1
|
Kaur A, Russell I, Liu R, Holland A, Bhandari R, Potnis N. Navigating Host Immunity and Concurrent Ozone Stress: Strain-Resolved Metagenomics Reveals Maintenance of Intraspecific Diversity and Genetic Variation in Xanthomonas on Pepper. Evol Appl 2025; 18:e70069. [PMID: 39816160 PMCID: PMC11732741 DOI: 10.1111/eva.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The evolving threat of new pathogen variants in the face of global environmental changes poses a risk to a sustainable crop production. Predicting and responding to how climate change affects plant-pathosystems is challenging, as environment affects host-pathogen interactions from molecular to the community level, and with eco-evolutionary feedbacks at play. To address this knowledge gap, we studied short-term within-host eco-evolutionary changes in the pathogen, Xanthomonas perforans, on resistant and susceptible pepper in the open-top chambers (OTCs) under elevated Ozone (O3) conditions in a single growing season. We observed increased disease severity with greater variance on the resistant cultivar under elevated O3, yet no apparent change on the susceptible cultivar. Despite the dominance of a single pathogen genotype on the susceptible cultivar, the resistant cultivar supported a heterogeneous pathogen population. Altered O3 levels led to a strain turnover, with a relatively greater gene flux on the resistant cultivar. Both standing genetic variation and de novo parallel mutations contributed toward evolutionary modifications during adaptation onto the resistant cultivar. The presence of elevated O3, however, led to a relatively higher genetic polymorphism, with random and transient mutations. Population heterogeneity along with genetic variation, and the promotion of interdependency are mechanisms by which pathogen responds to stressors. While parallel mutations may provide clues to predicting long-term pathogen evolution and adaptive potential. And, a high proportion of transient mutations suggest less predictable pathogen evolution under climatic alterations. This knowledge is relevant as we study the risk of pathogen emergence and the mechanisms and constraints underlying long-term pathogen adaptation under climatic shifts.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ivory Russell
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ranlin Liu
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Auston Holland
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Rishi Bhandari
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
2
|
Peñalba JV, Runemark A, Meier JI, Singh P, Wogan GOU, Sánchez-Guillén R, Mallet J, Rometsch SJ, Menon M, Seehausen O, Kulmuni J, Pereira RJ. The Role of Hybridization in Species Formation and Persistence. Cold Spring Harb Perspect Biol 2024; 16:a041445. [PMID: 38438186 PMCID: PMC11610762 DOI: 10.1101/cshperspect.a041445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, 10115 Berlin, Germany
| | - Anna Runemark
- Department of Biology, Lund University, 22632 Lund, Sweden
| | - Joana I Meier
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
- Department of Zoology, University of Cambridge, Cambridgeshire CB2 3EJ, United Kingdom
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | - James Mallet
- Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sina J Rometsch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut 06511, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Jonna Kulmuni
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Biocenter 3, Helsinki, Finland
| | - Ricardo J Pereira
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart 70191, Germany
| |
Collapse
|
3
|
Aslam HMU, Chikh-Ali M, Zhou XG, Zhang S, Harris S, Chanda AK, Riaz H, Hameed A, Aslam S, Killiny N. Epigenetic modulation of fungal pathogens: a focus on Magnaporthe oryzae. Front Microbiol 2024; 15:1463987. [PMID: 39529673 PMCID: PMC11550944 DOI: 10.3389/fmicb.2024.1463987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics has emerged as a potent field of study for understanding the factors influencing the effectiveness of human disease treatments and for identifying alternations induced by pathogens in host plants. However, there has been a paucity of research on the epigenetic control of the proliferation and pathogenicity of fungal plant pathogens. Fungal plant pathogens such as Magnaporthe oryzae, a significant threat to global rice production, provide an important model for exploring how epigenetic mechanisms govern fungal proliferation and virulence. In M. oryzae, epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNAs, regulate gene expression patterns that influence the pathogen's ability to infect its host. These modifications can enhance fungal adaptability, allowing the pathogen to survive in diverse environments and evade host immune responses. Our primary objective is to provide a comprehensive review of the existing epigenetic research on M. oryzae and shed light on how these changes influence the pathogen's lifecycle, its ability to invade host tissues, and the overall severity of the disease. We begin by examining the epigenetic alterations occurring in M. oryzae and their contributions to the virulence and proliferation of the fungus. To advance our understanding of epigenetic mechanisms in M. oryzae and similar plant diseases, we emphasize the need to address unanswered questions and explore future research directions. This information is crucial for developing new antifungal treatments that target epigenetic pathways, which could lead to improved disease management.
