1
|
Wang C, Wang W, Wang M, Deng J, Sun C, Hu Y, Luo S. Different evasion strategies in multiple myeloma. Front Immunol 2024; 15:1346211. [PMID: 38464531 PMCID: PMC10920326 DOI: 10.3389/fimmu.2024.1346211] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Multiple myeloma is the second most common malignant hematologic malignancy which evolved different strategies for immune escape from the host immune surveillance and drug resistance, including uncontrolled proliferation of malignant plasma cells in the bone marrow, genetic mutations, or deletion of tumor antigens to escape from special targets and so. Therefore, it is a big challenge to efficiently treat multiple myeloma patients. Despite recent applications of immunomodulatory drugs (IMiDS), protease inhibitors (PI), targeted monoclonal antibodies (mAb), and even hematopoietic stem cell transplantation (HSCT), it remains hardly curable. Summarizing the possible evasion strategies can help design specific drugs for multiple myeloma treatment. This review aims to provide an integrative overview of the intrinsic and extrinsic evasion mechanisms as well as recently discovered microbiota utilized by multiple myeloma for immune evasion and drug resistance, hopefully providing a theoretical basis for the rational design of specific immunotherapies or drug combinations to prevent the uncontrolled proliferation of MM, overcome drug resistance and improve patient survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Braham MV, van Binnendijk RS, Buisman AMM, Mebius RE, de Wit J, van Els CA. A synthetic human 3D in vitro lymphoid model enhancing B-cell survival and functional differentiation. iScience 2022; 26:105741. [PMID: 36590159 PMCID: PMC9794978 DOI: 10.1016/j.isci.2022.105741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
To investigate B-cell differentiation and maturation occurring in the germinal center (GC) using in vitro culture systems, key factors and interactions of the GC reaction need to be accurately simulated. This study aims at improving in vitro GC simulation using 3D culture techniques. Human B-cells were incorporated into PEG-4MAL hydrogels, to create a synthetic extracellular matrix, supported by CD40L cells, human tonsil-derived lymphoid stromal cells, and cytokines. The differentiation and antibody production of CD19+B-cells was best supported in a 5.0%-PEG-4MAL, 2.0 mM-RGD-peptide composition. The 3D culture significantly increased plasmablast and plasma cell numbers as well as antibody production, with less B-cell death compared to 2D cultures. Class switching of naive CD19+IgD+B-cells toward IgG+ and IgA+B-cells was observed. The formation of large B-cell clusters indicates the formation of GC-like structures. In conclusion, a well-characterized and controllable hydrogel-based human 3D lymphoid model is presented that supports enhanced B-cell survival, proliferation, differentiation, and antibody production.
Collapse
Affiliation(s)
- Maaike V.J. Braham
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rob S. van Binnendijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Anne-Marie M. Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Reina E. Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands,Corresponding author
| | - Cécile A.C.M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands,Corresponding author
| |
Collapse
|
3
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
4
|
Leone P, Solimando AG, Malerba E, Fasano R, Buonavoglia A, Pappagallo F, De Re V, Argentiero A, Silvestris N, Vacca A, Racanelli V. Actors on the Scene: Immune Cells in the Myeloma Niche. Front Oncol 2020; 10:599098. [PMID: 33194767 PMCID: PMC7658648 DOI: 10.3389/fonc.2020.599098] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Argentiero
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
5
|
Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory. Cancers (Basel) 2020; 12:cancers12082158. [PMID: 32759688 PMCID: PMC7463431 DOI: 10.3390/cancers12082158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022] Open
Abstract
The standard model of multiple myeloma (MM) relies on genetic instability in the normal counterparts of MM cells. MM-induced lytic bone lesions are considered as end organ damages. However, bone is a tissue of significance in MM and bone changes could be at the origin/facilitate the emergence of MM. We propose the tissue disruption-induced cell stochasticity (TiDiS) theory for MM oncogenesis that integrates disruption of the microenvironment, differentiation, and genetic alterations. It starts with the observation that the bone marrow endosteal niche controls differentiation. As decrease in cellular stochasticity occurs thanks to cellular interactions in differentiating cells, the initiating role of bone disruption would be in the increase of cellular stochasticity. Thus, in the context of polyclonal activation of B cells, memory B cells and plasmablasts would compete for localizing in endosteal niches with the risk that some cells cannot fully differentiate if they cannot reside in the niche because of a disrupted microenvironment. Therefore, they would remain in an unstable state with residual proliferation, with the risk that subclones may transform into malignant cells. Finally, diagnostic and therapeutic perspectives are provided.
