using bioinformatic analyses, we deduced that specific csrA paralogs are coinherited with particular lineages of the type IV secretion system that mediates horizontal spread of its ICE, suggesting a conserved regulatory interaction. As a first step to investigate the contribution of csrA regulators to this class of mobile genetic elements, we analyzed here the activity of the csrA paralog encoded on Legionella pneumophila ICE-βox. Deletion of this gene, which we name csrT, had no observed effect under laboratory conditions. However, ectopic expression of csrT abrogated the protection to hydrogen peroxide and macrophage degradation that ICE-βox confers to L. pneumophila. When ectopically expressed, csrT also repressed L. pneumophila flagellin production and motility, a function similar to the core genome's canonical csrA. Moreover, csrT restored the repression of motility to csrA mutants of Bacillus subtilis, a finding consistent with the predicted function of CsrT as an mRNA binding protein. Since all known ICEs of legionellae encode coinherited csrA-type IV secretion system pairs, we postulate that CsrA superfamily proteins regulate ICE activity to increase their horizontal spread, thereby expanding L. pneumophila versatility. IMPORTANCE ICEs are mobile DNA elements whose type IV secretion machineries mediate spread among bacterial populations. All surveyed ICEs within the Legionella genus also carry paralogs of the essential life cycle regulator csrA. It is striking that the csrA loci could be classified into distinct families based on either their sequence or the subtype of the adjacent type IV secretion system locus. To investigate whether ICE-encoded csrA paralogs are bona fide regulators, we analyzed ICE-βox as a model system. When expressed ectopically, its csrA paralog inhibited multiple ICE-βox phenotypes, as well as the motility of not only Legionella but also Bacillus subtilis. Accordingly, we predict that CsrA regulators equip legionellae ICEs to promote their spread via dedicated type IV secretion systems.
Collapse
Affiliation(s)
- Zachary D Abbott
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kaitlin J Flynn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brenda G Byrne
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Nami Y, Haghshenas B, Haghshenas M, Yari Khosroushahi A. Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum. Front Microbiol 2015; 6:782. [PMID: 26284059 PMCID: PMC4518196 DOI: 10.3389/fmicb.2015.00782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/16/2015] [Indexed: 01/20/2023] Open
Abstract
Screening of lactic acid bacteria (LAB) isolated from ewe colostrum led to the identification and isolation of Enterococcus faecium CM33 with interesting features like high survival rates under acidic or bile salts condition, high tolerance for the simulated gastrointestinal condition, and high adhesive potential to Caco-2 cells. According the inhibition of pathogen adhesion test results, this strain can reduce more than 50% adhesion capacity of Escherichia coli, Shigella flexneri, Klebsiella pneumoniae, Listeria monocytogenes, and Staphylococcus aureus to Caco-2 cells. Based on the antibiotic sensitivity test findings, E. faecium CM33 was susceptible to gentamycin, vancomycin, erythromycin, ampicillin, penicillin, tetracycline, and rifampicin, but resistant to chloramphenicol, clindamycin, and kanamycin. Upon assessment of the virulence determinants for E. faecium CM33, this strain was negative for all tested virulence genes. Furthermore, the genome of this strain was evaluated for the incidence of the known enterocin genes by specific PCR amplification and discovered the genes encoding enterocins A, 31, X, and Q. Based on this study findings, the strain E. faecium CM33 can be considered as a valuable nutraceutical and can be introduced as a new potential probiotic.
