1
|
Gilep K, Bikmetov D, Popov A, Rusanova A, Tagami S, Dubiley S, Severinov K. Novel type II toxin-antitoxin systems with VapD-like proteins. mBio 2025; 16:e0000325. [PMID: 40052803 PMCID: PMC11980593 DOI: 10.1128/mbio.00003-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/03/2025] [Indexed: 04/10/2025] Open
Abstract
Type II toxin-antitoxin (TA) systems are widespread in prokaryotes. They consist of neighboring genes encoding two small proteins: a toxin that inhibits a critical cellular process and an antitoxin that binds to and neutralizes the toxin. The VapD nuclease and the VapX antitoxin comprise a type II TA system that contributes to the virulence of the human pathogen Haemophilus influenzae. We analyzed the diversity and evolution of VapD-like proteins. By examining loci adjacent to genes coding for VapD-like proteins, we identified two novel families of antitoxins, which we named VapY and VapW. VapD toxins cognate to novel antitoxins induce the SOS response when overproduced, suggesting they target cellular processes related to genomic DNA integrity, maintenance, or replication. Though VapY has no sequence similarity to VapX, they share the same SH3 fold characterized by the five anti-parallel β sheets that form a barrel. VapW is a homolog of VapD without conserved catalytic residues required for nuclease activity. The crystal structure of the VapD-VapW complex reveals that VapW lacks the dimerization interface essential for the catalytic activity of VapD but retains the second interaction interface that enables VapD hexamerization. This allows VapW to bind VapD in the same manner that VapD dimers bind to each other in hexamers. Thus, though the VapD catalytic cleft remains accessible in the VapD-VapW complex, VapW may disrupt VapD oligomerization. To our knowledge, VapWD provides a unique example of TA systems evolution when a toxin loses its activity and becomes an antitoxin to itself. IMPORTANCE Genes encoding virulence-associated protein D (VapD) homologs are found in many pathogens such as Helicobacter pylori, Haemophilus influenzae, and Xylella fastidiosa. There are many indications that VapD proteins contribute to virulence, even though the exact mechanism is not known. VapD proteins are either encoded by stand-alone genes or form toxin-antitoxin pairs with VapX. We performed a comprehensive census of vapD-like genes and found two new antitoxins, VapW and VapY. The VapW antitoxins are catalytically inactivated variants of VapD, revealing a new evolutionary mechanism for the appearance of toxin-antitoxin pairs.
Collapse
Affiliation(s)
- Konstantin Gilep
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Bikmetov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Aleksandr Popov
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Anastasiia Rusanova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- Graduate School of Medicine, Science and Technology Shinshu University, Matsumoto City, Nagano, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²) Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Svetlana Dubiley
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Serrano S, Grujović MŽ, Marković KG, Barreto-Crespo MT, Semedo-Lemsaddek T. From Dormancy to Eradication: Strategies for Controlling Bacterial Persisters in Food Settings. Foods 2025; 14:1075. [PMID: 40232118 PMCID: PMC11942268 DOI: 10.3390/foods14061075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial persistence, a dormant state that enables microorganisms to survive harsh conditions, is a significant concern in food-industry settings, where traditional antimicrobial treatments often fail to eliminate these resilient cells. This article goes beyond conventional review by compiling critical information aimed at providing practical solutions to combat bacterial persisters in food production environments. This review explores the primary mechanisms behind persister cell formation, including toxin-antitoxin systems, the alarmone guanosine tetraphosphate (ppGpp), stochastic processes (in which persistence occurs as a random event), and the SOS response. Given the serious implications for food safety and quality, the authors also report a range of physical, chemical, and biological methods for targeting and eradicating persister cells. The strategies discussed, whether applied individually or in combination, offer varying levels of availability and applicability within the industry and can serve as a guide for implementing microbial contamination control plans. While significant progress has been achieved, further research is crucial to fully understand the complex mechanisms underlying bacterial persistence in food and to develop effective and targeted strategies for its eradication in food-industry settings. Overall, the translation of these insights into practical applications aims to support the food industry in overcoming this persistent challenge, ensuring safer, more sustainable food production.
Collapse
Affiliation(s)
- Susana Serrano
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
| | - Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Maria Teresa Barreto-Crespo
- iBET, Institute of Experimental Biology and Technology, 2781-901 Oeiras, Portugal;
- ITQB, Institute of Chemical and Biological Technology António Xavier, Nova University of Lisbon, Republic Avenue, 2780-157 Oeiras, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Wang S, Li XY, Zhu M, Deng H, Wang J, Zhang JR. The SpxA1-TenA toxin-antitoxin system regulates epigenetic variations of Streptococcus pneumoniae by targeting protein synthesis. PLoS Pathog 2024; 20:e1012801. [PMID: 39724263 PMCID: PMC11709252 DOI: 10.1371/journal.ppat.1012801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/08/2025] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.g., colony opacity) by targeting pneumococcal protein synthesis. SpxA1 and TenA were found to constitute a highly conserved type II TA system in S. pneumoniae, primarily based on the observation that overexpressing toxin TenA led to growth arrest in E. coli and enhanced autolysis in S. pneumoniae, and the antitoxin SpxA1 repressed the transcription of the spxA1-tenA operon. When the transcription of tenA was de-repressed by a spontaneous AT di-nucleotide insertion/deletion in the promoter region of the spxA1-tenA operon, TenA bound to the ribosome maturation factor RimM, and thereby reduced the cellular level of alternative sigma factor ComX (known for the activation of natural transformation-associated genes). Attenuation of ComX expression in turn enhanced the transcription of the invertase gene psrA, which favored the formation of the transparent colony phase-associated hsdS allelic configurations in the cod locus. Phenotypically, moderate expression of TenA dramatically reshaped pneumococcal epigenome and colony opacity. Because spontaneous variations frequently occur during bacterial growth in the number of the AT di-nucleotides in the promoter region of the spxA1-tenA operon, this locus acts as a programmed genetic switch that generates pneumococcal subpopulations with epigenetic and phenotypic diversity.
Collapse
Affiliation(s)
- Shaomeng Wang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xiu-Yuan Li
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Mengran Zhu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Backman T, Burbano HA, Karasov TL. Tradeoffs and constraints on the evolution of tailocins. Trends Microbiol 2024; 32:1084-1095. [PMID: 39504934 DOI: 10.1016/j.tim.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 11/08/2024]
Abstract
Phage tail-like bacteriocins (tailocins) are protein complexes produced by bacteria with the potential to kill their neighbors. Widespread throughout Gram-negative bacteria, tailocins exhibit extreme specificity in their targets, largely killing closely related strains. Despite their presence in diverse bacteria, the impact of these competitive weapons on the surrounding microbiota is largely unknown. Recent studies revealed the rapid evolution and genetic diversity of tailocins in microbial communities and suggest that there are constraints on the evolution of specificity and resistance. Given the precision of their targeted killing and the ease of engineering new specificities, understanding the evolution and ecological impact of tailocins may enable the design of promising candidates for novel targeted antibiotics.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, London, UK.
