1
|
Liu XF, Song B, Sun CB, Zhu Q, Yue JH, Liang YJ, He J, Zeng XL, Qin YC, Chen QY, Mai HQ, Zhang X, Li J. Tumor-infiltrated double-negative regulatory T cells predict outcome of T cell-based immunotherapy in nasopharyngeal carcinoma. Cell Rep Med 2025; 6:102096. [PMID: 40315843 DOI: 10.1016/j.xcrm.2025.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) has demonstrated clinical success in solid tumors. We analyze 47 TIL infusion products and 62 pretreatment tumor microenvironments (TMEs) from a randomized phase 2 clinical study of concurrent chemoradiotherapy plus TIL-ACT (NCT02421640). Using single-cell and bulk RNA sequencing along with flow cytometry, we identify 14 CD3+ T cell clusters within 26 TIL infusion products: 11 CD3+CD8+ TILs, 2 CD3+CD4+ TILs, and 1 CD3+CD8-CD4- double-negative (DN) TIL. (DN) TILs, significantly associated with poor TIL-ACT outcomes, exhibit an activated regulatory T cell-like phenotype and include two CD56+ and four CD56- subsets. Among them, CD56-KZF2+ (DN) TILs are predominantly suppressive. (DN) TILs inhibit CD8+ TIL expansion via Fas-FasL, transforming growth factor β (TGF-β), and interleukin (IL)-10 signaling. Distinct CD8+ T subsets differentially impact on TIL-ACT outcomes, while 9 baseline TME gene signatures and 14 intracellular T cell genes hold prognostic value. Our findings identify predictive TIL subsets and biomarkers for TIL-ACT outcomes.
Collapse
Affiliation(s)
- Xiu-Feng Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bin Song
- BGI, Shenzhen 518083, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chang-Bin Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R. China
| | - Qian Zhu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | - Yu-Jing Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xi-Liang Zeng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Xi Zhang
- BGI, Shenzhen 518083, P.R. China.
| | - Jiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
2
|
Zeng Z, Du W, Yang F, Hui Z, Wang Y, Zhang P, Zhang X, Yu W, Ren X, Wei F. The spatial landscape of T cells in the microenvironment of stage III lung adenocarcinoma. J Pathol 2024; 262:517-528. [PMID: 38361487 DOI: 10.1002/path.6254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
This study aimed to provide more information for prognostic stratification for patients through an analysis of the T-cell spatial landscape. It involved analyzing stained tissue sections of 80 patients with stage III lung adenocarcinoma (LUAD) using multiplex immunofluorescence and exploring the spatial landscape of T cells and their relationship with prognosis in the center of the tumor (CT) and invasive margin (IM). In this study, multivariate regression suggested that the relative clustering of CT CD4+ conventional T cell (Tconv) to inducible Treg (iTreg), natural regulatory T cell (nTreg) to Tconv, terminal CD8+ T cell (tCD8) to helper T cell (Th), and IM Treg to tCD8 and the relative dispersion of CT nTreg to iTreg, IM nTreg to nTreg were independent risk factors for DFS. Finally, we constructed a spatial immunological score named the GT score, which had stronger prognostic correlation than IMMUNOSCORE® based on CD3/CD8 cell densities. The spatial layout of T cells in the tumor microenvironment and the proposed GT score can reflect the prognosis of patients with stage III LUAD more effectively than T-cell density. The exploration of the T-cell spatial landscape may suggest potential cell-cell interactions and therapeutic targets and better guide clinical decision-making. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ziqing Zeng
- Department of Nuclear Medicine, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, PR China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Weijiao Du
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Fan Yang
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Zhenzhen Hui
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Yunliang Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Oncology, First Central Hospital of Baoding of Hebei Province, Baoding, PR China
| | - Peng Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- Haihe Laboratory of Cell Ecosystem, Tianjin, PR China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Haihe Laboratory of Cell Ecosystem, Tianjin, PR China
| |
Collapse
|
3
|
Liu Y, Li S, Chen L, Lin L, Xu C, Qiu H, Li X, Cao H, Liu K. Global trends in tumor microenvironment-related research on tumor vaccine: a review and bibliometric analysis. Front Immunol 2024; 15:1341596. [PMID: 38380323 PMCID: PMC10876793 DOI: 10.3389/fimmu.2024.1341596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024] Open
Abstract
Background Tumor vaccines have become crucial in cancer immunotherapy, but, only a limited number of phase III clinical trials have demonstrated clinical efficacy. The crux of this issue is the inability of tumor vaccines to effectively harmonize the tumor microenvironment with its intricate interplay. One factor that can hinder the effectiveness of vaccines is the natural immunosuppressive element present in the tumor microenvironment. This element can lead to low rates of T-cell response specific to antigens and the development of acquired resistance. Conversely, anticancer vaccines alter the tumor microenvironment in conflicting manners, inducing both immune activation and immunological evasion. Hence, comprehending the correlation between tumor vaccines and the tumor microenvironment would establish a foundation for forthcoming tumor treatment. Objective Our review explores the realm of research pertaining to tumor vaccinations and the tumor microenvironment. Our objective is to investigate the correlation between tumor vaccines and the tumor microenvironment within this domain. We then focus our review on the dominant international paradigms in this research field and visually illustrates the historical progression and emergent patterns observed in the past. Methods From January 1, 1999 to February 7, 2023, 1420 articles on the interplay between tumor vaccines and the tumor microenvironment were published, according to The Clarivate Web of Science (WOS) database used in our review. A bibliometric review was designed for this collection and consisted of an evaluation. The evaluation encompassed various discernible attributes, including the year of publication, the journals in which the articles were published, the authors involved, the affiliated institutions, the geographical locations of the institutions, the references cited, and the keywords employed. Results Between the years 1999 and 2022, publications saw a significant increase, from 3 to 265 annually. With 72 papers published, Frontiers in Immunology had the most manuscripts published. The Cancer Research publication garnered the highest number of citations, amounting to 2874 citations. The United States exerts significant dominance in the subject, with the National Cancer Institute being recognized as a prominent institution in terms of both productivity and influence. Furthermore, Elizabeth M. Jaffee was recognized as the field's most prolific and influential author with 24 publications and 1,756 citations. The co-occurrence cluster analysis was conducted on the top 197 keywords, resulting in the identification of five distinct clusters. The most recent high-frequency keywords, namely immune therapy, dendritic cell, tumor microenvironment, cancer, and vaccine, signify the emerging frontiers in the interaction between tumor vaccines and the tumor microenvironment. Conclusion Our review uncovers insights into contemporary trends, global patterns of collaboration, fundamental knowledge, research areas of high interest, and emerging frontiers in the field of TME-targeted vaccines.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Kun Liu