Collapse
Affiliation(s)
- Hafiz Muhammad Usman Aslam
- Department of Plant Pathology, San Luis Valley Research Center, Colorado State University, Fort Collins, CO, United States
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Mohamad Chikh-Ali
- Department of Plant Pathology, San Luis Valley Research Center, Colorado State University, Fort Collins, CO, United States
| | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Shouan Zhang
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL, United States
| | - Steven Harris
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - Ashok K. Chanda
- Department of Plant Pathology and Northwest Research and Outreach Center, University of Minnesota, St. Paul, Crookston, MN, United States
| | - Hasan Riaz
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Akhtar Hameed
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Saba Aslam
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| |
Collapse
|
4
|
Lin L, Sun T, Guo J, Lin L, Chen M, Wang Z, Bao J, Norvienyeku J, Zhang D, Han Y, Lu G, Rensing C, Zheng H, Zhong Z, Wang Z. Transposable elements impact the population divergence of rice blast fungus Magnaporthe oryzae. mBio 2024; 15:e0008624. [PMID: 38534157 PMCID: PMC11077969 DOI: 10.1128/mbio.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.
Collapse
Affiliation(s)
- Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meilian Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Zhe Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dongmei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
5
|
S S, Sharma S, Bairwa A, Tomar M, Kumar R, Bhardwaj V, Jeevalatha A, Bakade R, Salaria N, Thakur K, Singh BP, Chakrabarti SK. Spraying of dsRNA molecules derived from Phytophthora infestans, along with nanoclay carriers as a proof of concept for developing novel protection strategy for potato late blight. PEST MANAGEMENT SCIENCE 2022; 78:3183-3192. [PMID: 35478320 DOI: 10.1002/ps.6949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phytophthora infestans is a late blight-causing oomycetes pathogen. It rapidly evolves and adapts to the host background and new fungicide molecules within a few years of their release, most likely because of the predominance of transposable elements in its genome. Frequent applications of fungicides cause environmental concerns. Here, we developed target-specific RNA interference (RNAi)-based molecules, along with nanoclay carriers, that when sprayed on plants are capable of effectively reducing late blight infection. RESULTS Targeted the genes unique to sporulation, early satge infection and the metabolism pathway stages based on in an our own microarray data. We used nanoclay as a carrier for sorbitol dehydrogenase, heat shock protein 90, translation elongation factor 1-α, phospholipase-D like 3 and glycosylphosphatidylinositol-anchored acidic serine-threonine-rich HAM34-like protein double-stranded (ds)RNAs, which were assessed by culture bioassay, detached leaf assay and spray methods, and revealed a reduction in growth, sporulation and symptom expression. Plants sprayed with multigene targeted dsRNA-nanoclay showed enhanced disease resistance (4% disease severity) and less sporulation (<1 × 103 ) compared with plants sprayed with dsRNA alone. CONCLUSION The use of nanoclay with multigene targeted dsRNA was assumed to be involved in effective delivery, protection and boosting the action of RNAi as a spray-induced gene silencing approach (SIGS). A significant reduction in growth, sporulation, disease severity and decreased gene expression authenticates the effects of SIGS on late blight progression. This study demonstrated as a proof of concept the dsRNA-nanoclay SIGS approach, which could be used as an alternative to chemical fungicides and transgenic approaches to develop an environmentally friendly novel plant protection strategy for late blight. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sundaresha S
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - Sanjeev Sharma
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - Aarti Bairwa
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - Maharishi Tomar
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
- Plant Biochemistry, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Ravinder Kumar
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - Vinay Bhardwaj
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - A Jeevalatha
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
- Plant Protection, ICAR-Indian Institute of Spice Research, Kozhikode, India
| | - Rahul Bakade
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - Neha Salaria
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - Kajal Thakur
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - Bir Pal Singh
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| | - S K Chakrabarti
- Plant Protection, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
6
|
González-Tobón J, Childers RR, Rodríguez A, Fry W, Myers KL, Thompson JR, Restrepo S, Danies G. Searching for the Mechanism that Mediates Mefenoxam-Acquired Resistance in Phytophthora infestans and How It Is Regulated. PHYTOPATHOLOGY 2022; 112:1118-1133. [PMID: 34763530 DOI: 10.1094/phyto-07-21-0280-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora infestans, the causal agent of late blight disease of potatoes, is mainly controlled by the use of fungicides. Isolates that are resistant to commonly used fungicides have been reported. Also, several studies show that originally mefenoxam-sensitive isolates acquire resistance to this fungicide when exposed to sublethal concentrations. This phenomenon, termed "mefenoxam-acquired resistance," has been observed in different Phytophthora species and seems to be unique to mefenoxam. In this study, we aimed to elucidate the molecular mechanism mediating this type of resistance as well as a possible regulatory process behind it. A combination of computational analyses and experimental approaches was used to identify differentially expressed genes with a potential association to the phenomenon. These genes were classified into seven functional groups. Most of them seem to be associated with a pleiotropic drug resistance (PDR) phenotype, typically involved in the expulsion of diverse metabolites, drugs, or other substances out of the cell. Despite the importance of RNA Polymerase I for the constitutive resistance of P. infestans to mefenoxam, our results indicate no clear interaction between this protein and the acquisition of mefenoxam resistance. Several small non-coding RNAs were found to be differentially expressed and specifically related to genes mediating the PDR phenotype, thus suggesting a possible regulatory process. We propose a model of the molecular mechanisms acting within the cell when P. infestans acquires resistance to mefenoxam after exposed to sublethal concentrations of the fungicide. This study provides important insights into P. infestans' cellular and regulatory functionalities.