| | - Talia L Karasov
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA. eLife 2024; 13:RP94800. [PMID: 38739430 PMCID: PMC11090510 DOI: 10.7554/elife.94800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
6
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
7
|
Nielsen MR, Brodersen DE. Structural Variations and Rearrangements in Bacterial Type II Toxin-Antitoxin Systems. Subcell Biochem 2024; 104:245-267. [PMID: 38963490 DOI: 10.1007/978-3-031-58843-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Bacteria encode a wide range of survival and immunity systems, including CRISPR-Cas, restriction-modification systems, and toxin-antitoxin systems involved in defence against bacteriophages, as well as survival during challenging growth conditions or exposure to antibiotics. Toxin-antitoxin (TA) systems are small two- or three-gene cassettes consisting of a metabolic regulator (the "toxin") and its associated antidote (the "antitoxin"), which also often functions as a transcriptional regulator. TA systems are widespread in the genomes of pathogens but are also present in commensal bacterial species and on plasmids. For mobile elements such as plasmids, TA systems play a role in maintenance, and increasing evidence now points to roles of chromosomal toxin-antitoxin systems in anti-phage defence. Moreover, the widespread occurrence of toxin-antitoxin systems in the genomes of pathogens has been suggested to relate to survival during host infection as well as in persistence during antibiotic treatment. Upon repeated exposure to antibiotics, TA systems have been shown to acquire point mutations as well as more dramatic rearrangements such as in-frame deletions with potential relevance for bacterial survival and pathogenesis. In this review, we present an overview of the known functional and structural consequences of mutations and rearrangements arising in bacterial toxin-antitoxin systems and discuss their relevance for survival and persistence of pathogenic species.
Collapse
Affiliation(s)
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
8
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
9
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Hsueh BY, Ferrell MJ, Sanath-Kumar R, Bedore AM, Waters CM. Replication cycle timing determines phage sensitivity to a cytidine deaminase toxin/antitoxin bacterial defense system. PLoS Pathog 2023; 19:e1011195. [PMID: 37683045 PMCID: PMC10511110 DOI: 10.1371/journal.ppat.1011195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/20/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID, is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a deoxycytidylate deaminase that converts deoxycytidines (dC) to dexoyuridines (dU), while the RNA antitoxin (AvcI) inhibits AvcD activity. We have shown that AvcD deaminated dC nucleotides upon phage infection, but the molecular mechanism that activated AvcD was unknown. Here we show that the activation of AvcD arises from phage-induced inhibition of host transcription, leading to degradation of the labile AvcI. AvcD activation and nucleotide depletion not only decreases phage replication but also increases the formation of defective phage virions. Surprisingly, infection of phages such as T7 that are not inhibited by AvcID also lead to AvcI RNA antitoxin degradation and AvcD activation, suggesting that depletion of AvcI is not sufficient to confer protection against some phage. Rather, our results support that phage with a longer replication cycle like T5 are sensitive to AvcID-mediated protection while those with a shorter replication cycle like T7 are resistant.
Collapse
Affiliation(s)
- Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Micah J. Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Ram Sanath-Kumar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
11
|
Arai H, Anbutsu H, Nishikawa Y, Kogawa M, Ishii K, Hosokawa M, Lin SR, Ueda M, Nakai M, Kunimi Y, Harumoto T, Kageyama D, Takeyama H, Inoue MN. Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality. iScience 2023; 26:106842. [PMID: 37250803 PMCID: PMC10209535 DOI: 10.1016/j.isci.2023.106842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Hisashi Anbutsu
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuo Ishii
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shiou-Ruei Lin
- Tea Research and Extension Station, 326011 Chung-Hsing RD, Yangmei, Taoyuan, Taiwan, R.O.C
| | - Masatoshi Ueda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Madoka Nakai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yasuhisa Kunimi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University. Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
12
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
13
|
Boralli CMDS, Paganini JA, Meneses RS, Mata CPSMD, Leite EMM, Schürch AC, Paganelli FL, Willems RJL, Camargo ILBC. Characterization of blaKPC-2 and blaNDM-1 Plasmids of a K. pneumoniae ST11 Outbreak Clone. Antibiotics (Basel) 2023; 12:antibiotics12050926. [PMID: 37237829 DOI: 10.3390/antibiotics12050926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The most common resistance mechanism to carbapenems is the production of carbapenemases. In 2021, the Pan American Health Organization warned of the emergence and increase in new carbapenemase combinations in Enterobacterales in Latin America. In this study, we characterized four Klebsiella pneumoniae isolates harboring blaKPC and blaNDM from an outbreak during the COVID-19 pandemic in a Brazilian hospital. We assessed their plasmids' transference ability, fitness effects, and relative copy number in different hosts. The K. pneumoniae BHKPC93 and BHKPC104 strains were selected for whole genome sequencing (WGS) based on their pulsed-field gel electrophoresis profile. The WGS revealed that both isolates belong to ST11, and 20 resistance genes were identified in each isolate, including blaKPC-2 and blaNDM-1. The blaKPC gene was present on a ~56 Kbp IncN plasmid and the blaNDM-1 gene on a ~102 Kbp IncC plasmid, along with five other resistance genes. Although the blaNDM plasmid contained genes for conjugational transfer, only the blaKPC plasmid conjugated to E. coli J53, without apparent fitness effects. The minimum inhibitory concentrations (MICs) of meropenem/imipenem against BHKPC93 and BHKPC104 were 128/64 and 256/128 mg/L, respectively. Although the meropenem and imipenem MICs against E. coli J53 transconjugants carrying the blaKPC gene were 2 mg/L, this was a substantial increment in the MIC relative to the original J53 strain. The blaKPC plasmid copy number was higher in K. pneumoniae BHKPC93 and BHKPC104 than in E. coli and higher than that of the blaNDM plasmids. In conclusion, two ST11 K. pneumoniae isolates that were part of a hospital outbreak co-harbored blaKPC-2 and blaNDM-1. The blaKPC-harboring IncN plasmid has been circulating in this hospital since at least 2015, and its high copy number might have contributed to the conjugative transfer of this particular plasmid to an E. coli host. The observation that the blaKPC-containing plasmid had a lower copy number in this E. coli strain may explain why this plasmid did not confer phenotypic resistance against meropenem and imipenem.
Collapse
Affiliation(s)
- Camila Maria Dos Santos Boralli
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | | | - Rodrigo Silva Meneses
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | - Anita C Schürch
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Fernanda L Paganelli
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ilana Lopes Baratella Cunha Camargo
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| |
Collapse
|
14
|
Hsueh BY, Sanath-Kumar R, Bedore AM, Waters CM. Time to lysis determines phage sensitivity to a cytidine deaminase toxin/antitoxin bacterial defense system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527960. [PMID: 36798279 PMCID: PMC9934689 DOI: 10.1101/2023.02.09.527960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID , is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a deoxycytidylate deaminase that converts deoxycytidines (dC) to dexoyuridines (dU), while the RNA antitoxin (AvcI) inhibits AvcD activity. We have shown that AvcD deaminated dC nucleotides upon phage infection, but the molecular mechanism that activated AvcD was unknown. Here we show that the activation of AvcD arises from phage-induced shutoff of host transcription, leading to degradation of the labile AvcI. AvcD activation and nucleotide depletion not only decreases phage replication but also increases the formation of defective phage virions. Surprisingly, infection of phages such as T7 that are not inhibited by AvcID also lead to AvcI RNA antitoxin degradation and AvcD activation, suggesting that depletion of AvcI is not sufficient to confer protection against some phage. Rather, our results support that phage with a longer lysis time like T5 are sensitive to AvcID-mediated protection while those with a shorter lysis time like T7 are resistant. AUTHOR’S SUMMARY Numerous diverse antiphage defense systems have been discovered in the past several years, but the mechanisms of how these systems are activated upon phage infection and why these systems protect against some phage but not others are poorly understood. The AvcID toxin-antitoxin phage defense system depletes nucleotides of the dC pool inside the host upon phage infection. We show that phage inhibition of host cell transcription activates this system by depleting the AvcI inhibitory sRNA, which inhibits production of phage and leads to the formation of defective virions. Additionally, we determined that phage lysis time is a key factor that influences sensitivity to AvcID with faster replicating phage exhibiting resistance to its effects. This study has implications for understanding the factors that influence bacterial host/phage dynamics.