- Department of Neurosurgery, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurosurgery, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| |
Collapse
|
4
|
Heim L, Yang Z, Tausche P, Hohenberger K, Chiriac MT, Koelle J, Geppert CI, Kachler K, Miksch S, Graser A, Friedrich J, Kharwadkar R, Rieker RJ, Trufa DI, Sirbu H, Neurath MF, Kaplan MH, Finotto S. IL-9 Producing Tumor-Infiltrating Lymphocytes and Treg Subsets Drive Immune Escape of Tumor Cells in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:859738. [PMID: 35514957 PMCID: PMC9065342 DOI: 10.3389/fimmu.2022.859738] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023] Open
Abstract
Although lung cancer is the leading cause of cancer deaths worldwide, the mechanisms how lung cancer cells evade the immune system remain incompletely understood. Here, we discovered IL-9-dependent signaling mechanisms that drive immune evasion in non-small cell lung cancer (NSCLC). We found increased IL-9 and IL-21 production by T cells in the tumoral region of the lung of patients with NSCLC, suggesting the presence of Th9 cells in the lung tumor microenvironment. Moreover, we noted IL-9 producing Tregs in NSCLC. IL-9 target cells in NSCLC consisted of IL-9R+ tumor cells and tumor-infiltrating lymphocytes. In two murine experimental models of NSCLC, and in vitro, IL-9 prevented cell death and controlled growth of lung adenocarcinoma cells. Targeted deletion of IL-9 resulted in successful lung tumor rejection in vivo associated with an induction of IL-21 and reduction of Treg cells. Finally, anti-IL-9 antibody immunotherapy resulted in suppression of tumor development even in established experimental NSCLC and was associated with reduced IL-10 production in the lung. In conclusion, our findings indicate that IL-9 drives immune escape of lung tumor cells via effects on tumor cell survival and tumor infiltrating T cells. Thus, strategies blocking IL-9 emerge as a new approach for clinical therapy of lung cancer.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Patrick Tausche
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katja Hohenberger
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mircea T. Chiriac
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julia Koelle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carol-Immanuel Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katerina Kachler
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Miksch
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anna Graser
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rakshin Kharwadkar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ralf J. Rieker
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Denis I. Trufa
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F. Neurath
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Susetta Finotto,
| |
Collapse
|
5
|
Kos K, de Visser KE. The Multifaceted Role of Regulatory T Cells in Breast Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021; 5:291-310. [PMID: 34632244 PMCID: PMC7611782 DOI: 10.1146/annurev-cancerbio-042920-104912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (Tregs), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral Tregs can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that Tregs occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, Tregs are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into Treg biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Kevin Kos
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Chang CM, Lam HYP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J 2021; 33:203-211. [PMID: 34386356 PMCID: PMC8323643 DOI: 10.4103/tcmj.tcmj_162_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a frequently diagnosed cancer among women worldwide. Currently, BC can be divided into different subgroups according to the presence of the following hormone receptors: estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Each of these subgroups has different treatment strategies. However, the presence of new metastatic lesions and patient deterioration suggest resistance to a given treatment. Various lines of evidence had shown that cytokines are one of the important mediators of tumor growth, invasion, metastasis, and treatment resistance. Interleukin-10 (IL-10) is an immunoregulatory cytokine, and acts as a poor prognostic marker in many cancers. The anti-inflammatory IL-10 blocks certain effects of inflammatory cytokines. It also antagonizes the co-stimulatory molecules on the antigen-presenting cells. Here, we review the current knowledge on the function and molecular mechanism of IL-10, and recent findings on how IL-10 contributes to the progression of BC.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
7
|
Sasidharan Nair V, Saleh R, Toor SM, Cyprian FS, Elkord E. Metabolic reprogramming of T regulatory cells in the hypoxic tumor microenvironment. Cancer Immunol Immunother 2021; 70:2103-2121. [PMID: 33532902 PMCID: PMC8289790 DOI: 10.1007/s00262-020-02842-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Metabolic dysregulation in the hypoxic tumor microenvironment (TME) is considered as a hallmark of solid tumors, leading to changes in biosynthetic pathways favoring onset, survival and proliferation of malignant cells. Within the TME, hypoxic milieu favors metabolic reprogramming of tumor cells, which subsequently affects biological properties of tumor-infiltrating immune cells. T regulatory cells (Tregs), including both circulating and tissue-resident cells, are particularly susceptible to hypoxic metabolic signaling that can reprogram their biological and physicochemical properties. Furthermore, metabolic reprogramming modifies Tregs to utilize alternative substrates and undergo a plethora of metabolic events to meet their energy demands. Major impact of this metabolic reprogramming can result in differentiation, survival, excessive secretion of immunosuppressive cytokines and proliferation of Tregs within the TME, which in turn dampen anti-tumor immune responses. Studies on fine-tuning of Treg metabolism are challenging due to heterogenicity of tissue-resident Tregs and their dynamic functions. In this review, we highlight tumor intrinsic and extrinsic factors, which can influence Treg metabolism in the hypoxic TME. Moreover, we focus on metabolic reprogramming of Tregs that could unveil potential regulatory networks favoring tumorigenesis/progression, and provide novel insights, including inhibitors against acetyl-coA carboxylase 1 and transforming growth factor beta into targeting Treg metabolism for therapeutic benefits.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Farhan S Cyprian
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Eyad Elkord
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
8
|
Effects of CpG oligodeoxynucleotides on the differentiation of Treg/Th17 cells. Mol Immunol 2021; 132:199-208. [PMID: 33454107 DOI: 10.1016/j.molimm.2021.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/21/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