Collapse
Affiliation(s)
- Yousef Nami
- Institute of Biosciences, University Putra Malaysia Selangor, Malaysia
| | - Babak Haghshenas
- Institute of Biosciences, University Putra Malaysia Selangor, Malaysia
| | - Minoo Haghshenas
- School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran ; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz, Iran
| |
Collapse
|
14
|
Kudo M, Nomura T, Yomoda S, Tanimoto K, Tomita H. Nosocomial infection caused by vancomycin-susceptible multidrug-resistantEnterococcus faecalisover a long period in a university hospital in Japan. Microbiol Immunol 2014; 58:607-14. [DOI: 10.1111/1348-0421.12190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/04/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Michiaki Kudo
- Department of General Surgical Science (Surgery I)
- Department of Bacteriology
| | | | - Sachie Yomoda
- Department of Laboratory Medicine and Clinical Laboratory Center
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Haruyoshi Tomita
- Department of Bacteriology
- Laboratory of Bacterial Drug Resistance; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| |
Collapse
|
15
|
Carasi P, Jacquot C, Romanin DE, Elie AM, De Antoni GL, Urdaci MC, Serradell MDLA. Safety and potential beneficial properties of Enterococcus strains isolated from kefir. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Ramachandran G, Singh PK, Luque-Ortega JR, Yuste L, Alfonso C, Rojo F, Wu LJ, Meijer WJJ. A complex genetic switch involving overlapping divergent promoters and DNA looping regulates expression of conjugation genes of a gram-positive plasmid. PLoS Genet 2014; 10:e1004733. [PMID: 25340403 PMCID: PMC4207663 DOI: 10.1371/journal.pgen.1004733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022] Open
Abstract
Plasmid conjugation plays a significant role in the dissemination of antibiotic resistance and pathogenicity determinants. Understanding how conjugation is regulated is important to gain insights into these features. Little is known about regulation of conjugation systems present on plasmids from Gram-positive bacteria. pLS20 is a native conjugative plasmid from the Gram-positive bacterium Bacillus subtilis. Recently the key players that repress and activate pLS20 conjugation have been identified. Here we studied in detail the molecular mechanism regulating the pLS20 conjugation genes using both in vivo and in vitro approaches. Our results show that conjugation is subject to the control of a complex genetic switch where at least three levels of regulation are integrated. The first of the three layers involves overlapping divergent promoters of different strengths regulating expression of the conjugation genes and the key transcriptional regulator RcoLS20. The second layer involves a triple function of RcoLS20 being a repressor of the main conjugation promoter and an activator and repressor of its own promoter at low and high concentrations, respectively. The third level of regulation concerns formation of a DNA loop mediated by simultaneous binding of tetrameric RcoLS20 to two operators, one of which overlaps with the divergent promoters. The combination of these three layers of regulation in the same switch allows the main conjugation promoter to be tightly repressed during conditions unfavorable to conjugation while maintaining the sensitivity to accurately switch on the conjugation genes when appropriate conditions occur. The implications of the regulatory switch and comparison with other genetic switches involving DNA looping are discussed. Plasmids are extrachromosomal, autonomously replicating units that are harbored by many bacteria. Many plasmids encode transfer function allowing them to be transferred into plasmid-free bacteria by a process named conjugation. Since many of them also carry antibiotic resistance genes, plasmid-mediated conjugation is a major mechanism in the dissemination of antibiotic resistance. In depth knowledge on the regulation of conjugation genes is a prerequisite to design measures interfering with the spread of antibiotic resistance. pLS20 is a conjugative plasmid of the soil bacterium Bacillus subtilis, which is also a gut commensal in animals and humans. Here we describe in detail the molecular mechanism by which the key transcriptional regulator tightly represses the conjugation genes during conditions unfavorable to conjugation without compromising the ability to switch on accurately the conjugation genes when appropriate. We found that conjugation is subject to the control of a unique genetic switch where at least three levels of regulation are integrated. The first level involves overlapping divergent promoters of different strengths. The second layer involves a triple function of the transcriptional regulator. And the third level of regulation concerns formation of a DNA loop mediated by the transcriptional regulator.
Collapse
Affiliation(s)
- Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Luis Yuste
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Abstract
Enterococci are leading causes of hospital-acquired infection in the United States and continue to develop resistances to new antibiotics. Many Enterococcus faecalis isolates harbor pheromone-responsive plasmids that mediate horizontal transfer of even large blocks of chromosomal genes, resulting in hospital-adapted strains over a quarter of whose genomes consist of mobile elements. Pheromones to which the donor cells respond derive from lipoprotein signal peptides. Using a novel bacterial killing assay dependent on the presence of sex pheromones, we screened a transposon mutant library for functions that relate to the production and/or activity of the effector pheromone. Here we describe a previously uncharacterized, but well-conserved, ABC transporter that contributes to pheromone production. Using three distinct pheromone-dependent mating systems, we show that mutants defective in expressing this transporter display a 5- to 6-order-of-magnitude reduction in conjugation efficiency. In addition, we demonstrate that the ABC transporter mutant displays an altered biofilm architecture, with a significant reduction in biofilm biomass compared to that of its isogenic parent, suggesting that pheromone activity also influences biofilm development. The conservation of this peptide transporter across the Firmicutes suggests that it may also play an important role in cell-cell communication in other species within this important phylum. Enterococcus faecalis ranks as one of the leading causes of hospital-associated infections. Strains possessing resistance to multiple antibiotics are becoming all too common in clinical settings. Pheromone-responsive plasmids play an important role in harboring and disseminating these antibiotic resistance genes. Here we have identified a novel ABC transporter that is responsible for the secretion of peptide pheromones, which enables communication between cells to mediate plasmid transfer. We have also shown that this transporter is important for biofilm formation, providing a strong rationale for its use as a viable therapeutic target which could be targeted to curb infection, as well as the spread of existing drug resistance.