Collapse
Affiliation(s)
- Juliana González-Tobón
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 111711
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | | | - Alejandra Rodríguez
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 111711
| | - William Fry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | - Kevin L Myers
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | - Jeremy R Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1072, New Zealand
| | - Silvia Restrepo
- Department of Food and Chemical Engineering, Universidad de los Andes, Bogotá, Colombia 111711
| | - Giovanna Danies
- Department of Design, Universidad de los Andes, Bogotá, Colombia 111711
| |
Collapse
|
7
|
Jin J, McCorkle KL, Cornish V, Carbone I, Lewis RS, Shew HD. Adaptation of Phytophthora nicotianae to Multiple Sources of Partial Resistance in Tobacco. PLANT DISEASE 2022; 106:906-917. [PMID: 34735283 DOI: 10.1094/pdis-06-21-1241-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Host resistance is an important tool in the management of black shank disease of tobacco. Race development leads to rapid loss of single-gene resistance, but the adaptation by Phytophthora nicotianae to sources of partial resistance from Beinhart 1000, Florida 301, and the Wz gene region introgressed from Nicotiana rustica is poorly characterized. In greenhouse environments, host genotypes with quantitative trait loci (QTLs) conferring resistance from multiple sources were initially inoculated with an aggressive isolate of race 0 or race 1 of P. nicotianae. The most aggressive isolate was selected after each of six host generations to inoculate the next generation of plants. The race 0 isolate demonstrated a continuous gradual increase in disease severity and percentage root rot on all sources of resistance except the genotype K 326 Wz/-, where a large increase in both was observed between generations 2 and 3. Adaptation by the race 0 isolate on Beinhart 1000 represents the first report of adaptation to this genotype by P. nicotianae. The race 1 isolate did not exhibit significant increases in aggressiveness over generations but exhibited a large increase in aggressiveness on K 326 Wz/- between generations 3 and 4. Molecular characterization of isolates recovered during selection was completed via double digest restriction-site associated DNA sequencing, but no polymorphisms were associated with the observed changes in aggressiveness. The rapid adaptation to Wz resistance and the gradual adaptation to other QTLs highlights the need to study the nature of Wz resistance and to conduct field studies on the efficacy of resistance gene rotation for disease management.
Collapse
Affiliation(s)
- Jing Jin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Kestrel L McCorkle
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Vicki Cornish
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC 27695
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
8
|
Hu X, Persson Hodén K, Liao Z, Åsman A, Dixelius C. Phytophthora infestans Ago1-associated miRNA promotes potato late blight disease. THE NEW PHYTOLOGIST 2022; 233:443-457. [PMID: 34605025 DOI: 10.1111/nph.17758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phytophthora spp. cause serious damage to plants by exploiting a large number of effector proteins and small RNAs (sRNAs). Several reports have described modulation of host RNA biogenesis and defence gene expression. Here, we analysed Phytophthora infestans Argonaute (Ago) 1 associated small RNAs during potato leaf infection. Small RNAs were co-immunoprecipitated, deep sequenced and analysed against the P. infestans and potato genomes, followed by transcript analyses and transgenic assays on a predicted target. Extensive targeting of potato and pathogen-derived sRNAs to a range of mRNAs was observed, including 638 sequences coding for resistance (R) proteins in the host genome. The single miRNA encoded by P. infestans (miR8788) was found to target a potato alpha/beta hydrolase-type encoding gene (StABH1), a protein localized to the plasma membrane. Analyses of stable transgenic potato lines harbouring overexpressed StABH1 or artificial miRNA gene constructs demonstrated the importance of StABH1 during infection by P. infestans. miR8788 knock-down strains showed reduced growth on potato, and elevated StABH1 expression levels were observed when plants were inoculated with the two knock-down strains compared to the wild-type strain 88069. The findings of our study suggest that sRNA encoded by P. infestans can affect potato mRNA, thereby expanding our knowledge of the multifaceted strategies this species uses to facilitate infection.
