1
|
Suvieri C, Belladonna ML, Volpi C. The Two Sides of Indoleamine 2,3-Dioxygenase 2 (IDO2). Cells 2024; 13:1894. [PMID: 39594642 PMCID: PMC11593294 DOI: 10.3390/cells13221894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and IDO2 originated from gene duplication before vertebrate divergence. While IDO1 has a well-defined role in immune regulation, the biological role of IDO2 remains unclear. Discovered in 2007, IDO2 is located near the IDO1 gene. Because of their high sequence similarity, IDO2 was initially thought to be a tryptophan (Trp)-degrading enzyme like IDO1. Differently from what expected, IDO2 displays extremely low catalytic activity toward Trp. Nevertheless, many studies, often contradictory, have tried to demonstrate that IDO2 modulates immune responses by catabolizing Trp into kynurenine, an unconvincing hypothesis linked to an incomplete understanding of IDO2's activity. In this study, we review IDO2's functional role beyond Trp metabolism. IDO2's evolutionary persistence across species, despite being almost inactive as an enzyme, suggests it has some relevant biological importance. IDO2 expression in human normal cells is poor, but significant in various cancers, with two prevalent SNPs. Overall, the comparison of IDO2 to IDO1 as a Trp-degrading enzyme may have led to misunderstandings about IDO2's true physiological and pathological roles. New insights suggest that IDO2 might function more as a signaling molecule, particularly in cancer contexts, and further studies could reveal its potential as a target for cancer therapy.
Collapse
Affiliation(s)
| | | | - Claudia Volpi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (C.S.); (M.L.B.)
| |
Collapse
|
2
|
IDO2 rs10109853 polymorphism affects the susceptibility to multiple myeloma. Clin Exp Med 2021; 21:323-329. [PMID: 33709342 DOI: 10.1007/s10238-020-00681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) of the IDO1 and IDO2 genes have been associated with some diseases. Here, we investigated the association of IDO1 and IDO2 SNPs with the susceptibility to multiple myeloma (MM) and their relationships with MM clinical features. We obtained genomic DNA from 100 patients with MM and 149 healthy race-matched controls and determined IDO1 promoter - 1849G/T (rs3824259) and IDO2 R248W (rs10109853) genotypes by using the polymerase chain reaction-restriction fragment length polymorphism method. The patients with MM had a significantly higher frequency of the IDO2 R248W RR genotype (high-activity type) (59.0% vs. 43.6%, odds ratio = 1.86, 95% confidence interval = 1.11-3.11, P = 0.017) compared with those in healthy controls. Patients with the IDO2 R248W RR genotype (high-activity type) were significantly younger and had a significantly lower frequency of International Staging System (ISS) stage III condition than those with the RW and WW genotypes (median 63 years vs. 69 years, P = 0.025; 15 [25.4%] vs. 50 [48.8%]). In addition, the IDO2 R248W RR genotype was significantly associated with a higher level of hemoglobin at diagnosis (mean ± standard deviation, 10.7 ± 2.36 vs. 9.27 ± 2.40 g/dL; P = 0.0032). Neither polymorphism significantly affected overall survival. Our study indicates that IDO2 R248W may be associated with the susceptibility to MM and severity of anemia.
Collapse
|
3
|
Liu Y, Xu P, Liu H, Fang C, Guo H, Chen X, Tan M, Zhang Y, Min W. Silencing IDO2 in dendritic cells: A novel strategy to strengthen cancer immunotherapy in a murine lung cancer model. Int J Oncol 2020; 57:587-597. [PMID: 32468023 DOI: 10.3892/ijo.2020.5073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/06/2020] [Indexed: 11/05/2022] Open
Abstract
While dendritic cell (DC)‑based immunotherapy has achieved satisfactory results in animal models, its effects were not satisfactory as initially expected in clinical applications, despite the safety and varying degrees of effectiveness in various types of cancer. Improving the efficacy of the DC‑based vaccine is essential for cancer immunotherapy. The present study aimed to investigate methods with which to amplify and enhance the antitumor immune response of a DC‑based tumor vaccine by silencing the expression of indoleamine 2,3‑dioxygenase 2 (IDO2), a tryptophan rate‑limiting metabolic enzyme in DCs. In vitro experiments revealed that the silencing of IDO2 in DCs did not affect the differentiation of DCs, whereas it increased their expression of costimulatory molecules following stimulation with tumor necrosis factor (TNF)‑α and tumor lysate from Lewis lung cancer (LLC) cells. In a mixed co‑culture system, the IDO2‑silenced DCs promoted the proliferation of T‑cells and reduced the induction of regulatory T‑cells (Tregs). Further in vivo experiments revealed that the silencing of IDO2 in DCs markedly suppressed the growth of tumor cells. Moreover, treatment with the IDO2‑silenced DC‑based cancer vaccine enhanced cytotoxic T lymphocyte activity, whereas it decreased T‑cell apoptosis and the percentage of CD4+CD25+Foxp3+ Tregs. On the whole, the present study provides evidence that the silencing of the tryptophan rate‑limiting metabolic enzyme, IDO2, has the potential to enhance the efficacy of DC‑based cancer immunotherapy.