Collapse
Affiliation(s)
- Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| | - Ram Sanath-Kumar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| | - Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| |
Collapse
|
15
|
Dong X, Guthrie BGH, Alexander M, Noecker C, Ramirez L, Glasser NR, Turnbaugh PJ, Balskus EP. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat Commun 2022; 13:7624. [PMID: 36494336 PMCID: PMC9734109 DOI: 10.1038/s41467-022-33576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
Eggerthella lenta is a prevalent human gut Actinobacterium implicated in drug, dietary phytochemical, and bile acid metabolism and associated with multiple human diseases. No genetic tools are currently available for the direct manipulation of E. lenta. Here, we construct shuttle vectors and develop methods to transform E. lenta and other Coriobacteriia. With these tools, we characterize endogenous E. lenta constitutive and inducible promoters using a reporter system and construct inducible expression systems, enabling tunable gene regulation. We also achieve genome editing by harnessing an endogenous type I-C CRISPR-Cas system. Using these tools to perform genetic knockout and complementation, we dissect the functions of regulatory proteins and enzymes involved in catechol metabolism, revealing a previously unappreciated family of membrane-spanning LuxR-type transcriptional regulators. Finally, we employ our genetic toolbox to study the effects of E. lenta genes on mammalian host biology. By greatly expanding our ability to study and engineer gut Coriobacteriia, these tools will reveal mechanistic details of host-microbe interactions and provide a roadmap for genetic manipulation of other understudied human gut bacteria.
Collapse
Affiliation(s)
- Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ben G H Guthrie
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cecilia Noecker
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
16
|
Enabling Ethanologenesis in Moorella thermoacetica through Construction of a Replicating Shuttle Vector. FERMENTATION 2022. [DOI: 10.3390/fermentation8110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Replicating plasmid shuttle vectors are key tools for efficient genetic and metabolic engineering applications, allowing the development of sustainable bioprocesses using non-model organisms with unique metabolic capabilities. To date, very limited genetic manipulation has been achieved in the thermophilic acetogen, Moorella thermoacetica, partly due to the lack of suitable shuttle vectors. However, M. thermoacetica has considerable potential as an industrial chassis organism, which can only be unlocked if reliable and effective genetic tools are in place. This study reports the construction of a replicating shuttle vector for M. thermoacetica through the identification and implementation of a compatible Gram-positive replicon to allow plasmid maintenance within the host. Although characterisation of plasmid behaviour proved difficult, the designed shuttle vector was subsequently applied for ethanologenesis, i.e., ethanol production in this organism. The non-native ethanologenesis in M. thermoacetica was achieved via plasmid-borne overexpression of the native aldh gene and heterologous expression of Clostridium autoethanogenum adhE1 gene. This result demonstrates the importance of the developed replicating plasmid vector for genetic and metabolic engineering efforts in industrially important M. thermoacetica.
Collapse
|
17
|
Song Y, Zhang S, Ye Z, Song Y, Chen L, Tong A, He Y, Bao R. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur. Nucleic Acids Res 2022; 50:10586-10600. [PMID: 36200834 PMCID: PMC9561280 DOI: 10.1093/nar/gkac867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Type II toxin–antitoxin (TA) systems are widely distributed in bacterial and archaeal genomes and are involved in diverse critical cellular functions such as defense against phages, biofilm formation, persistence, and virulence. GCN5-related N-acetyltransferase (GNAT) toxin, with an acetyltransferase activity-dependent mechanism of translation inhibition, represents a relatively new and expanding family of type II TA toxins. We here describe a group of GNAT-Xre TA modules widely distributed among Pseudomonas species. We investigated PacTA (one of its members encoded by PA3270/PA3269) from Pseudomonas aeruginosa and demonstrated that the PacT toxin positively regulates iron acquisition in P. aeruginosa. Notably, other than arresting translation through acetylating aminoacyl-tRNAs, PacT can directly bind to Fur, a key ferric uptake regulator, to attenuate its DNA-binding affinity and thus permit the expression of downstream iron-acquisition-related genes. We further showed that the expression of the pacTA locus is upregulated in response to iron starvation and the absence of PacT causes biofilm formation defect, thereby attenuating pathogenesis. Overall, these findings reveal a novel regulatory mechanism of GNAT toxin that controls iron-uptake-related genes and contributes to bacterial virulence.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China.,Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zirui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Lin Chen
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| |
Collapse
|
18
|
Shmidov E, Lebenthal-Loinger I, Roth S, Karako-Lampert S, Zander I, Shoshani S, Danielli A, Banin E. PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation. Microbiol Spectr 2022; 10:e0118222. [PMID: 35575497 PMCID: PMC9241795 DOI: 10.1128/spectrum.01182-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023] Open
Abstract
Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes. Here, we identified and characterized a novel type II TA system PrrT/A encoded in the chromosome of the clinical isolate 39016 of the opportunistic pathogen Pseudomonas aeruginosa. We have shown that the PrrT/A system exhibits classical type II TA characteristics and novel regulatory properties. Following deletion of the prrA antitoxin, we discovered that the system is involved in a range of processes including (i) biofilm and motility, (ii) reduced prophage induction and bacteriophage production, and (iii) increased fitness for aminoglycosides. Taken together, these results highlight the importance of this toxin-antitoxin system to key physiological traits in P. aeruginosa. IMPORTANCE The functions attributed to bacterial TA systems are controversial and remain largely unknown. Our study suggests new insights into the potential functions of bacterial TA systems. We reveal that a chromosome-encoded TA system can regulate biofilm and motility, antibiotic resistance, prophage gene expression, and phage production. The latter presents a thus far unreported function of bacterial TA systems. In addition, with the emergence of antimicrobial-resistant bacteria, especially with the rising of P. aeruginosa resistant strains, the investigation of TA systems is critical as it may account for potential new targets against the resistant strains.
Collapse
Affiliation(s)
- Esther Shmidov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Ilana Lebenthal-Loinger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shira Roth
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Sarit Karako-Lampert
- Scientific Equipment Center, The Mina & Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat Gan, Israel
| | - Itzhak Zander
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amos Danielli
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
19
|
A minimal model for gene expression dynamics of bacterial type II toxin-antitoxin systems. Sci Rep 2021; 11:19516. [PMID: 34593858 PMCID: PMC8484670 DOI: 10.1038/s41598-021-98570-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
Toxin-antitoxin (TA) modules are part of most bacteria's regulatory machinery for stress responses and general aspects of their physiology. Due to the interplay of a long-lived toxin with a short-lived antitoxin, TA modules have also become systems of interest for mathematical modelling. Here we resort to previous modelling efforts and extract from these a minimal model of type II TA system dynamics on a timescale of hours, which can be used to describe time courses derived from gene expression data of TA pairs. We show that this model provides a good quantitative description of TA dynamics for the 11 TA pairs under investigation here, while simpler models do not. Our study brings together aspects of Biophysics with its focus on mathematical modelling and Computational Systems Biology with its focus on the quantitative interpretation of 'omics' data. This mechanistic model serves as a generic transformation of time course information into kinetic parameters. The resulting parameter vector can, in turn, be mechanistically interpreted. We expect that TA pairs with similar mechanisms are characterized by similar vectors of kinetic parameters, allowing us to hypothesize on the mode of action for TA pairs still under discussion.