AIM The balance between Th17 cells and T regulatory (Treg) cells has emerged as a prominent factor in regulating cancer development. However, the effect of CpG oligodeoxynucleotides (ODNs) on the differentiation of Treg/Th17 cells has not been well studied. We sought here to explore the function of CpG ODNs in the differentiation of Tregs and Th17 cells in vitro and in vivo. METHODS Mouse spleen cells were cultured with anti-CD3 monoclonal antibodies in vitro. Tregs and Th17 cell differentiation was induced by transforming growth factor (TGF)-β and interleukin (IL)-2, or TGF-β, IL-6, and IL-23, respectively. Then cells were treated with two CpG ODNs, CpG 1982, or CpG 1826. FBL-3-inoculated C57Bl/6 mice were treated with CpG 1826, tumor vaccine, or combination of CpG 1826 and tumor vaccine. After treatment, spleen cells and serum were isolated, and Tregs/Th17 cells were detected by flow cytometry. The expression of forkhead box P3 (Foxp3), retinoid-related orphan receptor gamma-t (RORγt), IL-10, and IL-17 mRNA was measured by real-time PCR, and protein levels were measured by Western blot and enzyme-linked immunosorbent assay. RESULTS The frequency of Treg cells increased significantly (p < 0.05) in the FBL-3-inoculated leukemia mouse model compared with control mice, whereas the frequency of Th17 cells did not change. Median survival of mice after treatment with CpG 1826 and tumor vaccine was significantly prolonged compared with that of control mice (p < 0.05). The frequency of induced Treg cells decreased after treatment with CpG 1826, whereas the frequency of Th17 cells induced by cytokines in vitro and in the murine leukemia model increased following treatment with CpG 1826. Furthermore, after treatment with CpG 1826, the mRNA and protein levels of Foxp3 and IL-10 decreased significantly both in vitro and in vivo (p < 0.05), whereas those of RORγt and IL-17 increased significantly (p < 0.05). CONCLUSION CpG 1826 may inhibit the differentiation of Treg cells induced by cytokines, promote the differentiation of Th17 cells in vitro and in murine leukemia models, and prolong the median survival of mice with leukemia.
Collapse
|
9
|
Galgani M, Bruzzaniti S, La Rocca C, Micillo T, de Candia P, Bifulco M, Matarese G. Immunometabolism of regulatory T cells in cancer. Mol Aspects Med 2020; 77:100936. [PMID: 33250195 DOI: 10.1016/j.mam.2020.100936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
Regulatory T (Treg) cells are known to orchestrate the regulatory mechanisms aimed at suppressing pathological auto-reactive immune responses and are thus key in ensuring the maintenance of immune homeostasis. On the other hand, the presence of Treg cells with enhanced suppressive capability in a plethora of human cancers represents a major obstacle to an effective anti-cancer immune response. A relevant research effort has thus been dedicated to comprehend Treg cell biology, leading to a continuously refining characterization of their phenotype and function and unveiling the central role of metabolism in ensuring Treg cell fitness in cancer. Here we focus on how the peculiar biochemical characteristics of the tumor microenvironment actually support Treg cell metabolic activation and favor their selective survival and proliferation. Moreover, we examine the key metabolic pathways that may become useful targets of novel treatments directed at hampering tumor resident Treg cell proficiency, thus representing the next research frontier in cancer immunotherapy.
Collapse
Affiliation(s)
- Mario Galgani
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy; Dipartimento di Biologia, Università Degli Studi di Napoli "Federico II", 80126, Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy
| | - Teresa Micillo
- Unità di Neuroimmunologia, Fondazione Santa Lucia IRCCS, 00179, Roma, Italy
| | | | - Maurizio Bifulco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy.
| |
Collapse
|
10
|
Xue VW, Chung JYF, Córdoba CAG, Cheung AHK, Kang W, Lam EWF, Leung KT, To KF, Lan HY, Tang PMK. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020. [PMID: 33114183 DOI: 10.3390/cancers12113099.pmid:33114183;pmcid:pmc7690808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
11
|
Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020; 12:cancers12113099. [PMID: 33114183 PMCID: PMC7690808 DOI: 10.3390/cancers12113099] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transforming growth factor beta (TGF-β) is a multifunctional cytokine that can restrict cancer onset but also promote cancer progression at late stages of cancer. The ability of TGF-β in producing diverse and sometimes opposing effects relies on its potential to control different cellular signalling and gene expression in distinct cell types, and environmental settings. The tumour promoting role of TGF-β is primarily mediated through its effects on the local tumour microenvironment (TME) of the cancer cells. In this review, we discuss the most recent research on the role and regulation of TGF-β, with a specific focus on its functions on promoting cancer progression through targeting different immune cells in the TME as well as its therapeutic perspectives. Abstract Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
|
12
|
Quandt J, Schlude C, Bartoschek M, Will R, Cid-Arregui A, Schölch S, Reissfelder C, Weitz J, Schneider M, Wiemann S, Momburg F, Beckhove P. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology 2018; 7:e1500671. [PMID: 30524892 PMCID: PMC6279329 DOI: 10.1080/2162402x.2018.1500671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023] Open
Abstract
Mutated proteins arising from somatic mutations in tumors are promising targets for cancer immunotherapy. They represent true tumor-specific antigens (TSAs) as they are exclusively expressed in tumors, reduce the risk of autoimmunity and are more likely to overcome tolerance compared to wild-type (wt) sequences. Hence, we designed a panel of long peptides (LPs, 28–35 aa) comprising driver gene mutations in TP35 and KRAS frequently found in gastrointestinal tumors to test their combined immunotherapeutic potential. We found increased numbers of T cells responsive against respective mutated and wt peptides in colorectal cancer patients that carry the tested mutations in their tumors than patients with other mutations. Further, active immunization of HLA(-A2/DR1)-humanized mice with mixes of the same mutated LPs yielded simultaneous, polyvalent CD8+/CD4+ T cell responses against the majority of peptides. Peptide-specific T cells possessed a multifunctional cytokine profile with CD4+ T cells showing a TH1-like phenotype. Two mutated peptides (Kras[G12V], p53[R248W]) induced significantly higher T cell responses than corresponding wt sequences and comprised HLA-A2/DR1-restricted mutated epitopes. However, vaccination with the same highly immunogenic LPs strongly increased systemic regulatory T cells (Treg) numbers in a syngeneic sarcoma model over-expressing these mutated protein variants and resulted in accelerated tumor outgrowth. In contrast, tumor outgrowth was delayed when vaccination was directed against tumor-intrinsic Kras/Tp53 mutations of lower immunogenicity. Conclusively, we show that LP vaccination targeting multiple mutated TSAs elicits polyvalent, multifunctional, and mutation-specific effector T cells capable of targeting tumors. However, the success of this therapeutic approach can be hampered by vaccination-induced, TSA-specific Tregs.