Collapse
Affiliation(s)
- Yanling Liu
- Medical Laboratory, Jiangxi University of Technology, Nanchang, Jiangxi 330098, P.R. China
| | - Ping Xu
- Medical Laboratory, Jiangxi University of Technology, Nanchang, Jiangxi 330098, P.R. China
| | - Huan Liu
- Medical Laboratory, Jiangxi University of Technology, Nanchang, Jiangxi 330098, P.R. China
| | - Chunjuan Fang
- Medical Laboratory, Jiangxi University of Technology, Nanchang, Jiangxi 330098, P.R. China
| | - Haihe Guo
- Medical Laboratory, Jiangxi University of Technology, Nanchang, Jiangxi 330098, P.R. China
| | - Xiaoyan Chen
- Medical Laboratory, Jiangxi University of Technology, Nanchang, Jiangxi 330098, P.R. China
| | - Manman Tan
- Institute of Immunotherapy, Nanchang University and Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330098, P.R. China
| | - Yujuan Zhang
- Institute of Immunotherapy, Nanchang University and Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330098, P.R. China
| | - Weiping Min
- Institute of Immunotherapy, Nanchang University and Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330098, P.R. China
| |
Collapse
|
4
|
Andersen MH. The Balance Players of the Adaptive Immune System. Cancer Res 2018; 78:1379-1382. [DOI: 10.1158/0008-5472.can-17-3607] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
|
5
|
Nevler A, Muller AJ, Cozzitorto JA, Goetz A, Winter JM, Yeo TP, Lavu H, Yeo CJ, Prendergast GC, Brody JR. A Sub-Type of Familial Pancreatic Cancer: Evidence and Implications of Loss-of-Function Polymorphisms in Indoleamine-2,3-Dioxygenase-2. J Am Coll Surg 2018; 226:596-603. [PMID: 29426021 PMCID: PMC6047862 DOI: 10.1016/j.jamcollsurg.2017.12.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Variation in an individual’s genetic status can impact the development of pancreatic ductal adenocarcinoma; however, the m ajority of familial pancreatic cancers (FPC) cannot yet be attributed to a specific inherited mutation. We present data suggesting a correlation between loss-of-function single nucleotide polymorphisms (SNPs) in an immune regulator gene, indoleamine-2,3-dioxygenase-2 (IDO2), and an increased risk of FPC. STUDY DESIGN Germline DNA from patients who underwent resection for pancreatic ductal adenocarcinoma (n = 79) was sequenced for the IDO2 SNPs R248W and Y359Stop. Genotypes resulting in inactivation of IDO2 (Y325X homozygous, R248W homozygous) were labeled as homozygous, and the other genotypes were grouped as wild-type or heterozygous. Genotype distributions of each SNP were analyzed for Hardy-Weinberg deviation. A genotype frequency set from the 1000 Genomes Project (n = 99) was used as a genetic control for genotype distribution comparisons. RESULTS A significant 2-fold increase in the overall prevalence of the Y359Stop homozygous genotype compared with the expected Hardy-Weinberg equilibrium was noted (p < 0.05). Familial pancreatic cancer was noted in 15 cases (19%) and comparison of the FPC cohort set to the genetic control set showed a 3-fold increase in Y359Stop homozygous rates (p = 0.054). Overall in our cohort, the homozygous genotype group was associated with increased risk of FPC (odds ratio 5.4; 95% CI 1.6 to 17.6; p < 0.01). Sex, age at diagnosis, and history of tobacco use were not found to be significantly associated with FPC. CONCLUSIONS Our preliminary data suggest a strong association between the IDO2 inactivating Y359Stop SNP and an increased risk of FPC when compared with the control group. Future studies will evaluate the value of IDO2 genotyping as a prognostic, early detection marker for pancreatic ductal adenocarcinoma and a predictive marker for novel immune checkpoint therapies.