Collapse
|
20
|
Kern L, Abdeen SK, Kolodziejczyk AA, Elinav E. Commensal inter-bacterial interactions shaping the microbiota. Curr Opin Microbiol 2021; 63:158-171. [PMID: 34365152 DOI: 10.1016/j.mib.2021.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiota, a complex ecosystem of microorganisms of different kingdoms, impacts host physiology and disease. Within this ecosystem, inter-bacterial interactions and their impacts on microbiota community structure and the eukaryotic host remain insufficiently explored. Microbiota-related inter-bacterial interactions range from symbiotic interactions, involving exchange of nutrients, enzymes, and genetic material; competition for nutrients and space, mediated by biophysical alterations and secretion of toxins and anti-microbials; to predation of overpopulating bacteria. Collectively, these understudied interactions hold important clues as to forces shaping microbiota diversity, niche formation, and responses to signals perceived from the host, incoming pathogens and the environment. In this review, we highlight the roles and mechanisms of selected inter-bacterial interactions in the microbiota, and their potential impacts on the host and pathogenic infection. We discuss challenges in mechanistically decoding these complex interactions, and prospects of harnessing them as future targets for rational microbiota modification in a variety of diseases.
Collapse
Affiliation(s)
- Lara Kern
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Suhaib K Abdeen
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel; Cancer-Microbiota Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Lysinibacillus sphaericus III(3)7 and Plasmid Vector pMK4: New Challenges in Cloning Platforms. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acquisition and especially the maintenance of a plasmid usually brings a fitness cost that reduces the reproductive rate of the bacterial host; for strains like Lysinibacillus sphaericus III(3)7, which possesses important environmental properties, this alteration along with morphological changes and reduced sporulation rates may exert a negative effect on metabolic studies using plasmids as cloning platforms. The aim of this study is to approach the metabolic behavior of pMK4-bearing cells of L. sphaericus III(3)7 through the use of bioinformatic and in vitro analyses. An incompatibility model between the pMK4 vector and a predicted megaplasmid, pBsph, inside III(3)7 cells was constructed based on an incA region. Additionally, in vitro long-term plasmid stability was not found in plasmid-bearing cells. Alignments between replicons, mobile genetic elements and RNA-RNA interactions were assessed, pairwise alignment visualization, graphic models and morphological changes were evaluated by SEM. Metabolite analysis was done through HPLC coupled to a Q-TOF 6545, and electrospray ionization was used, finally, Aedes aegypti and Culex quinquefasciatus larvae were used for larvicidal activity assessment. Results found, a decreased growth rate, spore formation reduction and morphological changes, which supported the idea of metabolic cost exerted by pMK4. An incompatibility between pMK4 and pBsph appears to take place inside L. sphaericus III(3)7 cells, however, further in vitro studies are needed to confirm it.
Collapse
|
22
|
Charged Residues Flanking the Transmembrane Domain of Two Related Toxin-Antitoxin System Toxins Affect Host Response. Toxins (Basel) 2021; 13:toxins13050329. [PMID: 34062876 PMCID: PMC8147318 DOI: 10.3390/toxins13050329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
A majority of toxins produced by type I toxin–antitoxin (TA-1) systems are small membrane-localized proteins that were initially proposed to kill cells by forming non-specific pores in the cytoplasmic membrane. The examination of the effects of numerous TA-1 systems indicates that this is not the mechanism of action of many of these proteins. Enterococcus faecalis produces two toxins of the Fst/Ldr family, one encoded on pheromone-responsive conjugative plasmids (FstpAD1) and the other on the chromosome, FstEF0409. Previous results demonstrated that overexpression of the toxins produced a differential transcriptomic response in E. faecalis cells. In this report, we identify the specific amino acid differences between the two toxins responsible for the differential response of a gene highly induced by FstpAD1 but not FstEF0409. In addition, we demonstrate that a transporter protein that is genetically linked to the chromosomal version of the TA-1 system functions to limit the toxicity of the protein.
Collapse
|
23
|
Seguin-Orlando A, Costedoat C, Der Sarkissian C, Tzortzis S, Kamel C, Telmon N, Dalén L, Thèves C, Signoli M, Orlando L. No particular genomic features underpin the dramatic economic consequences of 17 th century plague epidemics in Italy. iScience 2021; 24:102383. [PMID: 33981971 PMCID: PMC8082092 DOI: 10.1016/j.isci.2021.102383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 10/26/2022] Open
Abstract
The 17th century plague epidemic had a particularly strong demographic toll in Southern Europe, especially Italy, where it caused long-lasting economical damage. Whether this resulted from ineffective sanitation measures or more pathogenic Yersinia pestis strains remains unknown. DNA screening of 26 skeletons from the 1629-1630 plague cemetery of Lariey (French Alps) identified two teeth rich in plague genetic material. Further sequencing revealed two Y. pestis genomes phylogenetically closest to those from the 1636 outbreak of San Procolo a Naturno, Italy. They both belonged to a cluster extending from the Alps to Northern Germany that probably propagated during the Thirty Years war. Sequence variation did not support faster evolutionary rates in the Italian genomes and revealed only rare private non-synonymous mutations not affecting virulence genes. This, and the more heterogeneous spatial diffusion of the epidemic outside Italy, suggests environmental or social rather than biological causes for the severe Italian epidemic trajectory.