Collapse
Affiliation(s)
- Jasmin Quandt
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Christoph Schlude
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Bartoschek
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angel Cid-Arregui
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schölch
- Department of Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic, and Vascular Surgery, Medizinische Fakultaet an der TU-Dresden, Dresden, Germany
| | - Martin Schneider
- Department of Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Wiemann
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Antigen Presentation and T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Beckhove
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Regensburg Center for Interventional Immunology (RCI), University Regensburg and Department of Hematology-Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Chen J, Lin T. [Expression of regulatory T cells and natural killer T cells in peripheral blood of children with Wilms tumor]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1222-1226. [PMID: 27974111 PMCID: PMC7403072 DOI: 10.7499/j.issn.1008-8830.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the changes and clinical significance of CD4+CD25+CD127low regulatory T cells (Treg) and CD3+CD16+CD56+ natural killer T cells (NKT) in peripheral blood of children with Wilms tumor. METHODS Twenty-one children with Wilms tumor were enrolled as the case group, and twenty-one healthy children for physical examinations were enrolled as the control group. Flow cytometry was used to detect the levels of CD4+CD25+CD127low T cells and CD3+CD16+CD56+ T cells in peripheral blood of two groups. RESULTS The level of Treg cells in peripheral blood of the case group was significantly lower than in the control group (p<0.05). The level of NKT cells in peripheral blood of the case group was significantly higher than in the control group (p<0.05). CONCLUSIONS Treg cells and NKT cells play important roles in the occurrence and development of Wilms tumor. Treg cells and NKT cells may be useful indexes for evaluating immunological function in children with Wilms tumor.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University; Pediatric Research Institute of Children's Hospital of Chongqing Medical University; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | | |
Collapse
|
14
|
Abstract
The critical contribution of CD4+CD25+Foxp3+ T-regulatory cells (Treg) to immune suppression in the tumor microenvironment is well-established. Whereas the mechanisms that drive the generation and accumulation of Treg in tumors have been an active area of study, the information on their origin and population dynamics remains limited. In this review, we discuss the ontogeny of tumor-associated Treg in light of the recently identified lineage markers.
Collapse
Affiliation(s)
- Qingsheng Li
- a Department of Microbiology and Immunology , School of Medicine, University of Louisville , Louisville , KY , USA
| | - Nejat K Egilmez
- a Department of Microbiology and Immunology , School of Medicine, University of Louisville , Louisville , KY , USA
| |
Collapse
|
15
|
Klarquist J, Tobin K, Farhangi Oskuei P, Henning SW, Fernandez MF, Dellacecca ER, Navarro FC, Eby JM, Chatterjee S, Mehrotra S, Clark JI, Le Poole IC. Ccl22 Diverts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res 2016; 76:6230-6240. [PMID: 27634754 DOI: 10.1158/0008-5472.can-16-0618] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
T regulatory cells (Treg) avert autoimmunity, but their increased levels in melanoma confer a poor prognosis. To explore the basis for Treg accumulation in melanoma, we evaluated chemokine expression in patients. A 5-fold increase was documented in the Treg chemoattractants CCL22 and CCL1 in melanoma-affected skin versus unaffected skin, as accompanied by infiltrating FoxP3+ T cells. In parallel, there was an approximately two-fold enhancement in expression of CCR4 in circulating Treg but not T effector cells. We hypothesized that redirecting Treg away from tumors might suppress autoimmune side effects caused by immune checkpoint therapeutics now used widely in the clinic. In assessing this hypothesis, we observed a marked increase in skin Treg in mice vaccinated with Ccl22, with repetitive vaccination sufficient to limit Treg accumulation and melanoma growth in the lungs of animals challenged by tumor cell injection, whether using a prevention or treatment protocol design. The observed change in Treg accumulation in this setting could not be explained by Treg conversion. Overall, our findings offered a preclinical proof of concept for the potential use of CCL22 delivered by local injection as a strategy to enhance the efficacious response to immune checkpoint therapy while suppressing its autoimmune side effects. Cancer Res; 76(21); 6230-40. ©2016 AACR.