Collapse
Affiliation(s)
- Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Alexander J Muller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; Lankenau Institute for Medical Research, Wynnewood, PA
| | - Joseph A Cozzitorto
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Austin Goetz
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Jordan M Winter
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Theresa P Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Harish Lavu
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Charles J Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George C Prendergast
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; Lankenau Institute for Medical Research, Wynnewood, PA
| | - Jonathan R Brody
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
6
|
Li J, Li Y, Yang D, Hu N, Guo Z, Kuang C, Yang Q. Establishment of a human indoleamine 2, 3-dioxygenase 2 (hIDO2) bioassay system and discovery of tryptanthrin derivatives as potent hIDO2 inhibitors. Eur J Med Chem 2016; 123:171-179. [DOI: 10.1016/j.ejmech.2016.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 07/07/2016] [Indexed: 11/29/2022]
|
7
|
Buyuktiryaki B, Sahiner UM, Girgin G, Birben E, Soyer OU, Cavkaytar O, Cetin C, Arik Yilmaz E, Yavuz ST, Kalayci O, Baydar T, Sackesen C. Low indoleamine 2,3-dioxygenase activity in persistent food allergy in children. Allergy 2016; 71:258-66. [PMID: 26449488 DOI: 10.1111/all.12785] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO), which degrades tryptophan (Trp) to kynurenine (Kyn), has been demonstrated to contribute to modulation of allergic responses. However, the role of IDO in food allergy has not yet been elucidated. METHODS Serum Trp and Kyn concentrations were analyzed by high-pressure liquid chromatography. Expression of IDO gene was measured by real-time PCR. The levels of interleukin (IL)-4, IL-10, and interferon (IFN)-γ in cell culture supernatants were measured by ELISA. RESULTS Kyn/Trp (IDO activity) was significantly lower in subjects with food allergy (n = 100) than in aged-matched healthy controls (n = 112) (P = 0.004). Kyn/Trp was decreased from healthy through completely tolerant, partially tolerant, and reactive ones [LN transformation (mean ± SEM) healthy: 3.9 ± 0.02 μM/mM; completely tolerant: 3.83 ± 0.04; partially tolerant: 3.8 ± 0.06; reactive: 3.7 ± 0.04] (P = 0.008). The frequency of genetic polymorphisms of IDO did not reveal a significant association with Trp, Kyn, and Kyn/Trp in healthy and food-allergic cases. Culture of PBMC experiments yielded that IDO mRNA expression was not different between tolerant and reactive groups. IL-4 synthesis when stimulated with casein increased significantly in subjects who are reactive and tolerant to foods (P = 0.042, P = 0.006, respectively). Increase in IL-10 synthesis was observed only in children tolerant to milk, but not in reactive ones. IFN-γ synthesis, when stimulated with IL-2 and β-lactoglobulin in cell culture, was significantly higher in subjects tolerant to milk than in the reactive ones (P = 0.005 and P = 0.029, respectively). CONCLUSION Our results imply the probability of involvement of IDO in development of tolerance process, and we presume that high IDO activity is associated with nonresponsiveness to food allergens despite allergen sensitization.
Collapse
Affiliation(s)
- B. Buyuktiryaki
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - U. M. Sahiner
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - G. Girgin
- Division of Toxicology; Hacettepe University School of Pharmacy; Ankara Turkey
| | - E. Birben
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - O. U. Soyer
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - O. Cavkaytar
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - C. Cetin
- Department of Nutrition and Dietetics; Hacettepe University Faculty of Health Sciences; Ankara Turkey
| | - E. Arik Yilmaz
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - S. T. Yavuz
- Division of Pediatric Allergy; GATA Military School of Medicine; Ankara Turkey
| | - O. Kalayci
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
| | - T. Baydar
- Division of Toxicology; Hacettepe University School of Pharmacy; Ankara Turkey
| | - C. Sackesen
- Division of Pediatric Allergy; Hacettepe University School of Medicine; Ankara Turkey
- Division of Pediatric Allergy; Koc University School of Medicine; Istanbul Turkey
| |
Collapse
|
8
|
Prendergast GC, Metz R, Muller AJ, Merlo LMF, Mandik-Nayak L. IDO2 in Immunomodulation and Autoimmune Disease. Front Immunol 2014; 5:585. [PMID: 25477879 PMCID: PMC4238401 DOI: 10.3389/fimmu.2014.00585] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
IDO2 is a relative of IDO1 implicated in tryptophan catabolism and immune modulation but its specific contributions to normal physiology and pathophysiology are not known. Evolutionary genetic studies suggest that IDO2 has a unique function ancestral to IDO1. In mice, IDO2 gene deletion does not appreciably affect embryonic development or hematopoiesis, but it leads to defects in allergic or autoimmune responses and in the ability of IDO1 to influence the generation of T regulatory cells. Gene expression studies indicate that IDO2 is a basally and more narrowly expressed gene than IDO1 and that IDO2 is uniquely regulated by AhR, which serves as a physiological receptor for the tryptophan catabolite kynurenine. In the established KRN transgenic mouse model of rheumatoid arthritis, where IDO1 gene deletion has no effect, IDO2 deletion selectively blunts responses to autoantigen but has no effect on responses to neoantigen challenge. In human populations, natural variations in IDO2 gene sequence that attenuate enzymatic activity have been reported to influence brain cancer control and adaptive immune responses to the IDO2 protein itself, consistent with the concept that IDO2 is involved in shaping immune tolerance in human beings. Biochemical and pharmacological studies provide further evidence of differences in IDO2 enzymology and function relative to IDO1. We suggest that IDO2 may act in a distinct manner from IDO1 as a set-point for tolerance to "altered-self" antigens along the self-non-self continuum where immune challenges from cancer and autoimmunity may arise.
Collapse
Affiliation(s)
- George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical School, Thomas Jefferson University, Philadelphia, PA, USA
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Alexander J. Muller
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Laura Mandik-Nayak
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|