Collapse
|
6
|
Capp JP, Bataille R. Multiple Myeloma Exemplifies a Model of Cancer Based on Tissue Disruption as the Initiator Event. Front Oncol 2018; 8:355. [PMID: 30250824 PMCID: PMC6140628 DOI: 10.3389/fonc.2018.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
The standard model of multiple myeloma (MM) oncogenesis is based on the genetic instability of MM cells and presents its evolution as the emergence of clones with more and more aggressive genotypes, giving them surviving and proliferating advantage. The micro-environment has a passive role. In contrast, many works have shown that the progression of MM is also characterized by the selection of clones with extended phenotypes able to destroy bone trabeculae, suggesting a major role for early micro-environmental disruption. We present a model of MM oncogenesis in which genetic instability is the consequence of the disruption of normal interactions between plasma cells and their environment, the bone remodeling compartment. These interactions, which normally ensure the stability of the genotypes and phenotypes of normal plasma cells could be disrupted by many factors as soon as the early steps of the disease (MGUS, pre-MGUS states). Therapeutical implications of the model are presented.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- LISBP, UMR CNRS 5504, UMR INRA 792, INSA Toulouse, University of Toulouse, Toulouse, France
| | - Régis Bataille
- Faculty of Medecine, University of Angers, Angers, France
| |
Collapse
|
7
|
Braham MV, Ahlfeld T, Akkineni AR, Minnema MC, Dhert WJ, Öner FC, Robin C, Lode A, Gelinsky M, Alblas J. Endosteal and Perivascular Subniches in a 3D Bone Marrow Model for Multiple Myeloma. Tissue Eng Part C Methods 2018; 24:300-312. [DOI: 10.1089/ten.tec.2017.0467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Maaike V.J. Braham
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - A. Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Braham MVJ, Minnema MC, Aarts T, Sebestyen Z, Straetemans T, Vyborova A, Kuball J, Öner FC, Robin C, Alblas J. Cellular immunotherapy on primary multiple myeloma expanded in a 3D bone marrow niche model. Oncoimmunology 2018; 7:e1434465. [PMID: 29872571 PMCID: PMC5980416 DOI: 10.1080/2162402x.2018.1434465] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/01/2022] Open
Abstract
Bone marrow niches support multiple myeloma, providing signals and cell-cell interactions essential for disease progression. A 3D bone marrow niche model was developed, in which supportive multipotent mesenchymal stromal cells and their osteogenic derivatives were co-cultured with endothelial progenitor cells. These co-cultured cells formed networks within the 3D culture, facilitating the survival and proliferation of primary CD138+ myeloma cells for up to 28 days. During this culture, no genetic drift was observed within the genomic profile of the primary myeloma cells, indicating a stable outgrowth of the cultured CD138+ population. The 3D bone marrow niche model enabled testing of a novel class of engineered immune cells, so called TEGs (αβT cells engineered to express a defined γδTCR) on primary myeloma cells. TEGs were engineered and tested from both healthy donors and myeloma patients. The added TEGs were capable of migrating through the 3D culture, exerting a killing response towards the primary myeloma cells in 6 out of 8 donor samples after both 24 and 48 hours. Such a killing response was not observed when adding mock transduced T cells. No differences were observed comparing allogeneic and autologous therapy. The supporting stromal microenvironment was unaffected in all conditions after 48 hours. When adding TEG therapy, the 3D model surpassed 2D models in many aspects by enabling analyses of specific homing, and both on- and off-target effects, preparing the ground for the clinical testing of TEGs. The model allows studying novel immunotherapies, therapy resistance mechanisms and possible side-effects for this incurable disease.