Collapse
Affiliation(s)
- Jared Klarquist
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Kristen Tobin
- Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | | | - Steven W Henning
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Manuel F Fernandez
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | | | - Flor C Navarro
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Jonathan M Eby
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Shilpak Chatterjee
- Department of Surgery/Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery/Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph I Clark
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois.,Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - I Caroline Le Poole
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois. .,Departments of Pathology, Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
16
|
Yang EY, Kronenfeld JP, Gattás-Asfura KM, Bayer AL, Stabler CL. Engineering an "infectious" T(reg) biomimetic through chemoselective tethering of TGF-β1 to PEG brush surfaces. Biomaterials 2015. [PMID: 26197412 DOI: 10.1016/j.biomaterials.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulation of immunological responses to allografts following transplantation is of pivotal importance to improving graft outcome and duration. Of the many approaches, harnessing the dominant tolerance induced by regulatory T cells (Treg) holds tremendous promise. Recent studies have highlighted the unique potency of cell surface-bound TGF-β1 on Treg for promoting infectious tolerance, i.e. to confer suppressive capacity from one cell to another. To mimic this characteristic, TGF-β1 was chemoselectively tethered to inert and viable polymer grafting platforms using Staudinger ligation. We report the synthesis and functional characterization of these engineered TGF-β1 surfaces. Inert beads tethered with TGF-β1 were capable of efficiently converting naïve CD4(+) CD62L(hi) T cells to functional Treg. Concordantly, translation of conjugation scheme from inert surfaces to viable cells also led to efficient generation of functional Treg. Further, the capacity of these platforms to generate antigen-specific Treg was demonstrated. These findings illustrate the unique faculty of tethered TGF-β1 biomaterial platforms to function as an "infectious" Treg and provide a compelling approach for generating tolerogenic microenvironments for allograft transplantation.
Collapse
Affiliation(s)
- E Y Yang
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - J P Kronenfeld
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Medicine, University of Miami, Miami, FL, USA
| | | | - A L Bayer
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - C L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA.
| |
Collapse
|
17
|
Abstract
The central nervous system (CNS) possesses powerful local and global immunosuppressive capabilities that modulate unwanted inflammatory reactions in nervous tissue. These same immune-modulatory mechanisms are also co-opted by malignant brain tumors and pose a formidable challenge to brain tumor immunotherapy. Routes by which malignant gliomas coordinate immunosuppression include the mechanical and functional barriers of the CNS; immunosuppressive cytokines and catabolites; immune checkpoint molecules; tumor-infiltrating immune cells; and suppressor immune cells. The challenges to overcoming tumor-induced immunosuppression, however, are not unique to the brain, and several analogous immunosuppressive mechanisms also exist for primary tumors outside of the CNS. Ultimately, the immune responses in the CNS are linked and complementary to immune processes in the periphery, and advances in tumor immunotherapy in peripheral sites may therefore illuminate novel approaches to brain tumor immunotherapy, and vice versa.
Collapse
Affiliation(s)
- Powell Perng
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Michael Lim
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
18
|
Li Q, Virtuoso LP, Anderson CD, Egilmez NK. Regulatory Rebound in IL-12-Treated Tumors Is Driven by Uncommitted Peripheral Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1293-300. [PMID: 26085681 DOI: 10.4049/jimmunol.1403078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/25/2015] [Indexed: 11/19/2022]
Abstract
IL-12 promotes a rapid reversal of immune suppression in the tumor microenvironment. However, the adjuvant activity of IL-12 is short-lived due to regulatory T cell (Treg) reinfiltration. Quantitative analysis of Treg kinetics in IL-12-treated tumors and tumor-draining lymph nodes revealed a transient loss followed by a rapid 4-fold expansion of tumor Treg between days 3 and 10. Subset-specific analysis demonstrated that the posttreatment rebound was driven by the CD4(+)CD25(+)Foxp3(+) neuropilin-1(low) peripheral Treg (pTreg), resulting in a 3-5-fold increase in the pTreg to CD4(+)CD25(+)Foxp3(+) neuropilin-1(high) thymic Treg ratio by day 10. The expanding pTreg displayed hypermethylation of the CpG islands in Treg-specific demethylated region, CTLA-4 exon 2, and glucocorticoid-induced TNFR exon 5, were phenotypically unstable, and exhibited diminished suppressive function consistent with an uncommitted in vitro-induced Treg-like phenotype. In vitro culture of posttherapy Treg populations under Th1-promoting conditions resulted in higher levels of IFN-γ production by pTreg compared with thymic Treg, confirming their transitional state. Blockade of selected molecular mechanisms that are known to promote Treg expansion identified IDO-positive dendritic cells as the primary mediator of post-IL-12 pTreg expansion. Clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Qingsheng Li
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202; and
| | - Lauren P Virtuoso
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Charles D Anderson
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202; and
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
19
|
The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol 2015; 33:101-11. [PMID: 25728990 DOI: 10.1016/j.coi.2015.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/19/2015] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Abstract
Regulatory T (Treg) cells suppress effector T (Teff) cells and prevent immune-mediated rejection of cancer. Much less appreciated are mechanisms by which Teff cells antagonize Treg cells. Herein, we consider how complex reciprocal interactions between Teff and Treg cells shape their population dynamics within tumors. Under states of tolerance, including during tumor escape, suppressed Teff cells support Treg cell populations through antigen-dependent provision of interleukin (IL)-2. During immune activation, Teff cells can lose this supportive capacity and directly antagonize Treg cell populations to neutralize their immunosuppressive function. While this latter state is rarely achieved spontaneously within tumors, we propose that therapeutic induction of immune activation has the potential to stably disrupt immunosuppressive population states resulting in durable cancer regression.