Collapse
Affiliation(s)
- Xinyi Hu
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Zhen Liao
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7015, S-75007, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| |
Collapse
|
9
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Multiple Mechanisms Drive the Evolutionary Adaptation of Phytophthora infestans Effector Avr1 to Host Resistance. J Fungi (Basel) 2021; 7:jof7100789. [PMID: 34682211 PMCID: PMC8538934 DOI: 10.3390/jof7100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a central role in antagonistic interactions between plant hosts and pathogens. The evolution of effector genes threatens plant disease management and sustainable food production, but population genetic analyses to understand evolutionary mechanisms of effector genes are limited compared to molecular and functional studies. Here we investigated the evolution of the Avr1 effector gene from 111 Phytophthora infestans isolates collected from six areas covering three potato cropping regions in China using a population genetic approach. High genetic variation of the effector gene resulted from diverse mechanisms including base substitution, pre-termination, intragenic recombination and diversifying selection. Nearly 80% of the 111 sequences had a point mutation in the 512th nucleotide (T512G), which generated a pre-termination stop codon truncating 38 amino acids in the C-terminal, suggesting that the C-terminal may not be essential to ecological and biological functions of P. infestans. A significant correlation between the frequency of Avr1 sequences with the pre-termination and annual mean temperature in the collection sites suggests that thermal heterogeneity might be one of contributors to the diversifying selection, although biological and biochemical mechanisms of the likely thermal adaptation are not known currently. Our results highlight the risk of rapid adaptation of P. infestans and possibly other pathogens as well to host resistance, and the application of eco-evolutionary principles is necessary for sustainable disease management in agricultural ecosystems.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Abdul Waheed
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China;
| | - Oswald Nkurikiyimfura
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| |
Collapse
|
10
|
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:265-288. [PMID: 34077241 DOI: 10.1146/annurev-phyto-121520-023514] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.
Collapse
Affiliation(s)
- Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jixian Zhai
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Li Feng
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
| |
Collapse
|
11
|
Sharma S, Sundaresha S, Bhardwaj V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 2021; 11:274. [PMID: 34040923 DOI: 10.1007/s13205-021-02810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/24/2021] [Indexed: 11/26/2022] Open
Abstract
Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host-pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.
Collapse
Affiliation(s)
- Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
12
|
de Vries S, Stukenbrock EH, Rose LE. Rapid evolution in plant-microbe interactions - an evolutionary genomics perspective. THE NEW PHYTOLOGIST 2020; 226:1256-1262. [PMID: 31997351 DOI: 10.1111/nph.16458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Access to greater genomic resolution through new sequencing technologies is transforming the field of plant pathology. As scientists embrace these new methods, some overarching patterns and observations come into focus. Evolutionary genomic studies are used to determine not only the origins of pathogen lineages and geographic patterns of genetic diversity, but also to discern how natural selection structures genetic variation across the genome. With greater and greater resolution, we can now pinpoint the targets of selection on a large scale. At multiple levels, crypsis and convergent evolution are evident. Host jumps and shifts may be more pervasive than once believed, and hybridization and horizontal gene transfer (HGT) likely play important roles in the emergence of genetic novelty.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- The Botanical Institute, Christian-Albrechts University of Kiel, Am Botanischen Garden 9-11, 24118, Kiel, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
13
|
Yates-Stewart AD, Daron J, Wijeratne S, Shahid S, Edgington HA, Slotkin RK, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103363. [PMID: 32201218 DOI: 10.1016/j.ibmb.2020.103363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
In agricultural systems, crops equipped with host-plant resistance (HPR) have enhanced protection against pests, and are used as a safe and sustainable tool in pest management. In soybean, HPR can control the soybean aphid (Aphis glycines), but certain aphid populations have overcome this resistance (i.e., virulence). The molecular mechanisms underlying aphid virulence to HPR are unknown, but likely involve effector proteins that are secreted by aphids to modulate plant defenses. Another mechanism to facilitate adaptation is through the activity of transposable elements, which can become activated by stress. In this study, we performed RNA sequencing of virulent and avirulent soybean aphids fed susceptible or resistant (Rag1 + Rag2) soybean. Our goal was to better understand the molecular mechanisms underlying soybean aphid virulence. Our data showed that virulent aphids mostly down regulate putative effector genes relative to avirulent aphids, especially when aphids were fed susceptible soybean. Decreased expression of effectors may help evade HPR plant defenses. Virulent aphids also transcriptionally up regulate a diverse set of transposable elements and nearby genes, which is consistent with stress adaptation. Our work demonstrates two mechanisms of pest adaptation to resistance, and identifies effector gene targets for future functional testing.