Collapse
Affiliation(s)
- Andaine Seguin-Orlando
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
- Institute for Advanced Study in Toulouse IAST, Université Toulouse I Capitole, Esplanade de l’Université, 31080 Toulouse cedex 06, France
| | - Caroline Costedoat
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Clio Der Sarkissian
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Stéfan Tzortzis
- Ministère de la Culture et de la Communication, Direction Régionale des Affaires Culturelles de PACA, Service Régional de l’Archéologie, 23 bd du Roi René, 13617 Aix-en-Provence cedex, France
| | - Célia Kamel
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Norbert Telmon
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Catherine Thèves
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Michel Signoli
- Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268 CNRS EFS, Aix-Marseille Université, Faculté de Médecine, Secteur Nord Bâtiment A CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse CAGT, UMR 5288, CNRS, Université Toulouse III Paul Sabatier, Faculté de Médecine Purpan, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
24
|
Klemenčič M, Halužan Vasle A, Dolinar M. The Cysteine Protease MaOC1, a Prokaryotic Caspase Homolog, Cleaves the Antitoxin of a Type II Toxin-Antitoxin System. Front Microbiol 2021; 12:635684. [PMID: 33679669 PMCID: PMC7935541 DOI: 10.3389/fmicb.2021.635684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 01/26/2023] Open
Abstract
The bloom-forming cyanobacterium Microcystis aeruginosa is known for its global distribution and for the production of toxic compounds. In the genome of M. aeruginosa PCC 7806, we discovered that the gene coding for MaOC1, a caspase homolog protease, is followed by a toxin-antitoxin module, flanked on each side by a direct repeat. We therefore investigated their possible interaction at the protein level. Our results suggest that this module belongs to the ParE/ParD-like superfamily of type II toxin-antitoxin systems. In solution, the antitoxin is predominantly alpha-helical and dimeric. When coexpressed with its cognate toxin and isolated from Escherichia coli, it forms a complex, as revealed by light scattering and affinity purification. The active site of the toxin is restricted to the C-terminus of the molecule. Its truncation led to normal cell growth, while the wild-type form prevented bacterial growth in liquid medium. The orthocaspase MaOC1 was able to cleave the antitoxin so that it could no longer block the toxin activity. The most likely target of the protease was the C-terminus of the antitoxin with two sections of basic amino acid residues. E. coli cells in which MaOC1 was expressed simultaneously with the toxin-antitoxin pair were unable to grow. In contrast, no effect on cell growth was found when using a proteolytically inactive MaOC1 mutant. We thus present the first case of a cysteine protease that regulates the activity of a toxin-antitoxin module, since all currently known activating proteases are of the serine type.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
de Jong SI, van den Broek MA, Merkel AY, de la Torre Cortes P, Kalamorz F, Cook GM, van Loosdrecht MCM, McMillan DGG. Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles 2020; 24:923-935. [PMID: 33030592 PMCID: PMC7561548 DOI: 10.1007/s00792-020-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
The aerobic thermoalkaliphile Caldalkalibacillus thermarum strain TA2.A1 is a member of a separate order of alkaliphilic bacteria closely related to the Bacillales order. Efforts to relate the genomic information of this evolutionary ancient organism to environmental adaptation have been thwarted by the inability to construct a complete genome. The existing draft genome is highly fragmented due to repetitive regions, and gaps between and over repetitive regions were unbridgeable. To address this, Oxford Nanopore Technology's MinION allowed us to span these repeats through long reads, with over 6000-fold coverage. This resulted in a single 3.34 Mb circular chromosome. The profile of transporters and central metabolism gives insight into why the organism prefers glutamate over sucrose as carbon source. We propose that the deamination of glutamate allows alkalization of the immediate environment, an excellent example of how an extremophile modulates environmental conditions to suit its own requirements. Curiously, plant-like hallmark electron transfer enzymes and transporters are found throughout the genome, such as a cytochrome b6c1 complex and a CO2-concentrating transporter. In addition, multiple self-splicing group II intron-encoded proteins closely aligning to those of a telomerase reverse transcriptase in Arabidopsis thaliana were revealed. Collectively, these features suggest an evolutionary relationship to plant life.
Collapse
Affiliation(s)
- Samuel I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Falk Kalamorz
- The New Zealand Institute for Plant and Food Research, Lincoln, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, The University of Otago, Dunedin, New Zealand
| | | | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
26
|
Lee GM, Ko S, Oh EJ, Song YR, Kim D, Oh CS. Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear. THE PLANT PATHOLOGY JOURNAL 2020; 36:428-439. [PMID: 33082727 PMCID: PMC7542023 DOI: 10.5423/ppj.oa.06.2020.0097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.
Collapse
Affiliation(s)
- Gyu Min Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 4499, Korea
| | - Seyoung Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eom-Ji Oh
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Yu-Rim Song
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 1710, Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 4499, Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Chang-Sik Oh
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 1710, Korea
| |
Collapse
|
27
|
Zhang SP, Wang Q, Quan SW, Yu XQ, Wang Y, Guo DD, Peng L, Feng HY, He YX. Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
29
|
Garcia-Rodriguez G, Talavera Perez A, Konijnenberg A, Sobott F, Michiels J, Loris R. The Escherichia coli RnlA-RnlB toxin-antitoxin complex: production, characterization and crystallization. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:31-39. [PMID: 31929184 DOI: 10.1107/s2053230x19017175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
Abstract
The Escherichia coli rnlAB operon encodes a toxin-antitoxin module that is involved in protection against infection by bacteriophage T4. The full-length RnlA-RnlB toxin-antitoxin complex as well as the toxin RnlA were purified to homogeneity and crystallized. When the affinity tag is placed on RnlA, RnlB is largely lost during purification and the resulting crystals exclusively comprise RnlA. A homogeneous preparation of RnlA-RnlB containing stoichiometric amounts of both proteins could only be obtained using a His tag placed C-terminal to RnlB. Native mass spectrometry and SAXS indicate a 1:1 stoichiometry for this RnlA-RnlB complex. Crystals of the RnlA-RnlB complex belonged to space group C2, with unit-cell parameters a = 243.32, b = 133.58, c = 55.64 Å, β = 95.11°, and diffracted to 2.6 Å resolution. The presence of both proteins in the crystals was confirmed and the asymmetric unit is likely to contain a heterotetramer with RnlA2:RnlB2 stoichiometry.
Collapse
Affiliation(s)
| | - Ariel Talavera Perez
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB, B-3000 Leuven, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
30
|
Reassessing the Role of the Type II MqsRA Toxin-Antitoxin System in Stress Response and Biofilm Formation: mqsA Is Transcriptionally Uncoupled from mqsR. mBio 2019; 10:mBio.02678-19. [PMID: 31848281 PMCID: PMC6918082 DOI: 10.1128/mbio.02678-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are broadly distributed modules whose biological roles remain mostly unknown. The mqsRA system is a noncanonical TA system in which the toxin and antitoxins genes are organized in operon but with the particularity that the toxin gene precedes that of the antitoxin. This system was shown to regulate global processes such as resistance to bile salts, motility, and biofilm formation. In addition, the MqsA antitoxin was shown to be a master regulator that represses the transcription of the csgD, cspD, and rpoS global regulator genes, thereby displaying a pleiotropic regulatory role. Here, we identified two promoters located in the toxin sequence driving the constitutive expression of mqsA, allowing thereby excess production of the MqsA antitoxin compared to the MqsR toxin. Our results show that both antitoxin-specific and operon promoters are not regulated by stresses such as amino acid starvation, oxidative shock, or bile salts. Moreover, we show that the MqsA antitoxin is not a global regulator as suggested, since the expression of csgD, cspD and rpoS is similar in wild-type and ΔmqsRA mutant strains. Moreover, these two strains behave similarly in terms of biofilm formation and sensitivity to oxidative stress or bile salts.IMPORTANCE There is growing controversy regarding the role of chromosomal toxin-antitoxin systems in bacterial physiology. mqsRA is a peculiar toxin-antitoxin system, as the gene encoding the toxin precedes that of the antitoxin. This system was previously shown to play a role in stress response and biofilm formation. In this work, we identified two promoters specifically driving the constitutive expression of the antitoxin, thereby decoupling the expression of antitoxin from the toxin. We also showed that mqsRA contributes neither to the regulation of biofilm formation nor to the sensitivity to oxidative stress and bile salts. Finally, we were unable to confirm that the MqsA antitoxin is a global regulator. Altogether, our data are ruling out the involvement of the mqsRA system in Escherichia coli regulatory networks.
Collapse
|
31
|
Abstract
Abstract
Purpose
The aquaculture sector is a major contributor to the economic and nutritional security for a number of countries. India’s total seafood exports for the year 2017–2018 accounted for US$ Million 7082. One of the major setbacks in this sector is the frequent outbreaks of diseases often due to bacterial pathogens. Vibriosis is one of the major diseases caused by bacteria of Vibrio spp., causing significant economic loss to the aquaculture sector. The objective of this study was to understand the genetic composition of Vibrio spp.