Collapse
|
20
|
Zitvogel L, Tanchot C, Granier C, Tartour E. Following up tumor-specific regulatory T cells in cancer patients. Oncoimmunology 2014; 2:e25444. [PMID: 24073383 PMCID: PMC3782156 DOI: 10.4161/onci.25444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 01/13/2023] Open
Affiliation(s)
- Laurence Zitvogel
- INSERM, U1015; Villejuif, France ; Institut Gustave Roussy; Villejuif, France ; CICBT507; Villejuif, France ; Université Paris Sud; Le Kremlin Bicêtre, France
| | | | | | | |
Collapse
|
21
|
Schuler PJ, Saze Z, Hong CS, Muller L, Gillespie DG, Cheng D, Harasymczuk M, Mandapathil M, Lang S, Jackson EK, Whiteside TL. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol 2014; 177:531-43. [PMID: 24749746 DOI: 10.1111/cei.12354] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
While murine CD4(+) CD39(+) regulatory T cells (T(reg)) co-express CD73 and hydrolyze exogenous (e) adenosine triphosphate (ATP) to immunosuppressive adenosine (ADO), surface co-expression of CD73 on human circulating CD4(+) CD39(+) T(reg) is rare. Therefore, the ability of human T(reg) to produce and utilize ADO for suppression remains unclear. Using mass spectrometry, we measured nucleoside production by subsets of human CD4(+) CD39(+) and CD4(+) CD39(-)CD73(+) T cells or CD19(+) B cells isolated from blood of 30 volunteers and 14 cancer patients. CD39 and CD73 expression was evaluated by flow cytometry, Western blots, confocal microscopy or reverse transcription-polymerase chain reaction (RT-PCR). Circulating CD4(+) CD39(+) T(reg) which hydrolyzed eATP to 5'-AMP contained few intracytoplasmic granules and had low CD73 mRNA levels. Only ∼1% of these T(reg) were CD39(+) CD73(+) . In contrast, CD4(+) CD39(neg) CD73(+) T cells contained numerous CD73(+) granules in the cytoplasm and strongly expressed surface CD73. In vitro-generated T(reg) (Tr1) and most B cells were CD39(+) CD73(+) . All these CD73(+) T cell subsets and B cells hydrolyzed 5'-AMP to ADO. Exosomes isolated from plasma of normal control (NC) or cancer patients carried enzymatically active CD39 and CD73(+) and, when supplied with eATP, hydrolyzed it to ADO. Only CD4(+) CD39(+) T(reg) co-incubated with CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes produced ADO. Thus, contact with membrane-tethered CD73 was sufficient for ADO production by CD4(+) CD39(+) T(reg). In microenvironments containing CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes, CD73 is readily available to CD4(+) CD39(+) CD73(neg) T(reg) for the production of immunosuppressive ADO.
Collapse
Affiliation(s)
- P J Schuler
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Otolaryngology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martinez NE, Karlsson F, Sato F, Kawai E, Omura S, Minagar A, Grisham MB, Tsunoda I. Protective and detrimental roles for regulatory T cells in a viral model for multiple sclerosis. Brain Pathol 2014; 24:436-451. [PMID: 24417588 PMCID: PMC4097993 DOI: 10.1111/bpa.12119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) has been proposed to be an immune-mediated disease in the central nervous system (CNS) that can be triggered by virus infections. In Theiler's murine encephalomyelitis virus (TMEV) infection, during the first week (acute stage), mice develop polioencephalomyelitis. After 3 weeks (chronic stage), mice develop immune-mediated demyelination with virus persistence, which has been used as a viral model for MS. Regulatory T cells (Tregs) can suppress inflammation, and have been suggested to be protective in immune-mediated diseases, including MS. However, in virus-induced inflammatory demyelination, although Tregs can suppress inflammation, preventing immune-mediated pathology, Tregs may also suppress antiviral immune responses, leading to more active viral replication and/or persistence. To determine the role and potential translational usage of Tregs in MS, we treated TMEV-infected mice with ex vivo generated induced Tregs (iTregs) on day 0 (early) or during the chronic stage (therapeutic). Early treatment worsened clinical signs during acute disease. The exacerbation of acute disease was associated with increased virus titers and decreased immune cell recruitment in the CNS. Therapeutic iTreg treatment reduced inflammatory demyelination during chronic disease. Immunologically, iTreg treatment increased interleukin-10 production from B cells, CD4(+) T cells and dendritic cells, which may contribute to the decreased CNS inflammation.
Collapse
Affiliation(s)
- Nicholas E. Martinez
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Fridrik Karlsson
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Fumitaka Sato
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Eiichiro Kawai
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Seiichi Omura
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| | - Alireza Minagar
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLA
| | - Matthew. B. Grisham
- Department of Immunology and Molecular MicrobiologyTexas Tech University Health Sciences CenterLubbockTX
| | - Ikuo Tsunoda
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
23
|
Abstract
TNFRSF25 is an understudied broad-acting T cell costimulator with high homology to TNFR1, however, the overall role of this receptor in T cell immunobiology is unclear. Ligation of TNFRSF25 by its monogamous ligand, TNFSF15 (TL1A), leads to recruitment of TNFR-associated factor 2 and TNFR-associated death domain in primary T cells with downstream activation of both NFκB as well as the PI3K/Akt axis. These signaling pathways are dependent upon coordinated engagement of the T cell receptor and interleukin-2 receptor and leads to the constitutive proliferation of CD4+FoxP3+ regulatory T cells (Treg) as a result of tonic exposure to self-antigen. Concurrent activation of CD4+ or CD8+ conventional T cell clones is dependent upon the availability of cognate foreign antigen. Here, we provide a review of both the literature and our work on this receptor and propose that the overall function of TL1A signaling to TNFRSF25 in T cells is to provide simultaneous costimulation of foreign-antigen-specific effector T cells and pre-existing Treg in order to focus the clonality of effector immunity to pathogen-derived antigens and reduce the risk of bystander inflammation toward self- or endogenous microbial antigens.