Collapse
Affiliation(s)
| | - Josquin Daron
- CNRS, Centre National de la Recherche Scientifique, Montpellier, France
| | - Saranga Wijeratne
- The Ohio State University, Molecular and Cellular Imaging Center, OARDC, Wooster, OH, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St, Louis, MO, USA
| | - Hilary A Edgington
- The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St, Louis, MO, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Andy Michel
- The Ohio State University, Center for Applied Plant Sciences, Wooster, OH, USA; The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA.
| |
Collapse
|
14
|
Tzelepis G, Hodén KP, Fogelqvist J, Åsman AKM, Vetukuri RR, Dixelius C. Dominance of Mating Type A1 and Indication of Epigenetic Effects During Early Stages of Mating in Phytophthora infestans. Front Microbiol 2020; 11:252. [PMID: 32153537 PMCID: PMC7046690 DOI: 10.3389/fmicb.2020.00252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
The potato late blight pathogen Phytophthora infestans has both an asexual and a sexual mode of reproduction. In Scandinavia, the pathogen is reproducing sexually on a regular basis, whereas clonal lineages dominate in other geographical regions. This study aimed at elucidating events or key genes underlying this difference in sexual behavior. First, the transcriptomes of eight strains, known as either clonal or sexual, were compared during early stages of mating. Principal component analysis (PCA) divided the samples in two clusters A and B and a clear grouping of the mating samples together with the A1 mating type parents was observed. Induction of genes encoding DNA adenine N6-methylation (6mA) methyl-transferases clearly showed a bias toward the cluster A. In contrast, the Avrblb2 effector gene family was highly induced in most of the mating samples and was associated with cluster B in the PCA, similarly to genes coding for acetyl-transferases, which play an important role in RXLR modification prior to secretion. Avrblb2 knock-down strains displayed a reduction in virulence and oospore formation, suggesting a role during the mating process. In conclusion, a number of gene candidates important for the reproductive processes were revealed. The results suggest a possible epigenetic influence and involvement of specific RXLR effectors in mating-related processes.
Collapse
Affiliation(s)
- Georgios Tzelepis
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Fogelqvist
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna K M Åsman
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala Biocenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Kim KT, Ko J, Song H, Choi G, Kim H, Jeon J, Cheong K, Kang S, Lee YH. Evolution of the Genes Encoding Effector Candidates Within Multiple Pathotypes of Magnaporthe oryzae. Front Microbiol 2019; 10:2575. [PMID: 31781071 PMCID: PMC6851232 DOI: 10.3389/fmicb.2019.02575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Magnaporthe oryzae infects rice, wheat, and many grass species in the Poaceae family by secreting protein effectors. Here, we analyzed the distribution, sequence variation, and genomic context of effector candidate (EFC) genes in 31 isolates that represent five pathotypes of M. oryzae, three isolates of M. grisea, a sister species of M. oryzae, and one strain each for eight species in the family Magnaporthaceae to investigate how the host range expansion of M. oryzae has likely affected the evolution of effectors. We used the EFC genes of M. oryzae strain 70-15, whose genome has served as a reference for many comparative genomics analyses, to identify their homologs in these strains. We also analyzed the previously characterized avirulence (AVR) genes and single-copy orthologous (SCO) genes in these strains, which showed that the EFC and AVR genes evolved faster than the SCO genes. The EFC and AVR repertoires among M. oryzae pathotypes varied widely probably because adaptation to individual hosts exerted different types of selection pressure. Repetitive DNA elements appeared to have caused the variation of some EFC genes. Lastly, we analyzed expression patterns of the AVR and EFC genes to test the hypothesis that such genes are preferentially expressed during host infection. This comprehensive dataset serves as a foundation for future studies on the genetic basis of the evolution and host specialization in M. oryzae.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA, United States
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle. Appl Microbiol Biotechnol 2019; 103:2295-2309. [DOI: 10.1007/s00253-019-09639-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/04/2023]
|
17
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
18
|
Torres-Martínez S, Ruiz-Vázquez RM. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annu Rev Microbiol 2017; 71:371-391. [PMID: 28657888 DOI: 10.1146/annurev-micro-090816-093352] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.