Collapse
Affiliation(s)
- Maaike V. J. Braham
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Tineke Aarts
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Trudy Straetemans
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna Vyborova
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurgen Kuball
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Neri P, Bahlis NJ, Lonial S. New Strategies in Multiple Myeloma: Immunotherapy as a Novel Approach to Treat Patients with Multiple Myeloma. Clin Cancer Res 2016; 22:5959-5965. [PMID: 27797968 DOI: 10.1158/1078-0432.ccr-16-0184] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a B-cell malignancy characterized by proliferation of monoclonal plasma cells in the bone marrow. Although new therapeutic options introduced in recent years have resulted in improved survival outcomes, multiple myeloma remains incurable for a large number of patients, and new treatment options are urgently needed. Over the last 5 years, there has been a renewed interest in the clinical potential of immunotherapy for the treatment of multiple myeloma. Clinical progression of myeloma is known to be associated with progressive immune dysregulation and loss of immune surveillance that contribute to disease progression in association with progressive genetic complexity, rendering signaling-based treatments less effective. A variety of strategies to reverse the multiple myeloma-induced immunosuppression has been developed either in the form of immunomodulatory drugs, checkpoint inhibitors, mAbs, engineered T cells, and vaccines. They have shown encouraging results in patients with relapsed refractory multiple myeloma and hold great promise in further improving patient outcomes in multiple myeloma. This review will summarize the major approaches in multiple myeloma immunotherapies and discuss the mechanisms of action and clinical activity of these strategies. Clin Cancer Res; 22(24); 5959-65. ©2016 AACR.
Collapse
Affiliation(s)
- Paola Neri
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Nizar J Bahlis
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
10
|
Pagnotti GM, Chan ME, Adler BJ, Shroyer KR, Rubin J, Bain SD, Rubin CT. Low intensity vibration mitigates tumor progression and protects bone quantity and quality in a murine model of myeloma. Bone 2016; 90:69-79. [PMID: 27262776 PMCID: PMC4970889 DOI: 10.1016/j.bone.2016.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
Myeloma facilitates destruction of bone and marrow. Since physical activity encourages musculoskeletal preservation we evaluated whether low-intensity vibration (LIV), a means to deliver mechanical signals, could protect bone and marrow during myeloma progression. Immunocompromised-mice (n=25) were injected with human-myeloma cells, while 8 (AC) were saline-injected. Myeloma-injected mice (LIV; n=13) were subjected to daily-mechanical loading (15min/d; 0.3g @ 90Hz) while 12 (MM) were sham-handled. At 8w, femurs had 86% less trabecular bone volume fraction (BV/TV) in MM than in AC, yet only a 21% decrease in LIV was observed in comparison to AC, reflecting a 76% increase versus MM. Cortical BV was 21% and 15% lower in MM and LIV, respectively, than in AC; LIV showing 30% improvement over MM. Similar outcomes were observed in the axial skeleton, showing a 35% loss in MM with a 27% improved retention of bone in the L5 of LIV-treated mice as compared to MM. Transcortical-perforations in the femur from myeloma-induced osteolysis were 9× higher in MM versus AC, reduced by 57% in LIV. Serum-TRACP5b, 61% greater in MM versus AC, rose by 33% in LIV compared to AC, a 45% reduction in activity when compared to MM. Histomorphometric analyses of femoral trabecular bone demonstrated a 70% elevation in eroded surfaces of MM versus AC, while measures in LIV were 58% below those in MM. 72% of marrow in the femur of MM mice contained tumor, contrasted by a 31% lower burden in LIV. MM mice (42%) presented advanced-stage necrosis of tibial marrow while present in just 8% of LIV. Myeloma infiltration inversely correlated to measures of bone quality, while LIV slowed the systemic, myeloma-associated decline in bone quality and inhibited tumor progression through the hindlimbs.