Methods
Thirty-five complete genomes were downloaded from GenBank comprising seven vibrio species, namely, Vibrio alginolyticus, V. anguillarum, V. campbellii, V. harveyi, V. furnissii, V. parahaemolyticus, and V. vulnificus. Pan-genome analysis was carried out with coding sequences (CDS) generated from all the Vibrio genomes. In addition, genomes were mined for genes coding for toxin-antitoxin systems, antibiotic resistance, genomic islands, and virulence factors.
Results
Results revealed an open pan-genome comprising of 2004 core, 8249 accessory, and 6780 unique genes. Downstream analysis of genomes and the identified unique genes resulted in 312 antibiotic resistance genes, 430 genes coding for toxin and antitoxin systems along with 4802, and 4825 putative virulent genes from genomic island regions and unique gene sets, respectively.
Conclusion
Pan-genome and other downstream analytical procedures followed in this study have the potential to predict strain-specific genes and their association with habitat and pathogenicity.
Collapse
|
32
|
Akarsu H, Bordes P, Mansour M, Bigot DJ, Genevaux P, Falquet L. TASmania: A bacterial Toxin-Antitoxin Systems database. PLoS Comput Biol 2019; 15:e1006946. [PMID: 31022176 PMCID: PMC6504116 DOI: 10.1371/journal.pcbi.1006946] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/07/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
Bacterial Toxin-Antitoxin systems (TAS) are involved in key biological functions including plasmid maintenance, defense against phages, persistence and virulence. They are found in nearly all phyla and classified into 6 different types based on the mode of inactivation of the toxin, with the type II TAS being the best characterized so far. We have herein developed a new in silico discovery pipeline named TASmania, which mines the >41K assemblies of the EnsemblBacteria database for known and uncharacterized protein components of type I to IV TAS loci. Our pipeline annotates the proteins based on a list of curated HMMs, which leads to >2.106 loci candidates, including orphan toxins and antitoxins, and organises the candidates in pseudo-operon structures in order to identify new TAS candidates based on a guilt-by-association strategy. In addition, we classify the two-component TAS with an unsupervised method on top of the pseudo-operon (pop) gene structures, leading to 1567 “popTA” models offering a more robust classification of the TAs families. These results give valuable clues in understanding the toxin/antitoxin modular structures and the TAS phylum specificities. Preliminary in vivo work confirmed six putative new hits in Mycobacterium tuberculosis as promising candidates. The TASmania database is available on the following server https://shiny.bioinformatics.unibe.ch/apps/tasmania/. TASmania offers an extensive annotation of TA loci in a very large database of bacterial genomes, which represents a resource of crucial importance for the microbiology community. TASmania supports i) the discovery of new TA families; ii) the design of a robust experimental strategy by taking into account potential interferences in trans; iii) the comparative analysis between TA loci content, phylogeny and/or phenotypes (pathogenicity, persistence, stress resistance, associated host types) by providing a vast repertoire of annotated assemblies. Our database contains TA annotations of a given strain not only mapped to its core genome but also to its plasmids, whenever applicable.
Collapse
Affiliation(s)
- Hatice Akarsu
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Donna-Joe Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins (Basel) 2019; 11:toxins11020103. [PMID: 30744127 PMCID: PMC6410093 DOI: 10.3390/toxins11020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.
Collapse
|
34
|
da Silva Duarte V, Giaretta S, Campanaro S, Treu L, Armani A, Tarrah A, Oliveira de Paula S, Giacomini A, Corich V. A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496. Viruses 2018; 11:v11010007. [PMID: 30583530 PMCID: PMC6356513 DOI: 10.3390/v11010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus is considered one of the most important species for the dairy industry. Due to their diffusion in dairy environments, bacteriophages can represent a threat to this widely used bacterial species. Despite the presence of a CRISPR-Cas system in the S. thermophilus genome, some lysogenic strains harbor cryptic prophages that can increase the phage-host resistance defense. This characteristic was identified in the dairy strain S. thermophilus M17PTZA496, which contains two integrated prophages 51.8 and 28.3 Kb long, respectively. In the present study, defense mechanisms, such as a lipoprotein-encoding gene and Siphovirus Gp157, the last associated to the presence of a noncoding viral DNA element, were identified in the prophage M17PTZA496 genome. The ability to overexpress genes involved in these defense mechanisms under specific stressful conditions, such as phage attack, has been demonstrated. Despite the addition of increasing amounts of Mitomycin C, M17PTZA496 was found to be non-inducible. However, the transcriptional activity of the phage terminase large subunit was detected in the presence of the antagonist phage vB_SthS-VA460 and of Mitomycin C. The discovery of an additional immune mechanism, associated with bacteriophage-insensitive strains, is of utmost importance, for technological applications and industrial processes. To our knowledge, this is the first study reporting the capability of a prophage integrated into the S. thermophilus genome expressing different phage defense mechanisms. Bacteriophages are widespread entities that constantly threaten starter cultures in the dairy industry. In cheese and yogurt manufacturing, the lysis of Streptococcus thermophilus cultures by viral attacks can lead to huge economic losses. Nowadays S. thermophilus is considered a well-stablished model organism for the study of natural adaptive immunity (CRISPR-Cas) against phage and plasmids, however, the identification of novel bacteriophage-resistance mechanisms, in this species, is strongly desirable. Here, we demonstrated that the presence of a non-inducible prophage confers phage-immunity to an S. thermophilus strain, by the presence of ltp and a viral noncoding region. S. thermophilus M17PTZA496 arises as an unconventional model to study phage resistance and potentially represents an alternative starter strain for dairy productions.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Department of Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa-MG 36570-900, Brazil.
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Italy.
| | - Sabrina Giaretta
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Italy.
| | | | - Laura Treu
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Italy.
- Department of Biology, University of Padova, 35121 Padova, Italy.
| | - Andrea Armani
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy.
| | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Italy.
| | | | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Italy.
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Italy.
| |
Collapse
|
35
|
Dufour D, Mankovskaia A, Chan Y, Motavaze K, Gong SG, Lévesque CM. A tripartite toxin-antitoxin module induced by quorum sensing is associated with the persistence phenotype in Streptococcus mutans. Mol Oral Microbiol 2018; 33:420-429. [PMID: 30298644 DOI: 10.1111/omi.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The oral pathogen Streptococcus mutans communicates using a canonical Gram-positive quorum sensing system, CSP-ComDE. The CSP pheromone already known to be involved in the development of genetic competence positively influences the formation of persisters, dormant variants of regular cells that are highly tolerant to antimicrobial therapy. It is now believed that the persistence phenotype is the end result of a stochastic switch in the expression of toxin-antitoxin (TA) modules. TAs consist of a pair of genes that encode two components, a stable toxin and its cognate labile antitoxin. Transcription analyses revealed that three core genes encoding a putative TA system, called SmuATR, were members of the S. mutans CSP regulon. We hypothesized that S. mutans is using its CSP-ComDE system as a deterministic mechanism for persister formation through the activation of smuATR locus. We showed here that the SmuATR system constitutes a novel tripartite type II TA system in which the smuA and smuT genes encode an antitoxin and a toxin, respectively, while SmuR is a transcriptional repressor involved in the autoregulation of the operon. Ectopic expression of SmuA - SmuT is associated with the CSP-inducible persistence phenotype. In contrast, overexpression of SmuT alone is bactericidal and causes membrane permeabilization. To our knowledge, SmuATR is the first functional chromosomal tripartite TA system shown to be induced by the bacterial quorum sensing system and involved in persister formation.