Collapse
|
18
|
Singh PK, Meijer WJJ. Diverse regulatory circuits for transfer of conjugative elements. FEMS Microbiol Lett 2014; 358:119-28. [PMID: 24995588 DOI: 10.1111/1574-6968.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022] Open
Abstract
Conjugation systems are present on many plasmids as well as on chromosomally integrated elements. Conjugation, which is a major route by which bacteria exchange genetic material, is a complex and energy-consuming process. Hence, a shared feature of conjugation systems is that expression of the genes involved is strictly controlled in such a way that conjugation is kept in a default 'OFF' state and that the process is switched on only under conditions that favor the transfer of the conjugative element into a recipient cell. However, there is a remarkable diversity in the way by which conjugation genes present on different transferable elements are regulated. Here, we review these diverse regulatory circuits on the basis of several prototypes with a special focus on the recently discovered regulation of the conjugation genes present on the native Bacillus subtilis plasmid pLS20.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | |
Collapse
|
19
|
Koraimann G, Wagner MA. Social behavior and decision making in bacterial conjugation. Front Cell Infect Microbiol 2014; 4:54. [PMID: 24809026 PMCID: PMC4010749 DOI: 10.3389/fcimb.2014.00054] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/09/2014] [Indexed: 01/05/2023] Open
Abstract
Bacteria frequently acquire novel genes by horizontal gene transfer (HGT). HGT through the process of bacterial conjugation is highly efficient and depends on the presence of conjugative plasmids (CPs) or integrated conjugative elements (ICEs) that provide the necessary genes for DNA transmission. This review focuses on recent advancements in our understanding of ssDNA transfer systems and regulatory networks ensuring timely and spatially controlled DNA transfer (tra) gene expression. As will become obvious by comparing different systems, by default, tra genes are shut off in cells in which conjugative elements are present. Only when conditions are optimal, donor cells—through epigenetic alleviation of negatively acting roadblocks and direct stimulation of DNA transfer genes—become transfer competent. These transfer competent cells have developmentally transformed into specialized cells capable of secreting ssDNA via a T4S (type IV secretion) complex directly into recipient cells. Intriguingly, even under optimal conditions, only a fraction of the population undergoes this transition, a finding that indicates specialization and cooperative, social behavior. Thereby, at the population level, the metabolic burden and other negative consequences of tra gene expression are greatly reduced without compromising the ability to horizontally transfer genes to novel bacterial hosts. This undoubtedly intelligent strategy may explain why conjugative elements—CPs and ICEs—have been successfully kept in and evolved with bacteria to constitute a major driving force of bacterial evolution.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | - Maria A Wagner
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|
20
|
Bradley JS. Which antibiotic for resistant Gram-positives, and why? J Infect 2014; 68 Suppl 1:S63-75. [DOI: 10.1016/j.jinf.2013.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2013] [Indexed: 11/30/2022]
|
21
|
Singh PK, Ramachandran G, Ramos-Ruiz R, Peiró-Pastor R, Abia D, Wu LJ, Meijer WJJ. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genet 2013; 9:e1003892. [PMID: 24204305 PMCID: PMC3814332 DOI: 10.1371/journal.pgen.1003892] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default “OFF” state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed. Bacteria evolve rapidly due to their short generation time and their ability to exchange genetic material, which can occur via different processes, collectively named Horizontal Gene Transfer (HGT). Most bacteria contain, besides a single chromosome, autonomously replicating units called plasmids. Many plasmids carry genes enabling them to be transferred into plasmid-free bacteria. This process, called conjugation, contributes significantly to HGT. Many plasmids also contain antibiotic resistance genes. Therefore, plasmid conjugation plays a major role in the spread of antibiotic resistance. Understanding the regulation of conjugation genes is essential for designing strategies to combat the spread of antibiotic resistance. We have studied the regulation of the native plasmid pLS20 from Bacillus subtilis. Besides being a soil bacterium, B. subtilis is a gut commensal in animals and humans. Here we unraveled the mechanisms controlling conjugation and found that pLS20 conjugation genes become activated when plasmid-free recipient cells are present. We have identified the repressor protein that keeps conjugation in an ‘OFF’ state, and an anti-repressor that activates conjugation. The activity of the anti-repressor is inhibited by a pLS20-encoded peptide that is secreted from the cell and can be absorbed by cells, after a secondary processing step. Ultimately, it is the signaling-peptide that dictates when conjugation genes become activated.