Collapse
Affiliation(s)
- Gabriel M Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - M Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Benjamin J Adler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-2580, United States
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Steven D Bain
- Department of Orthopedics & Sports Medicine, University of Washington, Seattle, WA 98104-2499, United States
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States.
| |
Collapse
|
11
|
Malek E, de Lima M, Letterio JJ, Kim BG, Finke JH, Driscoll JJ, Giralt SA. Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Rev 2016; 30:341-8. [PMID: 27132116 DOI: 10.1016/j.blre.2016.04.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous, immature myeloid cell population with the ability to suppress innate and adaptive immune responses that promote tumor growth. MDSCs are increased in patients with multiple myeloma (MM) and have bidirectional interaction with tumors within the MM microenvironment. MM-MDSCs promote MM tumor growth and induce immune suppression; conversely, MM cells induce MDSC development and survival. Although the role of MDSCs in infections, inflammatory diseases and solid tumors has been extensively characterized, their tumor-promoting and immune-suppressive role in MM and the MM microenvironment is only beginning to emerge. The presence and activation of MDSCs in MM patients has been well documented; however, the direct actions and functional consequences of MDSCs on cancer cells is poorly defined. Immunosuppressive MDSCs play an important role in tumor progression primarily because of their capability to promote immune-escape, angiogenesis, drug resistance and metastasis. However, their role in the bone marrow (BM), the primary MM site, is poorly understood. MM remains an incurable malignancy, and it is likely that the BM microenvironment protects MM against chemotherapy agents and the host immune system. A growing body of evidence suggests that host immune cells with a suppressive phenotype contribute to a myeloma immunosuppressive network. Among the known suppressor cells, MDSCs and T regulatory cells (Tregs) have been found to be significantly increased in myeloma patients and their levels correlate with disease stage and clinical outcome. Furthermore, it has been shown that MDSC can mediate suppression of myeloma-specific T-cell responses through the induction of T-cell anergy and Treg development in the MM microenvironment. Here, we review clinical correlations and the preclinical proof-of-principle data on the role of MDSCs in myeloma immunotolerance and highlight the mechanistically relevant MDSC-targeted compounds and their potential utility in a new approach for anti-myeloma therapy.
Collapse
Affiliation(s)
- Ehsan Malek
- University Hospitals Case Medical Center, Seidman Cancer Center, Cleveland, OH, USA.
| | - Marcos de Lima
- University Hospitals Case Medical Center, Seidman Cancer Center, Cleveland, OH, USA
| | - John J Letterio
- Department of Pediatrics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; The Angie Fowler Adolescent & Young Adult Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH, USA
| | - Byung-Gyu Kim
- Department of Pediatrics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; The Angie Fowler Adolescent & Young Adult Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH, USA
| | - James H Finke
- Taussig Cancer Institute, Glickman Urological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James J Driscoll
- Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sergio A Giralt
- Adult Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
13
|
Nekova TS, Dotterweich J, Schütze N, Einsele H, Stuhler G. Small molecule enhancers of rapamycin induce apoptosis in myeloma cells via GSK3A/B preferentially within a protective bone marrow microenvironment. Br J Haematol 2014; 167:272-4. [PMID: 24916065 DOI: 10.1111/bjh.12967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tatyana S Nekova
- Department of Internal Medicine II, Julius-Maximilians University, Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Immunological dysregulation in multiple myeloma microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:198539. [PMID: 25013764 PMCID: PMC4071780 DOI: 10.1155/2014/198539] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/20/2014] [Indexed: 12/22/2022]
Abstract
Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.