Collapse
|
19
|
Abstract
Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality.
Collapse
Affiliation(s)
- Waqar Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Saif Ul Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Muhammad Qasim
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Liande Wang
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| |
Collapse
|
20
|
Payen T, Murat C, Martin F. Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.). MYCORRHIZA 2016; 26:553-563. [PMID: 27025914 DOI: 10.1007/s00572-016-0692-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Truffles are ascomycete fungi belonging to genus Tuber, and they form ectomycorrhizal associations with trees and shrubs. Transposable elements constitute more than 50 % of the black Périgord truffle (Tuber melanosporum) genome, which are mainly class 1 gypsy retrotransposons, but their impact on its genome is unknown. The aims of this study are to investigate the diversity of gypsy retrotransposons in this species and their evolutionary history by analysing the reference genome and six resequenced genomes of different geographic accessions. Using the reverse transcriptase sequences, six different gypsy retrotransposon clades were identified. Tmt1 and Tmt6 are the most abundant transposable elements, representing 14 and 13 % of the T. melanosporum genome, respectively. Tmt6 showed a major burst of proliferation between 1 and 4 million years ago, but evidence of more recent transposition was observed. Except for Tmt2, the other clades tend to aggregate, and their mode of transposition excluded the master copy model. This suggests that each new copy has the same probability of transposing as other copies. This study provides a better view of the diversity and dynamic nature of gypsy retrotransposons in T. melanosporum. Even if the major gypsy retrotransposon bursts are old, some elements seem to have transposed recently, suggesting that they may continue to model the truffle genomes.
Collapse
Affiliation(s)
- Thibaut Payen
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France
| | - Claude Murat
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France.
| | - Francis Martin
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France
| |
Collapse
|
21
|
Jayaswall K, Mahajan P, Singh G, Parmar R, Seth R, Raina A, Swarnkar MK, Singh AK, Shankar R, Sharma RK. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze). Sci Rep 2016; 6:30412. [PMID: 27465480 PMCID: PMC4964330 DOI: 10.1038/srep30412] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/05/2016] [Indexed: 02/01/2023] Open
Abstract
To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.
Collapse
Affiliation(s)
- Kuldip Jayaswall
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Pallavi Mahajan
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Gagandeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Aparnashree Raina
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Mohit Kumar Swarnkar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Anil Kumar Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Ravi Shankar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India, 176061
| |
Collapse
|
22
|
Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae. PLoS One 2016; 11:e0150530. [PMID: 26930612 PMCID: PMC4773254 DOI: 10.1371/journal.pone.0150530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.
Collapse
|
23
|
Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 2015; 35:57-65. [PMID: 26451981 DOI: 10.1016/j.gde.2015.09.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 02/02/2023]
Abstract
Fungi and oomycetes include deep and diverse lineages of eukaryotic plant pathogens. The last 10 years have seen the sequencing of the genomes of a multitude of species of these so-called filamentous plant pathogens. Already, fundamental concepts have emerged. Filamentous plant pathogen genomes tend to harbor large repertoires of genes encoding virulence effectors that modulate host plant processes. Effector genes are not randomly distributed across the genomes but tend to be associated with compartments enriched in repetitive sequences and transposable elements. These findings have led to the 'two-speed genome' model in which filamentous pathogen genomes have a bipartite architecture with gene sparse, repeat rich compartments serving as a cradle for adaptive evolution. Here, we review this concept and discuss how plant pathogens are great model systems to study evolutionary adaptations at multiple time scales. We will also introduce the next phase of research on this topic.
Collapse
Affiliation(s)
- Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
24
|
Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Recent Progress in RXLR Effector Research. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1063-72. [PMID: 26125490 DOI: 10.1094/mpmi-01-15-0022-cr] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Some of the most devastating oomycete pathogens deploy effector proteins, with the signature amino acid motif RXLR, that enter plant cells to promote virulence. Research on the function and evolution of RXLR effectors has been very active over the decade that has transpired since their discovery. Comparative genomics indicate that RXLR genes play a major role in virulence for Phytophthora and downy mildew species. Importantly, gene-for-gene resistance against these oomycete lineages is based on recognition of RXLR proteins. Comparative genomics have revealed several mechanisms through which this resistance can be broken, most notably involving epigenetic control of RXLR gene expression. Structural studies have revealed a core fold that is present in the majority of RXLR proteins, providing a foundation for detailed mechanistic understanding of virulence and avirulence functions. Finally, functional studies have demonstrated that suppression of host immunity is a major function for RXLR proteins. Host protein targets are being identified in a variety of plant cell compartments. Some targets comprise hubs that are also manipulated by bacteria and fungi, thereby revealing key points of vulnerability in the plant immune network.