Collapse
Affiliation(s)
- Delphine Dufour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Yuki Chan
- Department of Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kamyar Motavaze
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Céline M Lévesque
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
36
|
Walling LR, Butler JS. Toxins targeting transfer RNAs: Translation inhibition by bacterial toxin-antitoxin systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1506. [PMID: 30296016 DOI: 10.1002/wrna.1506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Prokaryotic toxin-antitoxin (TA) systems are composed of a protein toxin and its cognate antitoxin. These systems are abundant in bacteria and archaea and play an important role in growth regulation. During favorable growth conditions, the antitoxin neutralizes the toxin's activity. However, during conditions of stress or starvation, the antitoxin is inactivated, freeing the toxin to inhibit growth and resulting in dormancy. One mechanism of growth inhibition used by several TA systems results from targeting transfer RNAs (tRNAs), either through preventing aminoacylation, acetylating the primary amino group, or endonucleolytic cleavage. All of these mechanisms inhibit translation and result in growth arrest. Many of these toxins only act on a specific tRNA or a specific subset of tRNAs; however, more work is necessary to understand the specificity determinants of these toxins. For the toxins whose specificity has been characterized, both sequence and structural components of the tRNA appear important for recognition by the toxin. Questions also remain regarding the mechanisms used by dormant bacteria to resume growth after toxin induction. Rescue of stalled ribosomes by transfer-messenger RNAs, removal of acetylated amino groups from tRNAs, or ligation of cleaved RNA fragments have all been implicated as mechanisms for reversing toxin-induced dormancy. However, the mechanisms of resuming growth after induction of the majority of tRNA targeting toxins are not yet understood. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Lauren R Walling
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - J Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York.,Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
37
|
Jurėnas D, Van Melderen L, Garcia-Pino A. Crystallization and X-ray analysis of all of the players in the autoregulation of the ataRT toxin-antitoxin system. Acta Crystallogr F Struct Biol Commun 2018; 74:391-401. [PMID: 29969102 PMCID: PMC6038448 DOI: 10.1107/s2053230x18007914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/02/2023] Open
Abstract
The ataRT operon from enteropathogenic Escherichia coli encodes a toxin-antitoxin (TA) module with a recently discovered novel toxin activity. This new type II TA module targets translation initiation for cell-growth arrest. Virtually nothing is known regarding the molecular mechanisms of neutralization, toxin catalytic action or translation autoregulation. Here, the production, biochemical analysis and crystallization of the intrinsically disordered antitoxin AtaR, the toxin AtaT, the AtaR-AtaT complex and the complex of AtaR-AtaT with a double-stranded DNA fragment of the operator region of the promoter are reported. Because they contain large regions that are intrinsically disordered, TA antitoxins are notoriously difficult to crystallize. AtaR forms a homodimer in solution and crystallizes in space group P6122, with unit-cell parameters a = b = 56.3, c = 160.8 Å. The crystals are likely to contain an AtaR monomer in the asymmetric unit and diffracted to 3.8 Å resolution. The Y144F catalytic mutant of AtaT (AtaTY144F) bound to the cofactor acetyl coenzyme A (AcCoA) and the C-terminal neutralization domain of AtaR (AtaR44-86) were also crystallized. The crystals of the AtaTY144F-AcCoA complex diffracted to 2.5 Å resolution and the crystals of AtaR44-86 diffracted to 2.2 Å resolution. Analysis of these structures should reveal the full scope of the neutralization of the toxin AtaT by AtaR. The crystals belonged to space groups P6522 and P3121, with unit-cell parameters a = b = 58.1, c = 216.7 Å and a = b = 87.6, c = 125.5 Å, respectively. The AtaR-AtaT-DNA complex contains a 22 bp DNA duplex that was optimized to obtain high-resolution data based on the sequence of two inverted repeats detected in the operator region. It crystallizes in space group C2221, with unit-cell parameters a = 75.6, b = 87.9, c = 190.5 Å. These crystals diffracted to 3.5 Å resolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
- Department of Biochemistry and Molecular Biology, Vilnius University Joint Life Sciences Center, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
38
|
Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells. mBio 2018; 9:mBio.00640-18. [PMID: 29895634 PMCID: PMC6016239 DOI: 10.1128/mbio.00640-18] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Persistence is a reversible and low-frequency phenomenon allowing a subpopulation of a clonal bacterial population to survive antibiotic treatments. Upon removal of the antibiotic, persister cells resume growth and give rise to viable progeny. Type II toxin-antitoxin (TA) systems were assumed to play a key role in the formation of persister cells in Escherichia coli based on the observation that successive deletions of TA systems decreased persistence frequency. In addition, the model proposed that stochastic fluctuations of (p)ppGpp levels are the basis for triggering activation of TA systems. Cells in which TA systems are activated are thought to enter a dormancy state and therefore survive the antibiotic treatment. Using independently constructed strains and newly designed fluorescent reporters, we reassessed the roles of TA modules in persistence both at the population and single-cell levels. Our data confirm that the deletion of 10 TA systems does not affect persistence to ofloxacin or ampicillin. Moreover, microfluidic experiments performed with a strain reporting the induction of the yefM-yoeB TA system allowed the observation of a small number of type II persister cells that resume growth after removal of ampicillin. However, we were unable to establish a correlation between high fluorescence and persistence, since the fluorescence of persister cells was comparable to that of the bulk of the population and none of the cells showing high fluorescence were able to resume growth upon removal of the antibiotic. Altogether, these data show that there is no direct link between induction of TA systems and persistence to antibiotics.IMPORTANCE Within a growing bacterial population, a small subpopulation of cells is able to survive antibiotic treatment by entering a transient state of dormancy referred to as persistence. Persistence is thought to be the cause of relapsing bacterial infections and is a major public health concern. Type II toxin-antitoxin systems are small modules composed of a toxic protein and an antitoxin protein counteracting the toxin activity. These systems were thought to be pivotal players in persistence until recent developments in the field. Our results demonstrate that previous influential reports had technical flaws and that there is no direct link between induction of TA systems and persistence to antibiotics.
Collapse
|
39
|
Yeo CC. GNAT toxins of bacterial toxin-antitoxin systems: acetylation of charged tRNAs to inhibit translation. Mol Microbiol 2018; 108:331-335. [PMID: 29624768 DOI: 10.1111/mmi.13958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/22/2022]
Abstract
GCN5-related N-acetyltransferase (GNAT) is a huge superfamily of proteins spanning the prokaryotic and eukaryotic domains of life. GNAT proteins usually transfer an acetyl group from acetyl-CoA to a wide variety of substrates ranging from aminoglycoside antibiotics to large macromolecules. Type II toxin-antitoxin (TA) modules are typically bicistronic and widespread in bacterial and archael genomes with diverse cellular functions. Recently, a novel family of type II TA toxins was described, which presents a GNAT-fold and functions by acetylating charged tRNA thereby precluding translation. These GNAT toxins are usually associated with a corresponding ribbon-helix-helix-fold (RHH) antitoxin. In this issue, Qian et al. describes a unique GNAT-RHH TA system, designated KacAT, from a multidrug resistant strain of the pathogen, Klebsiella pneumoniae. As most type II TA loci, kacAT is transcriptionally autoregulated with the KacAT complex binding to the operator site via the N-terminus region of KacA to repress kacAT transcription. The crystal structure of the KacT toxin is also presented giving a structural basis for KacT toxicity. These findings expand our knowledge on this newly discovered family of TA toxins and the potential role that they may play in antibiotic tolerance and persistence of bacterial pathogens.