Collapse
|
24
|
Strbo N, Garcia-Soto A, Schreiber TH, Podack ER. Secreted heat shock protein gp96-Ig: next-generation vaccines for cancer and infectious diseases. Immunol Res 2013; 57:311-25. [PMID: 24254084 DOI: 10.1007/s12026-013-8468-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decade, our laboratory has developed a secreted heat shock protein (HSP), chaperone gp96, cell-based vaccine that generates effective anti-tumor and anti-infectious immunity in vivo. Gp96-peptide complexes were identified as an extremely efficient stimulator of MHC I-mediated antigen cross-presentation, generating CD8 cytotoxic T-lymphocyte responses detectable in blood, spleen, gut and reproductive tract to femto-molar concentrations of antigen. These studies provided the first evidence that cell-based gp96-Ig-secreting vaccines may serve as a potent modality to induce both systemic and mucosal immunity. This approach takes advantage of the combined adjuvant and antigen delivery capacity of gp96 for the generation of cytotoxic immunity against a wide range of antigens in both anti-vial and anti-cancer vaccination. Here, we review the vaccine design that utilizes the unique property/ability of endoplasmic HSP gp96 to bind antigenic peptides and deliver them to antigen-presenting cells.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, RMSB 3008, 1600 NW 10th Ave, Miami, FL, 33136, USA,
| | | | | | | |
Collapse
|
25
|
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771. [PMID: 24286020 PMCID: PMC3841205 DOI: 10.4161/onci.25771] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Perret R, Sierro SR, Botelho NK, Corgnac S, Donda A, Romero P. Adjuvants that improve the ratio of antigen-specific effector to regulatory T cells enhance tumor immunity. Cancer Res 2013; 73:6597-608. [PMID: 24048821 DOI: 10.1158/0008-5472.can-13-0875] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antitumor immunity is strongly influenced by the balance of tumor antigen-specific effector T cells (Teff) and regulatory T cells (Treg). However, the impact that vaccine adjuvants have in regulating the balance of antigen-specific T-cell populations is not well understood. We found that antigen-specific Tregs were induced following subcutaneous vaccination with either OVA or melanoma-derived peptides, with a restricted expansion of Teffs. Addition of the adjuvants CpG-ODN or Poly(I:C) preferentially amplified Teffs over Tregs, dramatically increasing the antigen-specific Teff:Treg ratios and inducing polyfunctional effector cells. In contrast, two other adjuvants, imiquimod and Quil A saponin, favored an expansion of antigen-specific Tregs and failed to increase Teff:Treg ratios. Following therapeutic vaccination of tumor-bearing mice, high ratios of tumor-specific Teffs:Tregs in draining lymph nodes were associated with enhanced CD8(+) T-cell infiltration at the tumor site and a durable rejection of tumors. Vaccine formulations of peptide+CpG-ODN or Poly(I:C) induced selective production of proinflammatory type I cytokines early after vaccination. This environment promoted CD8(+) and CD4(+) Teff expansion over that of antigen-specific Tregs, tipping the Teff to Treg balance to favor effector cells. Our findings advance understanding of the influence of different adjuvants on T-cell populations, facilitating the rational design of more effective cancer vaccines.
Collapse
Affiliation(s)
- Rachel Perret
- Authors' Affiliation: Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Burocchi A, Colombo MP, Piconese S. Convergences and divergences of thymus- and peripherally derived regulatory T cells in cancer. Front Immunol 2013; 4:247. [PMID: 23986759 PMCID: PMC3753661 DOI: 10.3389/fimmu.2013.00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/08/2013] [Indexed: 12/18/2022] Open
Abstract
The expansion of regulatory T cells (Treg) is a common event characterizing the vast majority of human and experimental tumors and it is now well established that Treg represent a crucial hurdle for a successful immunotherapy. Treg are currently classified, according to their origin, into thymus-derived Treg (tTreg) or peripherally induced Treg (pTreg) cells. Controversy exists over the prevalent mechanism accounting for Treg expansion in tumors, since both tTreg proliferation and de novo pTreg differentiation may occur. Since tTreg and pTreg are believed as preferentially self-specific or broadly directed to non-self and tumor-specific antigens, respectively, the balance between tTreg and pTreg accumulation may impact on the repertoire of antigen specificities recognized by Treg in tumors. The prevalence of tTreg or pTreg may also affect the outcome of immunotherapies based on tumor-antigen vaccination or Treg depletion. The mechanisms dictating pTreg induction or tTreg expansion/stability are a matter of intense investigation and the most recent results depict a complex landscape. Indeed, selected Treg subsets may display peculiar characteristics in terms of stability, suppressive function, and cytokine production, depending on microenvironmental signals. These features may be differentially distributed between pTreg and tTreg and may significantly affect the possibility of manipulating Treg in cancer therapy. We propose here that innovative immunotherapeutic strategies may be directed at diverting unstable/uncommitted Treg, mostly enriched in the pTreg pool, into tumor-specific effectors, while preserving systemic immune tolerance ensured by self-specific tTreg.