Collapse
Affiliation(s)
- Ryan G Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Devdutta Deb
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Kevin Fedkenheuer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| |
Collapse
|
25
|
Weiberg A, Jin H. Small RNAs--the secret agents in the plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:87-94. [PMID: 26123395 PMCID: PMC4573252 DOI: 10.1016/j.pbi.2015.05.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 05/15/2023]
Abstract
Eukaryotic regulatory small RNAs (sRNAs) that induce RNA interference (RNAi) are involved in a plethora of biological processes, including host immunity and pathogen virulence. In plants, diverse classes of sRNAs contribute to the regulation of host innate immunity. These immune-regulatory sRNAs operate through distinct RNAi pathways that trigger transcriptional or post-transcriptional gene silencing. Similarly, many pathogen-derived sRNAs also regulate pathogen virulence. Remarkably, the influence of regulatory sRNAs is not limited to the individual organism in which they are generated. It can sometimes extend to interacting species from even different kingdoms. There they trigger gene silencing in the interacting organism, a phenomenon called cross-kingdom RNAi. This is exhibited in advanced pathogens and parasites that produce sRNAs to suppress host immunity. Conversely, in host-induced gene silencing (HIGS), diverse plants are engineered to trigger RNAi against pathogens and pests to confer host resistance. Cross-kingdom RNAi opens up a vastly unexplored area of research on mobile sRNAs in the battlefield between hosts and pathogens.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
26
|
Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP. Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genomics 2015; 15:697-706. [PMID: 26077032 DOI: 10.1007/s10142-015-0446-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
RNA interference (RNAi) has proved a powerful genetic tool for silencing genes in plants. Host-induced gene silencing of pathogen genes has provided a gene knockout strategy for a wide range of biotechnological applications. The RXLR effector Avr3a gene is largely responsible for virulence of oomycete plant pathogen Phytophthora infestans. In this study, we attempted to silence the Avr3a gene of P. infestans through RNAi technology. The P. infestans inoculation resulted in lower disease progression and a reduction in pathogen load, as demonstrated by disease scoring and quantification of pathogen biomass in terms of Pi08 repetitive elements, respectively. Transgenic plants induced moderate silencing of Avr3a, and the presence and/or expression of small interfering RNAs, as determined through Northern hybridization, indicated siRNA targeted against Avr3a conferred moderate resistance to P. infestans. The single effector gene did not provide complete resistance against P. infestans. Although the Avr3a effector gene could confer moderate resistance, for complete resistance, the cumulative effect of effector genes in addition to Avr3a needs to be considered. In this study, we demonstrated that host-induced RNAi is an effective strategy for functional genomics in oomycetes.
Collapse
Affiliation(s)
- Suman Sanju
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Aditi Thakur
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Pradeep K Shukla
- Sam Higginbottom Institute of Agriculture, School of Biological Sciences, Allahabad, 211007, Uttara Pradesh, India.
| | | | - Debasis Pattanayak
- ICAR-National Research Centre for Plant Biotechnology, IARI, New Delhi, 110012, India.
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - B P Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| |
Collapse
|
27
|
Wang M, Weiberg A, Jin H. Pathogen small RNAs: a new class of effectors for pathogen attacks. MOLECULAR PLANT PATHOLOGY 2015; 16:219-23. [PMID: 25764211 PMCID: PMC6638317 DOI: 10.1111/mpp.12233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Ming Wang
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | | | | |
Collapse
|
28
|
Weiberg A, Wang M, Bellinger M, Jin H. Small RNAs: a new paradigm in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:495-516. [PMID: 25090478 DOI: 10.1146/annurev-phyto-102313-045933] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A never-ending arms race drives coevolution between pathogens and hosts. In plants, pathogen attacks invoke multiple layers of host immune responses. Many pathogens deliver effector proteins into host cells to suppress host immunity, and many plants have evolved resistance proteins to recognize effectors and trigger robust resistance. Here, we discuss findings on noncoding small RNAs (sRNAs) from plants and pathogens, which regulate host immunity and pathogen virulence. Recent discoveries have unveiled the role of noncoding sRNAs from eukaryotic pathogens and bacteria in pathogenicity in both plant and animal hosts. The discovery of fungal sRNAs that are delivered into host cells to suppress plant immunity added sRNAs to the list of pathogen effectors. Similar to protein effector genes, many of these sRNAs are generated from transposable element (TE) regions, which are likely to contribute to rapidly evolving virulence and host adaptation. We also discuss RNA silencing that occurs between organisms.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | | | | | | |
Collapse
|
29
|
Gijzen M, Ishmael C, Shrestha SD. Epigenetic control of effectors in plant pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:638. [PMID: 25429296 PMCID: PMC4228847 DOI: 10.3389/fpls.2014.00638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/27/2014] [Indexed: 05/07/2023]
Abstract
Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr) factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in filamentous plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.