Collapse
Affiliation(s)
- Chew Chieng Yeo
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
40
|
Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol Cell 2018; 70:768-784. [PMID: 29398446 DOI: 10.1016/j.molcel.2018.01.003] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 12/01/2022]
Abstract
Bacterial toxin-antitoxin (TA) modules are abundant genetic elements that encode a toxin protein capable of inhibiting cell growth and an antitoxin that counteracts the toxin. The majority of toxins are enzymes that interfere with translation or DNA replication, but a wide variety of molecular activities and cellular targets have been described. Antitoxins are proteins or RNAs that often control their cognate toxins through direct interactions and, in conjunction with other signaling elements, through transcriptional and translational regulation of TA module expression. Three major biological functions of TA modules have been discovered, post-segregational killing ("plasmid addiction"), abortive infection (bacteriophage immunity through altruistic suicide), and persister formation (antibiotic tolerance through dormancy). In this review, we summarize the current state of the field and highlight how multiple levels of regulation shape the conditions of toxin activation to achieve the different biological functions of TA modules.
Collapse
Affiliation(s)
- Alexander Harms
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ditlev Egeskov Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Namiko Mitarai
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Niels Bohr Institute, Department of Physics, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
41
|
Koonin EV. Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0442. [PMID: 27431520 PMCID: PMC4958936 DOI: 10.1098/rstb.2015.0442] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
42
|
Jurėnas D, Garcia-Pino A, Van Melderen L. Novel toxins from type II toxin-antitoxin systems with acetyltransferase activity. Plasmid 2017; 93:30-35. [PMID: 28941941 DOI: 10.1016/j.plasmid.2017.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Type II toxin-antitoxin (TA) systems are widespread in bacterial and archeal genomes. These modules are very dynamic and participate in bacterial genome evolution through horizontal gene transfer. TA systems are commonly composed of a labile antitoxin and a stable toxin. Toxins appear to preferentially inhibit the protein synthesis process. Toxins use a variety of molecular mechanisms and target nearly every step of translation to achieve their inhibitory function. This review focuses on a recently identified TA family that includes acetyltransferase toxins. The AtaT and TacT toxins are the best-characterized to date in this family. AtaT and TacT both inhibit translation by acetylating the amino acid charged on tRNAs. However, the specificities of these 2 toxins are different as AtaT inhibits translation initiation by acetylation of the initiator tRNA whereas TacT acetylates elongator tRNAs. The molecular mechanisms of these toxins are discussed, as well as the functions and possible evolutionary origins of this diverse toxin family.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Department of Biochemistry and Molecular Biology, Vilnius University Joint Life Sciences Center, Vilnius, Lithuania; Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium.
| |
Collapse
|
43
|
Klimina KM, Poluektova EU, Danilenko VN. Bacterial toxin–antitoxin systems: Properties, functional significance, and possibility of use (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Van Melderen L, Wood TK. Commentary: What Is the Link between Stringent Response, Endoribonuclease Encoding Type II Toxin-Antitoxin Systems and Persistence? Front Microbiol 2017; 8:191. [PMID: 28261163 PMCID: PMC5306293 DOI: 10.3389/fmicb.2017.00191] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Faculté des Sciences, Université Libre de Bruxelles (ULB) Gosselies, Belgium
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University State College, PA, USA
| |
Collapse
|
45
|
Jaiswal S, Paul P, Padhi C, Ray S, Ryan D, Dash S, Suar M. The Hha-TomB Toxin-Antitoxin System Shows Conditional Toxicity and Promotes Persister Cell Formation by Inhibiting Apoptosis-Like Death in S. Typhimurium. Sci Rep 2016; 6:38204. [PMID: 27910884 PMCID: PMC5133643 DOI: 10.1038/srep38204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 11/09/2022] Open
Abstract
Toxin-antitoxin (TA) modules are two component “addictive” genetic elements found on either plasmid or bacterial chromosome, sometimes on both. TA systems perform a wide range of functions like biofilm formation, persistence, programmed cell death, phage abortive infection etc. Salmonella has been reported to contain several such TA systems. However, the hemolysin expression modulating protein (Hha) and its adjacent uncharacterized hypothetical protein TomB (previously known as YbaJ), have not been listed as a TA module in Salmonella. In this study we established that Hha and TomB form a bonafide TA system where Hha serves as a toxin while TomB functions as an antitoxin. Interestingly, the toxicity of Hha was conditional causing cell death under acid stress. The antitoxin attenuated the toxicity of Hha by forming a TA complex through stable interactions. The Hha-TomB TA system was found to increase persistence and inhibit programmed cell death under antibiotic stress where a phenotypically diverse population expressing differential level of TA components was observed. Therefore we propose that Hha and TomB prevent cells from committing suicide thereby promoting persister cell formation.
Collapse
Affiliation(s)
- Sangeeta Jaiswal
- School of Biotechnology, KIIT University, Bhubaneswar-751024, Odisha, India
| | - Prajita Paul
- School of Biotechnology, KIIT University, Bhubaneswar-751024, Odisha, India
| | | | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar-751024, Odisha, India
| | - Daniel Ryan
- School of Biotechnology, KIIT University, Bhubaneswar-751024, Odisha, India
| | - Shantoshini Dash
- School of Biotechnology, KIIT University, Bhubaneswar-751024, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar-751024, Odisha, India
| |
Collapse
|
46
|
Goeders N, Chai R, Chen B, Day A, Salmond GPC. Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems. Toxins (Basel) 2016; 8:toxins8100282. [PMID: 27690100 PMCID: PMC5086642 DOI: 10.3390/toxins8100282] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic endoribonuclease neutralised by a non-coding RNA antitoxin in a pseudoknotted configuration. Bioinformatic analysis shows that the Type III systems can be classified into subtypes. These TA systems were originally discovered through a phage resistance phenotype arising due to a process akin to an altruistic suicide; the phenomenon of abortive infection. Some Type III TA systems are bifunctional and can stabilise plasmids during vegetative growth and sporulation. Features particular to Type III systems are explored here, emphasising some of the characteristics of the RNA antitoxin and how these may affect the co-evolutionary relationship between toxins and cognate antitoxins in their quaternary structures. Finally, an updated analysis of the distribution and diversity of these systems are presented and discussed.
Collapse
Affiliation(s)
- Nathalie Goeders
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | - Ray Chai
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | - Bihe Chen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | - Andrew Day
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
47
|
A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Sci Rep 2016; 6:32285. [PMID: 27576575 PMCID: PMC5006074 DOI: 10.1038/srep32285] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.
Collapse
|
48
|
Type II Toxin-Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Toxins (Basel) 2016; 8:toxins8070228. [PMID: 27455323 PMCID: PMC4963859 DOI: 10.3390/toxins8070228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial toxin–antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013–Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056–Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements.
Collapse
|
49
|
Di Cesare A, Losasso C, Barco L, Eckert EM, Conficoni D, Sarasini G, Corno G, Ricci A. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars. Sci Rep 2016; 6:28759. [PMID: 27357537 PMCID: PMC4928088 DOI: 10.1038/srep28759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Carmen Losasso
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| | - Lisa Barco
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| | - Ester M. Eckert
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Daniele Conficoni
- Department Animal Medicine, Production and Health, University of Padua, viale dell’Università, 35020, Legnaro, Italy
| | - Giulia Sarasini
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Antonia Ricci
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| |
Collapse
|
50
|
Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 2016; 12:208-14. [DOI: 10.1038/nchembio.2044] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023]
|