1
|
Aktar K, Davies T, Leontiou I, Clark I, Spanos C, Wallace E, Tuck L, Jeyaprakash AA, Hardwick KG. Conserved signalling functions for Mps1, Mad1 and Mad2 in the Cryptococcus neoformans spindle checkpoint. PLoS Genet 2024; 20:e1011302. [PMID: 38829899 PMCID: PMC11175454 DOI: 10.1371/journal.pgen.1011302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.
Collapse
Affiliation(s)
- Koly Aktar
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Davies
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioanna Leontiou
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ivan Clark
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christos Spanos
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward Wallace
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Tuck
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - A. Arockia Jeyaprakash
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universitat, Munich, Germany
| | - Kevin G. Hardwick
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Cunha-Silva S, Conde C. From the Nuclear Pore to the Fibrous Corona: A MAD Journey to Preserve Genome Stability. Bioessays 2020; 42:e2000132. [PMID: 32885448 DOI: 10.1002/bies.202000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Indexed: 11/09/2022]
Abstract
The relationship between kinetochores and nuclear pore complexes (NPCs) is intimate but poorly understood. Several NPC components and associated proteins are relocated to mitotic kinetochores to assist in different activities that ensure faithful chromosome segregation. Such is the case of the Mad1-c-Mad2 complex, the catalytic core of the spindle assembly checkpoint (SAC), a surveillance pathway that delays anaphase until all kinetochores are attached to spindle microtubules. Mad1-c-Mad2 is recruited to discrete domains of unattached kinetochores from where it promotes the rate-limiting step in the assembly of anaphase-inhibitory complexes. SAC proficiency further requires Mad1-c-Mad2 to be anchored at NPCs during interphase. However, the mechanistic relevance of this arrangement for SAC function remains ill-defined. Recent studies uncover the molecular underpinnings that coordinate the release of Mad1-c-Mad2 from NPCs with its prompt recruitment to kinetochores. Here, current knowledge on Mad1-c-Mad2 function and spatiotemporal regulation is reviewed and the critical questions that remain unanswered are highlighted.
Collapse
Affiliation(s)
- Sofia Cunha-Silva
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, 4050-313, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
| |
Collapse
|
3
|
Liu Y, Du X, Zhang S, Liu Y, Zhang Q, Yin Q, McNutt MA, Yin Y. PTEN regulates spindle assembly checkpoint timing through MAD1 in interphase. Oncotarget 2017. [PMID: 29228672 DOI: 10.18632/oncotarget.20532.pmid:29228672;pmcid:pmc5716712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The spindle assembly checkpoint (SAC) restrains anaphase progression to ensure all chromosomes attach properly to the spindle. Although SAC timing has been extensively investigated in mitosis, its mechanism of regulation in interphase is unclear. We report that PTEN functions as a crucial activator of SAC timing and protects chromosome segregation under both spindle poison treated and untreated conditions. We show that PTEN physically interacts with MAD1 and promotes its dimerization and localization in the nuclear pore. Consequently, PTEN is important for the formation of the mitotic checkpoint complex (MCC) in interphase. We propose PTEN/MAD1 signaling is essential for maintenance of SAC timing and chromosome integrity.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Du
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shuting Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qiaoling Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
4
|
Liu Y, Du X, Zhang S, Liu Y, Zhang Q, Yin Q, McNutt MA, Yin Y. PTEN regulates spindle assembly checkpoint timing through MAD1 in interphase. Oncotarget 2017; 8:98040-98050. [PMID: 29228672 PMCID: PMC5716712 DOI: 10.18632/oncotarget.20532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/04/2017] [Indexed: 01/20/2023] Open
Abstract
The spindle assembly checkpoint (SAC) restrains anaphase progression to ensure all chromosomes attach properly to the spindle. Although SAC timing has been extensively investigated in mitosis, its mechanism of regulation in interphase is unclear. We report that PTEN functions as a crucial activator of SAC timing and protects chromosome segregation under both spindle poison treated and untreated conditions. We show that PTEN physically interacts with MAD1 and promotes its dimerization and localization in the nuclear pore. Consequently, PTEN is important for the formation of the mitotic checkpoint complex (MCC) in interphase. We propose PTEN/MAD1 signaling is essential for maintenance of SAC timing and chromosome integrity.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Du
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shuting Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qiaoling Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Abstract
The nuclear pore complex is the primary conduit for nuclear import and export of molecules. In this issue, Gu et al. uncover a novel mechanism in which immune signaling and programmed cell death require nuclear pore rearrangement and release of sequestered cyclin-dependent kinase inhibitors to elicit immunity and death.
Collapse
Affiliation(s)
- Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Complex Commingling: Nucleoporins and the Spindle Assembly Checkpoint. Cells 2015; 4:706-25. [PMID: 26540075 PMCID: PMC4695854 DOI: 10.3390/cells4040706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022] Open
Abstract
The segregation of the chromosomes during mitosis is an important process, in which the replicated DNA content is properly allocated into two daughter cells. To ensure their genomic integrity, cells present an essential surveillance mechanism known as the spindle assembly checkpoint (SAC), which monitors the bipolar attachment of the mitotic spindle to chromosomes to prevent errors that would result in chromosome mis-segregation and aneuploidy. Multiple components of the nuclear pore complex (NPC), a gigantic protein complex that forms a channel through the nuclear envelope to allow nucleocytoplasmic exchange of macromolecules, were shown to be critical for faithful cell division and implicated in the regulation of different steps of the mitotic process, including kinetochore and spindle assembly as well as the SAC. In this review, we will describe current knowledge about the interconnection between the NPC and the SAC in an evolutional perspective, which primarily relies on the two mitotic checkpoint regulators, Mad1 and Mad2. We will further discuss the role of NPC constituents, the nucleoporins, in kinetochore and spindle assembly and the formation of the mitotic checkpoint complex during mitosis and interphase.
Collapse
|
7
|
London N, Biggins S. Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 2014; 15:736-47. [PMID: 25303117 DOI: 10.1038/nrm3888] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spindle checkpoint ensures proper chromosome segregation during cell division. Unravelling checkpoint signalling has been a long-standing challenge owing to the complexity of the structures and forces that regulate chromosome segregation. New reports have now substantially advanced our understanding of checkpoint signalling mechanisms at the kinetochore, the structure that connects microtubules and chromatin. In contrast to the traditional view of a binary checkpoint response - either completely on or off - new findings indicate that the checkpoint response strength is variable. This revised perspective provides insight into how checkpoint bypass can lead to aneuploidy and informs strategies to exploit these errors for cancer treatments.
Collapse
Affiliation(s)
- Nitobe London
- 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, Washington 98109, USA. [2] Molecular and Cellular Biology Program, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, Washington 98109, USA
| |
Collapse
|