Collapse
|
15
|
Wong TW, Kita H, Hanson CA, Walters DK, Arendt BK, Jelinek DF. Induction of malignant plasma cell proliferation by eosinophils. PLoS One 2013; 8:e70554. [PMID: 23894671 PMCID: PMC3718740 DOI: 10.1371/journal.pone.0070554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 01/21/2023] Open
Abstract
The biology of the malignant plasma cells (PCs) in multiple myeloma (MM) is highly influenced by the bone marrow (BM) microenvironment in which they reside. More specifically, BM stromal cells (SCs) are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also actively participate in the pathology of MM. Our study shows for the first time that eosinophils (Eos) can contribute to the biology of MM by enhancing the proliferation of some malignant PCs. We first demonstrate that PCs and Eos can be found in close proximity in the BM. In culture, Eos were found to augment MM cell proliferation that is predominantly mediated through a soluble factor(s). Fractionation of cell-free supernatants and neutralization studies demonstrated that this activity is independent of Eos-derived microparticles and a proliferation-inducing ligand (APRIL), respectively. Using a multicellular in vitro system designed to resemble the native MM niche, SCs and Eos were shown to have non-redundant roles in their support of MM cell growth. Whereas SCs induce MM cell proliferation predominantly through the secretion of IL-6, Eos stimulate growth of these malignant cells via an IL-6-independent mechanism. Taken together, our study demonstrates for the first time a role for Eos in the pathology of MM and suggests that therapeutic strategies targeting these cells may be beneficial.
Collapse
Affiliation(s)
- Tina W. Wong
- Department of Immunology, Mayo Clinic, Rochester, Minneapolis, United States of America
| | - Hirohito Kita
- Department of Internal Medicine, Mayo Clinic, Rochester, Minneapolis, United States of America
| | - Curtis A. Hanson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minneapolis, United States of America
| | - Denise K. Walters
- Department of Immunology, Mayo Clinic, Rochester, Minneapolis, United States of America
| | - Bonnie K. Arendt
- Department of Immunology, Mayo Clinic, Rochester, Minneapolis, United States of America
| | - Diane F. Jelinek
- Department of Immunology, Mayo Clinic, Rochester, Minneapolis, United States of America
- Department of Internal Medicine, Mayo Clinic, Rochester, Minneapolis, United States of America
- * E-mail:
| |
Collapse
|
16
|
Asimakopoulos F, Kim J, Denu RA, Hope C, Jensen JL, Ollar SJ, Hebron E, Flanagan C, Callander N, Hematti P. Macrophages in multiple myeloma: emerging concepts and therapeutic implications. Leuk Lymphoma 2013; 54:2112-21. [PMID: 23432691 DOI: 10.3109/10428194.2013.778409] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple myeloma, a clonal plasma cell malignancy, has long provided a prototypic model to study regulatory interactions between malignant cells and their microenvironment. Myeloma-associated macrophages have historically received limited scrutiny, but recent work points to central and non-redundant roles in myeloma niche homeostasis. The evidence supports a paradigm of complex, dynamic and often mutable interactions between macrophages and other cellular constituents of the niche. We and others have shown that macrophages support myeloma cell growth, viability and drug resistance through both contact-mediated and non-contact-mediated mechanisms. These tumor-beneficial roles have evolved in opposition to, or in parallel with, intrinsic pro-inflammatory and tumoricidal properties. Thus, simple blockade of protective "don't eat me" signals on the surface of myeloma cells leads to macrophage-mediated myeloma cell killing. Macrophages also enhance the tumor-supportive role of mesenchymal stem/stromal cells (MSCs) in the niche: importantly, this interaction is bidirectional, producing a distinct state of macrophage polarization that we termed "MSC-educated macrophages." The intriguing pattern of cross-talk between macrophages, MSCs and tumor cells highlights the myeloma niche as a dynamic multi-cellular structure. Targeted reprogramming of these interactions harbors significant untapped therapeutic potential, particularly in the setting of minimal residual disease, the main obstacle toward a cure.
Collapse
Affiliation(s)
- Fotis Asimakopoulos
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health , Madison, WI , USA and University of Wisconsin Carbone Cancer Center , Madison, WI , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|