Collapse
Affiliation(s)
- Alessia Burocchi
- Molecular Immunology Unit, Department of Experimental Medicine, Fondazione IRCCS "Istituto Nazionale Tumori," Milan , Italy
| | | | | |
Collapse
|
28
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238. [PMID: 24083080 PMCID: PMC3782517 DOI: 10.4161/onci.25238] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology, we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France
- INSERM, U848; Villejuif, France
| | | | - Catherine Sautès-Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 15, Centre de Recherche des Cordeliers; Paris, France
- INSERM, U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France
- INSERM, U1015; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Metabolomics and Cell Biology Platform; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Institut Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
29
|
Abstract
CD4+Foxp3+ T regulatory (Treg) cells control many facets of immune responses ranging from autoimmune diseases, to inflammatory conditions, and cancer in an attempt to maintain immune homeostasis. Natural Treg (nTreg) cells develop in the thymus and constitute a critical arm of active mechanisms of peripheral tolerance particularly to self antigens. A growing body of knowledge now supports the existence of induced Treg (iTreg) cells which may derive from a population of conventional CD4+ T cells. The fork-head transcription factor (Foxp3) typically is expressed by natural CD4+ Treg cells, and thus serves as a marker to definitively identify these cells. On the contrary, there is less consensus on what constitutes iTreg cells as their precise definition has been somewhat elusive. This is in part due to their distinct phenotypes which are shaped by exposure to certain inflammatory or "assault" signals stemming from the underlying immune disorder. The "policing" activity of Treg cells tends to be uni-directional in several pathological conditions. On one end of the spectrum, Treg cell suppressive activity is beneficial by curtailing T cell response against self-antigens and allergens thus preventing autoimmune diseases and allergies. On the other end however, their inhibitory roles in limiting immune response against pseudo-self antigens as in tumors often culminates into negative outcomes. In this review, we focus on this latter aspect of Treg cell immunobiology by highlighting the involvement of nTreg cells in various animal models and human tumors. We further discuss iTreg cells, relationship with their natural counterpart, and potential co-operation between the two in modulating immune response against tumors. Lastly, we discuss studies focusing on these cells as targets for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Dennis O Adeegbe
- Experimental Immunology, Immunology Frontier Research Center, Osaka University , Suita , Japan
| | | |
Collapse
|
30
|
Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol 2013; 4:190. [PMID: 23874336 PMCID: PMC3708155 DOI: 10.3389/fimmu.2013.00190] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022] Open
Abstract
CD4+Foxp3+ T regulatory (Treg) cells control many facets of immune responses ranging from autoimmune diseases, to inflammatory conditions, and cancer in an attempt to maintain immune homeostasis. Natural Treg (nTreg) cells develop in the thymus and constitute a critical arm of active mechanisms of peripheral tolerance particularly to self antigens. A growing body of knowledge now supports the existence of induced Treg (iTreg) cells which may derive from a population of conventional CD4+ T cells. The fork-head transcription factor (Foxp3) typically is expressed by natural CD4+ Treg cells, and thus serves as a marker to definitively identify these cells. On the contrary, there is less consensus on what constitutes iTreg cells as their precise definition has been somewhat elusive. This is in part due to their distinct phenotypes which are shaped by exposure to certain inflammatory or “assault” signals stemming from the underlying immune disorder. The “policing” activity of Treg cells tends to be uni-directional in several pathological conditions. On one end of the spectrum, Treg cell suppressive activity is beneficial by curtailing T cell response against self-antigens and allergens thus preventing autoimmune diseases and allergies. On the other end however, their inhibitory roles in limiting immune response against pseudo-self antigens as in tumors often culminates into negative outcomes. In this review, we focus on this latter aspect of Treg cell immunobiology by highlighting the involvement of nTreg cells in various animal models and human tumors. We further discuss iTreg cells, relationship with their natural counterpart, and potential co-operation between the two in modulating immune response against tumors. Lastly, we discuss studies focusing on these cells as targets for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Dennis O Adeegbe
- Experimental Immunology, Immunology Frontier Research Center, Osaka University , Suita , Japan
| | | |
Collapse
|
31
|
Schmidt HH, Ge Y, Hartmann FJ, Conrad H, Klug F, Nittel S, Bernhard H, Domschke C, Schuetz F, Sohn C, Beckhove P. HLA Class II tetramers reveal tissue-specific regulatory T cells that suppress T-cell responses in breast carcinoma patients. Oncoimmunology 2013; 2:e24962. [PMID: 23894725 PMCID: PMC3716760 DOI: 10.4161/onci.24962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in controlling antitumor T-cell responses and hence represent a considerable obstacle for cancer immunotherapy. The abundance of specific Treg populations in cancer patients has been poorly analyzed so far. Here, we demonstrate that in breast cancer patients, Tregs often control spontaneous effector memory T-cell responses against mammaglobin, a common breast tissue-associated antigen that is overexpressed by breast carcinoma. Using functional assays, we identified a HLA-DRB1*04:01- and HLA-DRB1*07:01-restricted epitope of mammaglobin (mam34–48) that was frequently recognized by Tregs isolated from breast cancer patients. Using mam34–48-labeled HLA Class II tetramers, we quantified mammaglobin-specific Tregs and CD4+ conventional T (Tcon) cells in breast carcinoma patients as well as in healthy individuals. Both mammaglobin-specific Tregs and Tcon cells were expanded in breast cancer patients, each constituting approximately 0.2% of their respective cell subpopulations. Conversely, mammaglobin-specific Tregs and CD4+ Tcon cells were rare in healthy individuals (0.07%). Thus, we provide here for the first time evidence supporting the expansion of breast tissue-specific Tregs and CD4+ Tcon cells in breast cancer patients. In addition, we substantiate the potential implications of breast tissue-specific Tregs in the suppression of antitumor immune responses in breast cancer patients. The HLA Class II tetramers used in this study may constitute a valuable tool to elucidate the role of antigen-specific Tregs in breast cancer immunity and to monitor breast cancer-specific CD4+ T cells.
Collapse
Affiliation(s)
- Hans-Henning Schmidt
- German Cancer Research Center and National Center for Tumor Diseases; Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, Banissi C, Galluzzi L, Kroemer G, Tartour E. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. CANCER MICROENVIRONMENT 2012; 6:147-57. [PMID: 23104434 DOI: 10.1007/s12307-012-0122-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023]
Abstract
In immunocompetent individuals, the immune system initially eradicates potentially tumorigenic cells as they develop, a capacity that is progressively lost when malignant cells acquire alterations that sustain immunosubversion and/or immunoevasion. One of the major mechanisms whereby cancer cells block antitumor immune responses involves a specific class of immunosuppressive T cells that-in the vast majority of cases-express the Forkhead box P3 (FOXP3) transcription factor. Such FOXP3(+) regulatory T cells (Tregs) accumulate within neoplastic lesions as a result of several distinct mechanisms, including increased infiltration, local expansion, survival advantage and in situ development from conventional CD4(+) cells. The prognostic/predictive significance of tumor infiltration by Tregs remains a matter of debate. Indeed, high levels of intratumoral Tregs have been associated with poor disease outcome in cohorts of patients affected by multiple, but not all, tumor types. This apparent discrepancy may relate to the existence of functionally distinct Treg subsets, to the fact that Tregs near-to-invariably infiltrate neoplastic lesions together with other cells from the immune system, notably CD4(+) and CD8(+) T lymphocytes and/or to peculiar features of some oncogenic programs that involve a prominent pro-inflammatory component. In this review, we will discuss the phenotype, function and clinical significance of various Treg subsets.
Collapse
Affiliation(s)
- C Tanchot
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Paris, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|