Collapse
Affiliation(s)
- Mark Gijzen
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
- *Correspondence: Mark Gijzen, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada e-mail:
| | - Chelsea Ishmael
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Sirjana D. Shrestha
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
30
|
Kasuga T, Gijzen M. Epigenetics and the evolution of virulence. Trends Microbiol 2013; 21:575-82. [DOI: 10.1016/j.tim.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
|
31
|
Vetukuri RR, Asman AK, Jahan SN, Avrova AO, Whisson SC, Dixelius C. Phenotypic diversification by gene silencing in Phytophthora plant pathogens. Commun Integr Biol 2013; 6:e25890. [PMID: 24563702 PMCID: PMC3917941 DOI: 10.4161/cib.25890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022] Open
Abstract
Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plant pathogen, Phytophthora infestans, contains vast numbers of TE sequences. There are also hundreds of predicted disease-promoting effector proteins, predominantly located in TE-rich genomic regions. Expansion of effector gene families is also a genomic signature of related oomycetes such as P. sojae. Deep sequencing of small RNAs (sRNAs) from P. infestans has identified sRNAs derived from all families of transposons, highlighting the importance of RNA silencing for maintaining these genomic invaders in an inactive form. Small RNAs were also identified from specific effector encoding genes, possibly leading to RNA silencing of these genes and variation in pathogenicity and virulence toward plant resistance genes. Similar findings have also recently been made for the distantly related species, P. sojae. Small RNA “hotspots” originating from arrays of amplified gene sequences, or from genes displaying overlapping antisense transcription, were also identified in P. infestans. These findings suggest a major role for RNA silencing processes in the adaptability and diversification of these economically important plant pathogens. Here we review the latest progress and understanding of gene silencing in oomycetes with emphasis on transposable elements and sRNA-associated events.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Anna Km Asman
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Sultana N Jahan
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Anna O Avrova
- Cell and Molecular Sciences; The James Hutton Institute; Invergowrie; Dundee, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences; The James Hutton Institute; Invergowrie; Dundee, UK
| | - Christina Dixelius
- Department of Plant Biology and Forest Genetics; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| |
Collapse
|
32
|
Vetukuri RR, Åsman AKM, Tellgren-Roth C, Jahan SN, Reimegård J, Fogelqvist J, Savenkov E, Söderbom F, Avrova AO, Whisson SC, Dixelius C. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS One 2012; 7:e51399. [PMID: 23272103 PMCID: PMC3522703 DOI: 10.1371/journal.pone.0051399] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 12/03/2022] Open
Abstract
Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates. Here we present data from investigation of RNA silencing processes, characterized by non-coding small RNA molecules (sRNA) of 19-40 nt. From deep sequencing of sRNAs we have identified sRNAs matching numerous RxLR and Crinkler (CRN) effector protein genes in two isolates differing in pathogenicity. Effector gene-derived sRNAs were present in both isolates, but exhibited marked differences in abundance, especially for CRN effectors. Small RNAs in P. infestans grouped into three clear size classes of 21, 25/26 and 32 nt. Small RNAs from all size classes mapped to RxLR effector genes, but notably 21 nt sRNAs were the predominant size class mapping to CRN effector genes. Some effector genes, such as PiAvr3a, to which sRNAs were found, also exhibited differences in transcript accumulation between the two isolates. The P. infestans genome is rich in transposable elements, and the majority of sRNAs of all size classes mapped to these sequences, predominantly to long terminal repeat (LTR) retrotransposons. RNA silencing of Dicer and Argonaute genes provided evidence that generation of 21 nt sRNAs is Dicer-dependent, while accumulation of longer sRNAs was impacted by silencing of Argonaute genes. Additionally, we identified six microRNA (miRNA) candidates from our sequencing data, their precursor sequences from the genome sequence, and target mRNAs. These miRNA candidates have features characteristic of both plant and metazoan miRNAs.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|