Collapse
Affiliation(s)
- Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Ramón Peiró-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Guo S, Mahillon J. pGIAK1, a heavy metal resistant plasmid from an obligate alkaliphilic and halotolerant bacterium isolated from the Antarctic Concordia station confined environment. PLoS One 2013; 8:e72461. [PMID: 24009682 PMCID: PMC3756968 DOI: 10.1371/journal.pone.0072461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/14/2013] [Indexed: 11/18/2022] Open
Abstract
pGIAK1 is a 38-kb plasmid originating from the obligate alkaliphilic and halotolerant Bacillaceae strain JMAK1. The strain was originally isolated from the confined environments of the Antarctic Concordia station. Analysis of the pGIAK1 38,362-bp sequence revealed that, in addition to its replication region, this plasmid contains the genetic determinants for cadmium and arsenic resistances, putative methyltransferase, tyrosine recombinase, spore coat protein and potassium transport protein, as well as several hypothetical proteins. Cloning the pGIAK1 cad operon in Bacillus cereus H3081.97 and its ars operon in Bacillus subtilis 1A280 conferred to these hosts cadmium and arsenic resistances, respectively, therefore confirming their bona fide activities. The pGIAK1 replicon region was also shown to be functional in Bacillus thuringiensis, Bacillus subtilis and Staphylococcus aureus, but was only stably maintained in B. subtilis. Finally, using an Escherichia coli - B. thuringiensis shuttle BAC vector, pGIAK1 was shown to display conjugative properties since it was able to transfer the BAC plasmid among B. thuringiensis strains.
Collapse
Affiliation(s)
- Suxia Guo
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
23
|
Goessweiner-Mohr N, Grumet L, Pavkov-Keller T, Birner-Gruenberger R, Grohmann E, Keller W. Crystallization and preliminary structure determination of the transfer protein TraM from the Gram-positive conjugative plasmid pIP501. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:178-83. [PMID: 23385763 PMCID: PMC3564624 DOI: 10.1107/s1744309113000134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/02/2013] [Indexed: 11/07/2023]
Abstract
The major means of horizontal gene spread (e.g. of antibiotic resistance) is conjugative plasmid transfer. It presents a serious threat especially for hospitalized and immuno-suppressed patients, as it can lead to the accelerated spread of bacteria with multiple antibiotic resistances. Detailed information about the process is available only for bacteria of Gram-negative (G-) origin and little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. Here we present the purification, biophysical characterization, crystallization and preliminary structure determination of the TraM C-terminal domain (TraMΔ, comprising residues 190-322 of the full-length protein), a putative transfer protein from the G+ conjugative model plasmid pIP501. The crystals diffracted to 2.5 Å resolution and belonged to space group P1, with unit-cell parameters a = 39.21, b = 54.98, c = 93.47 Å, α = 89.91, β = 86.44, γ = 78.63° and six molecules per asymmetric unit. The preliminary structure was solved by selenomethionine single-wavelength anomalous diffraction.
Collapse
Affiliation(s)
- Nikolaus Goessweiner-Mohr
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| | - Lukas Grumet
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| | - Tea Pavkov-Keller
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology and Center of Medical Research – Core Facility Mass Spectrometry, Medical University Graz, Stiftingtalstrasse 24, 8010 Graz, Styria, Austria
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany
| | - Walter Keller
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| |
Collapse
|
24
|
Goessweiner-Mohr N, Fercher C, Abajy MY, Grohmann E, Keller W. Crystallization and first data collection of the putative transfer protein TraN from the Gram-positive conjugative plasmid pIP501. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1402-5. [PMID: 23143259 PMCID: PMC3515391 DOI: 10.1107/s174430911204184x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/05/2012] [Indexed: 11/13/2022]
Abstract
Conjugative plasmid transfer is the most important route for the spread of resistance and virulence genes among bacteria. Consequently, bacteria carrying conjugative plasmids are a substantial threat to human health, especially hospitalized patients. Whilst detailed information about the process has been obtained for Gram-negative type-4 secretion systems, little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. The successful purification and crystallization of the putative transfer protein TraN from the G+ conjugative model plasmid pIP501 of Enterococcus faecalis are presented. Native crystals diffracted to 1.8 Å resolution on a synchrotron beamline. The crystals belonged to space group P2(1), with unit-cell parameters a=32.88, b=54.94, c=57.71 Å, β=91.89° and two molecules per asymmetric unit.
Collapse
Affiliation(s)
- Nikolaus Goessweiner-Mohr
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Christian Fercher
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Mohammad Yaser Abajy
- Environmental Microbiology/Genetics, Technical University Berlin, Franklinstrasse 28/29, 10587 Berlin, Germany
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Walter Keller
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| |
Collapse
|